
Hydrodynamics with 50 particles. What does it mean and how

to think about it?

G.Torrieri

2007.09224 (JHEP), 2109.06389 (With M.Shokri,L.Gavassino,D.Montenegro)
Answers somewhat speculative... but I think I am asking good questions!



• The necessity to redefine hydro

– Small fluids and fluctuations
– Statistical mechanicists and mathematicians

• A possible answer:

– Describing equilibrium at the operator level using the Zubarev operator
– Definining non-equilibrium at the operator level using Crooks theorem

Relationship to usual hydrodynamics analogous to ”Wilson loops” vs
”Chiral perturbation” regarding usual QCD

• The emergence of redundances and the reverse attractor



Some experimental data warmup (Why the interest in relativistic hydro ?)
(2004) Matter in heavy ion collisions seems to behave as a perfect fluid,
characterized by a very rapid thermalization



The technical details
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A "fluid"
Particles continuously
interact.  Expansion
determined by density
gradient (shape)

A "dust"
Particles ignore each
other, their path
is independent of
initial shape
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Calculations
using ideal
hydrodynamics

P.Kolb and U.Heinz,Nucl.Phys.A702:269,2002. P.Romatschke,PRL99:172301,2007



The conventional widsom
Hydrodynamics is an ”effective theory”, built around coarse-graining and
”fast thermalization”. Fast w.r.t. Gradients of coarse-grained variables
If thermalization instantaneus, then isotropy,EoS enough to close evolution

Tµν = (e+ P (e))uµuν + P (e)gµν

In rest-frame at rest w.r.t. uµ

Tµν = Diag (e(p), p, p, p)

(NB: For simplicity we assume no conserved charges, µB = 0 )



If thermalization not instantaneus,

Tµν = T eq
µν +Πµν , uµΠ

µν = 0

∑

n

τnΠ∂
n
τΠµν = −Πµν +O (∂u) +O

(
(∂u)2

)
+ ...

A series whose ”small parameter” (Barring phase transitions/critical
points/... all of these these same order):

K ∼ lmicro

lmacro
∼ η

sT
∇u ∼ DetΠµν

DetTµν
∼ ...

and the transport coefficients calculable from asymptotic correlators of
microscopic theory

Navier-Stokes ∼ K , Israel-Stewart ∼ K2 etc.



So hydrodynamics is an EFT in terms of K and correlators

η = lim
k→0

1

k

∫
dx

〈
T̂xy(x)T̂xy(y)

〉
exp [ik(x− y)] , τπ ∼

∫
eikx 〈TTT 〉 , ...

This is a classical theory , T̂µν → 〈Tµν〉 Higher order correlators
〈Tµν(x)...Tµν〉 play role in transport coefficients, not in EoM (if you
know equation and initial conditions, you know the whole evolution!)

Both top-down theories compared to hydrodynamics, Boltzmann and
AdS/CFT, effectively ”classical” (no fluctuations due to molecular
chaos/large Nc!)



2011-2013 FLuid-like behavior has been observed down to very small sizes,
p− p collisions of 50 particles



CMS  1606.06198

BSchenke 1603.04349

H.W.Lin 1106.1608

1606.06198 (CMS) : When you consider geometry differences, hydro with
O (20) particles ”just as collective” as for 1000. Thermalization scale ≪
color domain wall scale.

Little understanding of this in ”conventional widsom”



Hydrodynamics in small systems: “hydrodynamization”/”fake equilibrium”
A lot more work in both AdS/CFT and transport theory about
”hydrodynamization”/”Hydrodynamic attractors”

Kurkela et al
1907.08101..

Fluid-like systems far from equilibrium (large gradients )! Usually from 1D
solution of Boltzmann and AdS/CFT EoMs! “hydrodynamics converges
even at large gradients with no thermal equilibrium”

But I have a basic question: ensemble averaging!



• What is hydrodynamics if N ∼ 50 ...

– Ensemble averaging , 〈F ({xi} , t)〉 6= F ({〈xi〉} , t)
suspect for any non-linear theory. molecular chaos in Boltzmann,
Large Nc in AdS/CFT, all assumed . But for O (50) particles?!?!

