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The experimental search for the CEP

STAR, PRL126

(2021) 9, 092301;

from abstract: ”models

of heavy-ion collisions

without a critical point

show a monotonic

variation as a function

of sNN”

Minimum at:
√
sNN = 19.6GeV → µB ≈ 200MeV and µB/T ≈ 1.3

Lowest energy:
√
sNN = 7.7GeV → µB ≈ 400MeV and µB/T ≈ 3

It would be nice to say something from first principle calculations. 2



Why is finite µB so difficult for the lattice?

Lattice QCD is a set of theoretical and computational techniques to

perform the Euclidean path integral:

Z =

∫
DAµDψ̄Dψe−

1
4

∫
FµνFµν−

∫
ψ̄(γµ∂µ+γ0µ+m)ψ

we integrate out the fermions analytically, to get

Z =

∫
DAµ detM(Aµ, µ,m)ψe−

1
4

∫
FµνFµν

where M is (a discretized version of) the Dirac-operator. We can

simulate this with Monte Carlo techniques if detM is real and positive:

� chemical potential µ = 0

� purely imaginary chemical potentials: Reµ = 0

� isospin chemical potential: µu = −µd

Otherwise: complex action or sign problem

→ desperate times, desperate measures
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Approaches to finite density lattice QCD

Known approaches that try to side-step the complex action problem

introduce additional serious problems. E.g.

� Taylor and imaginary µ: analytic continuation problem

� Reweighting and Taylor: overlap problem

� Complex Langevin: convergence issues

� . . .

This talk:

→ a direct method

There is a sign problem, but if it is dealt with by sufficient statistics, the

results are reliable, and errors (on a fixed lattice setup) are statistical only.
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Trying to look for criticality with analytic continuation
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Unpredictive in the phenomenologically interesting range from µB/T = 1.3 . . . 3 5



Reweighting: in general

Target theory: Zw Simulated theory: Zr

Zw =

∫
DU w(U) w(U) = detM[U, µ)e−Sg [U] ∈ C

Zr =

∫
DU r(U) r(U) > 0

Zw

Zr
=
〈w
r

〉
r

〈O〉w =

∫
DU w(U)O(U)∫
DU w(U)

=

∫
DU r(U)w(U)

r(U) O(U)
∫
DU r(U)w(U)

r(U)

=

〈
w
r O
〉
r〈

w
r

〉
r

Two problems that are exponentially hard in the volume:

�
w
r ∈ C → the complex action problem became a sign problem

� Tails of ρ(w
r ) long → overlap problem

An old lattice estimate of the crit. pt. comes from reweighting from

µ = 0 on very coarse lattices: Fodor, Katz; JHEP 04 (2004) 050
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Why does reweighting from µ = 0 fail?

The expectation value

of any observable:

〈O〉w =

〈
w
r O
〉
r〈

w
r

〉
r

The weights are the
w
r ∝ det M(µ)

det M(0) . To

calculate anything, we

need to have control

over the observable

The sign problem is under control, the overlap problem is not:

Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020)
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Phase reweighting

A simple way to avoid long tails for the distribution of w
r is to make sure

that w/r come from a compact space. E.g.

w = e−Sg detM = e−Sg | detM|e iθ
r = e−Sg |detM| ⇒ w

r
= e iθ

Some studies, e.g. Fodor, Schmidt, Katz; JHEP 03 (2007) 121

Endrodi, Fodor, Katz, Sexty, Szabo, Torok; PRD 98 (2018) 7,074508

Not pursued in large scale studies.

Common lore:

� PQ: | detM| = | detMu(µ) detMd(µ)| = detMu(µ) detMd(−µ)

→ isospin chemical potential

� pion condensation for µq ' mπ

2

�

〈
e iθ
〉
PQ

=
ZµB

ZµI
= e−V (FB−FI ) → severe sign problem
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Sign reweighting

Z =

∫
DUe−Sg detM =

∫
DUe−SgRe detM

� Beware: the substitution detM → Re detM can be done in Z but

not in generic expectation values.

� E.g. things like ∂n log Z
∂µn

ud
, ∂n log Z

∂mn
ud

and ∂n log Z
∂βn can be calculated

A new choice of a theory to reweight to and from:

w = e−SgRe detM

r = e−Sg |Re detM| ⇒
w

r
= sgn cos θ = ±1

� The weights are ε = ±1 → No tail, no overlap problem

� 〈±〉r measures the strength of the sign problem

� de Forcrand, Kim, Takaishi; Nucl. Phys. B Proc. Suppl. 119, 541

(2003) → optimal choice for w
r = f (θ)

� But: hard to simulate with weights ∝ |Re detM|
9



Numerical test - unimproved staggered at Nτ = 4
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Consistent with the 2004 paper. BUT: to start being relevant for

phenomenology, a much better lattice action has to be used
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Understanding the strength of the sign problem

The strength of the sign problem is governed by the same underlying

probability distribution:

PPQ(θ) = 〈δ(θ − Arg(detM))〉PQ

With a known PPQ we have:

< cos θ >PQ =

∫ +π

−π
PPQ(θ) cos θdθ

< sgn cos θ >SQ =

∫ +π

−π PPQ(θ) cos θdθ
∫ +π

−π PPQ(θ)| cos θ|dθ

2-step approximation:

(i) leading order cumulant: PPQ(θ) ∼ wrapped Gaussian

(ii) leading order Taylor
〈
θ2
〉
LO

= − 4
9χ

ud
11 (LT )3

µ̂2
B

QCD input: χud
11 = 1

T 2
∂2p

∂µu∂µd
|µ=0
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Analytic formulas for the asymptotic behavior

Weak sign problem: small µ or V

〈cos θ〉PQ
T ,µ ∼ 1− σ2(µ)

2

〈ε〉SQT ,µ ∼ 1−
(

4
π

) 5
2

(
σ2(µ)

2

) 3
2

e
− π2

8σ2(µ)

< sgn cos θ >SQ approaches 1 faster than any polynomial.

Strong sign problem: large µ or V

〈ε〉SQT ,µ
〈cos θ〉PQ

T ,µ

∼ π

2
,

→ a factor of (π2 )2 ≈ 2.5 in statistics asymptotically

There is a chance for a window at intermediate chemical potentials,

where the sign problem with sign quenched is still weak.
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The simulated strength of the sign problem
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� Statistics required ∝ 1/(strength of the sign problem)2

� Small µ model describes actual data pretty well

� Const. strength of the sign problem for const. (LT )3 (µB

T

)2
(roughly)

� For LT = 16/6 ≈ 2.7 the sign problem is managable for the entire

RHIC Beam Energy Scan range
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Temperature scan - 2stout improved Nτ = 6

〈
ψ̄ψ
〉
R

= (
〈
ψ̄ψ
〉

0
−
〈
ψ̄ψ
〉
T

)mud

f 4
π
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Similar rescalings in the imaginary µB direction:

W-B: PRL 126 (2021) 23, 232001; W-B: PRL 125 (2020) 5, 052001;

Also works at real µB → no sign of a strengthening crossover 14



Chemical potential scan - 2stout improved Nτ = 6
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T = 140MeV and 0 ≤ µB ≤ 380MeV. The direct method penetrates the

region where errors from analytic continuation blow up!
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Summary

� Methods to study finite density QCD are typically not bottlenecked

by the sign problem itself but other effects

� Observables that are sensitive to criticality are unknown for say

µB/T ≥ 1.5

� We advocate a ”new” reweighting method that is free from the

overlap problem in the weights and is therefore only bottlenecked by

the sign problem itself

� The sign problem is managable for the RHIC BES range

� Penetrates the region where extrapolation methods are not that

predictive

� First physics results

� Active research: cutting the costs with algorithmic tricks

2D scan of the T − µB plane
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