– For water, a cube of length η/(sT ) has O
(
109

)
molecules,

P (N 6= 〈N〉) ∼ exp
[
−〈N〉−1

(N − 〈N〉)2
]
≪ 1

.

• How do microscopic, macroscopic and quantum corrections talk to eac
other? EoS is given by p = T lnZ but ∂2 lnZ/∂T 2, dP/dV ??

NB: nothing to do with equilibration timescale . Even ”things born in
equilibrium” locally via Eigenstate thermalization have fluctuations!



And there is more... How does dissipation work in such a “semi-microscopic
system”?

• What does local and global equilibrium mean there?

• If Tµν → T̂µν what is Π̂µν Second law fluctuations? Sometimes because
of a fluctuation entropy decreases! What is the role of microstates?

The obvious conclusion is Fluctuations only help dissipation, they are
random .

Perhaps lmfp ≥ O (1) (V/Ndof)
1/3

or something like this.

Can this be wrong? Can fluctuations help thermalize so smaller systems
thermalize faster? if 1/T ∼ lmfp ? PERHAPS...



???

Bottom line: Either hydrodynamics is not the right explanation for these
observables (possible! But small/big systems similar! ) or we are not
understanding something basic about what’s behind the hydrodynamics!
What do fluctuations do? Just a lower limit to dissipation?



Every statistical theory needs a ”state space” and an ”evolution dynamics”
The ingredients

State space:Zubarev hydrodynamics Mixes micro and macro DoFs

Dynamics: Crooks fluctuation theorem provides the dynamics via a
definition of Πµν from fluctuations

T̂µν is an operator, so any decomposition, such as T̂µν
0 + Π̂µν must be

too!



Zubarev partition function for local equilibrium: think of Eigenstate
thermalization...
Let us generalize the GC ensemble to a co-moving frame E/T → βµT

µ
ν

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

Z is a partition function with a field of Lagrange multiplies βµ = uµ/T ,
with microscopic and quantum fluctuations included.

Effective action from ln[Z] . Correction to Lagrangian picture?

All normalizations diverge but hey, it’s QFT! (Later we resolve this! )



Entropy/Deviations from equilibrium

• In quantum mechanics Entropy function of density matrix

s = Tr(ρ̂ ln ρ̂) =
d

dT
(T lnZ)

Conserved in quantum evolution, not coarse-graining/gradient expansion

• In IS entropy function of the dissipative part of E-M tensor

nν∂ν (su
µ) = nµ

Παβ

T
∂αββ , ≥ 0

nµ = dΣµ/|dΣµ|,Πµν arbitrary. How to combine coarse-graining? if
vorticity non-zero nµu

µ 6= 0



So we need

• a similarly probabilistic definition of Π̂µν = T̂µν − T̂µν
0 as an operator!!

• Probabilistic dynamics, to update Π̂µν, T̂µν !

Crooks fluctuation theorem!

From talk
Gabriel Landi

Relates fluctuations, entropy in small fluctuating systems (Nano,proteins )



Crooks fluctuation theorem!

P (W )/P (−W ) = exp [∆S]

P(W) Probability of a system doing some work in its usual thermal
evolution

P(-W) Probability of the same system “running in reverse” and decreasing
entropy due to a thermal fluctuation

∆S Entropy produced by P (W )



Looks obvious but...

Is valid for systems very far from equilibrium (nano-machines, protein
folding and so on)

Proven for Markovian processes and fluctuating systems in contact with
thermal bath

Leads to irreducible fluctuation/dissipation: TUR (more later!)

Applying it to locally equilibrium systems within Zubarev’s formalism is
straight-forward . Since ratios of probabilities, divergences are resolved!



How is Crooks theorem useful for what we did? Guarnieri et al,
arXiv:1901.10428 (PRX) derive Thermodynamic uncertainity relations from

ρ̂ness ≃ ρ̂les(λ)e
Σ̂ Zles

Zness
, ρ̂les =

1

Zles
exp

[
−Ĥ
T

]

ρ̂les is Zubarev operator while Σ is calculated with a Kubo-like formula

Σ̂ = δβ∆Ĥ+ , Ĥ+ = lim
ǫ→0+

ǫ

∫
dteǫte−Ĥt∆ĤeĤt

Relies on

lim
w→0

〈[
Σ̂, Ĥ

]〉
→ 0 ≡ lim

t→∞

〈[
ˆΣ(t), Ĥ(0)

]〉
→ 0

This “infinite” is “small” w.r.t. hydro gradients. ≡ Markovian as in Hydro
with lmfp → ∂ but with operators→ carries all fluctuations with it!



P (W )/P (−W ) = exp [∆S] Vs Seff = lnZ

KMS condition reduces the functional integral to a Metropolis type
weighting, ≡ periodic time at rest with βµ

Markovian systems exhibit Crooks theorem, two adjacent cells interaction
outcome probability proportional to number of ways of reaching outcome
. The normalization divergence is resolved since ratios of probabilities
are used . “instant decoherence/thermalization” within each step

Relationship to gradient expansion similar to relationship between Wilson
loop coarse-graining ( Jarzynski’s theorem, used on lattice ,Caselle et al,
1604.05544) with hadronic EFTs



Applying Crooks theorem to Zubarev hydrodynamics: Stokes theorem

Wσ∼ Ω

−W

−
∫

Σ(τ0)

dΣµ

(
T̂µνβν

)
= −

∫

Σ(τ ′)

dΣµ

(
T̂µνβν

)
+

∫

Ω

dΩ
(
T̂µν∇µβν

)
,

true for “any” fluctuating configuration.



Wσ∼ Ω

−W

Let us now invert one foliation so it goes “backwards in time” assuming
Crooks theorem means

exp
[
−
∫
σ(τ)

dΣµβνT̂
µν
]

exp
[
−
∫
−σ(τ)

dΣµβνT̂µν
] = exp

[
1

2

∫

Ω

dΩµ
µ

[
Π̂αβ

T

]
∂ββα

]



Small loop limit
〈
exp

[∮
dΣµω

µνβαT̂αν

]〉
=

〈
exp

[∫
1
2dΣµβ

µΠ̂αβ∂αββ

]〉

A non-perturbative operator equation,divergences cancel out...

Π̂µν

T

∣∣∣∣∣
σ

=

(
1

∂µβν

)
δ

δσ

[∫

σ(τ)

dΣµβνT̂
µν −

∫

−σ(τ)

dΣµβνT̂
µν

]

Note that a time-like contour produces a Kubo-formula

t
Kubo



Ω

t

dV

A sanity check: For a an equilibrium spacelike dΣµ = (dV,~0) (left-panel)
we recover Boltzmann’s

Πµν ⇒ ∆S =
dQ

T
= ln

(
N1

N2

)



A sanity check

t
Kubo

When η → 0 and s−1/3 → 0 (the first two terms in the hierarchy),
Crooks fluctuation theorem gives P (W ) → 1 P (−W ) → 0 ∆S → ∞ so
Crooks theorem reduces to δ-functions of the entropy current

δ (dΣµ (su
µ)) ⇒ nµ∂µ (su

µ) = 0

We therefore recover conservation equations for the entropy current, a.k.a.
ideal hydro



So could fluctuations help thermalize? A key insight is redundances
Some qualitative developments: Tµν

0 ,Πµν, uµ are not actually experimental
observables! Only total energy momentum tensor

T̂µν = T̂µν
0 + Π̂µν

and its correlators are! Changing dΣµ in Zubarev ≡ changing Πµν, Tµν
0 !

Analogy to choosing a gauge in gauge theory?



This is relevant for current hydrodynamic research
Causal relativistic hydrodynamics still contentious, with many definitions

Israel-Stewart Relaxing Πµν .
Causal, but up to 9 additional DoFs (not counting conserved charges),
blow-up possible (M.Disconzi, 2008.03841). Πµν ”evolving” microstates!

BDNK,earlier Hiscock,Lindblom,Geroch,... Πµν ∼ ∂u At a price of
arbitrary (up to causality constaints) uµ . If you care about
statistical mechanics, price is steep! “special” time foliation from
ergodic hypothesis/Poncaire cycles!

For phenomenology because of conservation laws “any” ∂µT
µν “can be

integrated” but lack of link with equilibration and multiple definitions of
“near-equilibrium” problematic. Could these be just “Gauge” choices?



What is a gauge theory,exactly?

Z =

∫
DAµ exp [S[Fµν] ≡

∫
DAµ

1DAµ
2 exp [S[A

µ
1 ]

Aµ
1,2 can be separated since physics sensitive to derivatives of lnZ

lnZ = Λ+ lnZG , ZG =

∫
DAµδ (G(Aµ)) exp [S(Aµ)]

Ghosts come from expanding δ(...) term. In Zubarev

Z =

∫
Dφ , ”S” = dΣνβµT

µν

Multiple Tµν(φ) → Gauge-like configuration . Related to Phase space
fluctuations of φ



How to make physics fully “gauge”-invariant? Ergodicity/Poncaire cycles
meet relativity slightly away from equilibrium!

φ

φ

1

3φ

φ

φ

1

3
φ

φ

φ

1

3
φ

2
2

2

Gibbs entropy level+relativity : Lack of equilibrium is equivalent to “loss
of phase” of Poncaire cycles. one can see a slightly out of equilibrium cell
either as a “mismatched uµ” (fluctuation) or as lack of genuine equilibrium
(dissipation)



How to make physics fully “gauge”-invariant?

(intensive)

Hydrostatic System (extensive)

Subsystems

(statistical mechanics only)

Fluctuation
<f(x,t)f(x’,t’)>

Hydrodynamic System

Evolution
<f(x,t)f(x’,t’)>

Fluctuation-dissipation at the cell level could do it! We don’t know if a
”step” is fluctuation (Tµν

0 or evolution (Πµν )-driven!



(intensive)

Hydrostatic System (extensive)

Subsystems

(statistical mechanics only)

Fluctuation
<f(x,t)f(x’,t’)>

Hydrodynamic System

Evolution
<f(x,t)f(x’,t’)>

But in hydro Tµν
0 ,Πµν treated very differently! “Sound-wave”

u ∼ exp[ikµx
µ] or “non-hydrodynamic Israel-Stewart mode?”

DΠµν +Πµν = ∂u
Only in EFT 1/T ≪ lmfp they are truly different!



Infinitesimal transformation dMµν such that dMµν(x)
δ lnZE[βµ]
dgαµ(x) = 0

Change in microscopic fluctuation lnZ → lnZ + d lnZ

d lnZ =
∞∑

N=0

∫ N∏

j=1

d4pjδ


EN(p1, ...pj)−

∑

j

p0j


√

|dM | exp
(
−dM0µp

µ

T

)

Change in macroscopic dissipative term

Πµν → Παγ

(
gαµg

γ
ν − gαµdM

γ
ν − gγνdM

α
µ

)
, uµ → uα

(
gαµ − dMα

µ

)

For 1/T ≪ lmfp probability of this vanishes, but for 1/T ∼ lmfp many
”similar” probabilities!



The “gauge-symmetry” in practice
Generally dMµν = Λ−1

αµdU
αβΛβµ

d [lnΠαβ] Λ
αµ

(
Λβν

)−1
= ηµνdA+

∑

I=1,3

(
dαIĴ

µν
I + dβIK̂

µν
I

)

K1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , K2 =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 , K3 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




which move components from Πµν to Qµ as well as K1,2,3

J1 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 , J2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 , J3 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






Towards hydrodynamic Gibbsian entropy definition !

∫
Dφe−S(φ) →︸︷︷︸

coarse−grain

∫
DαI=1,2,3DβI=1,2,3 D [A, e, p, uµ,Πµν]

δ (Mαβ [A, αI, βI]T
αµ)

rotate “Gradient expansion” in 1/T, lmfp parameter space.
Away from Boltzmann equation regime, f(x, p) → Functional

lagrangian , lnZ subject to δ(...) constraint.

Causality also defined via correlator [Tµν(x), Tµν(x
′)] e, uµΠµν could be

non-causal!



Cool but what about thermalization in small systems?
Initial and final state described by many equivalent trajectories

One of them could be close to an ideal-looking one. “reverse” attractor Few
particles with strong interaction (Eigenstate thermalization? ) correspond
to many hydro like-configurations {uµ,Πµν} with fluctuations , within same
Gibbs entropy class. some closer to ideal? No symmetries necessary!

Irrelevant in everyday liquids since lmfp ≫ 1/T or AdS/CFT since Nc ≪ ∞
but perhaps not for QGP!



Conclusions

• Linking hydrodynamics to statistical mechanics is still an open problem
Only top-down models (Boltzmann,AdS/CFT) rather than bottom-up
theory
Is hydro universal? what are its limits of applicability? still open question

The observation of hydro-like behavior in small systems liable to
fluctuations makes this explicit!

• Crooks fluctuation theorem could provide such a link!

• redundances play crucial role in fluctuations, could mean small systems
achieve ”thermalization” quicker! inverse attractor!

• An obvious extension/application is...



PS: transfer of micro to macro DoFs experimentally proven!

Polarization by vorticity
in heavy ion collisions

NATURE
August 2017

STAR
collaboration

1701.06657

Could give new talk about this, but will mention hydro with spin not
developed and a lot of conceptual debates Pseudo-gauge dependence if
both spin and angular momentum present in fluid? Gauge symmetry
“ghosts”? GT,1810.12468 (EPJA) . redundances?



Polarization by vorticity
in heavy ion collisions

NATURE
August 2017

STAR
collaboration

1701.06657

Pseudo-gauge symmetries physical interpretation: T.Brauner, 1910.12224

xµ → xµ + ǫζµ(x) , ψa → ψa + ǫψ′

a → L → L

lnZ Invariant, but 〈O〉 generally is not. Spin ↔ fluctuation, need equivalent
of DSE equations! D 〈O〉 = 0 → D 〈O〉 = 〈OIOJ〉



Vlasov equation contains all classical correlations, instability-ridden

Boltzmann equation “Classical UV-completion” ov Vlasov equation, first
term in BBGK hyerarchy, written in terms of Wigner functions.

Finite number of particles: f(x, p) not a function but a functional
(F(f(x, p)) →︸︷︷︸

Boltzmann

δ (f ′ − f(x, p)) ), incorporating continuum of

functions and all correlations. Perhaps solvable!

pµ

Λ

∂

∂xµ
f(x, p) =

〈
Ĉ[W̃ (f̃1, f̃2)]− g

pµ

Λ
F̂µν[f̃1, f̃2]

δ

δf̃1,2
W̃

(
f̃1, f̃2

)

︸ ︷︷ ︸
How many A−B=0?

〉

The difference in collision-term redundancy-ridden!



Landau and Lifshitz (also D.Rishke,B Betz et al): Hydrodynamics has three
length scales

lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

Weakly coupled: Ensemble averaging in Boltzmann equation good up to
O
(
(1/ρ)1/3∂µf(...)

)

Strongly coupled: classical supergravity requires λ ≫ 1 but λN−1
c =

gY M ≪ 1 so

1

TN
2/3
c

≪ η

sT

(
or

1√
λT

)
≪ Lmacro

QGP: Nc = 3 ≪ ∞ ,so lmicro ∼ η
sT . Cold atoms: lmicro ∼ n−1/3 > η

sT ?



Why is lmicro ≪ lmfp necessary? microscopic fluctuations (which have

nothing to do with viscosity ) will drive fluid evolution. ∆ρ/ρ ∼ C−1
V ∼ N−2

c

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes In a non-relativistic incompressible fluid

η/(sT ) ≪ Leddy ≪ Lboundary , E(k) ∼
(
dE

dt

)2/3

k−5/3

For a classical ideal fluid, no limit! since limδρ→0,k→∞ δE(k) ∼ δρkcs → 0
but quantum E ≥ k so energy conservation has to cap cascade.



More fundamentally: take stationary slab of fluid at local equilibrium.

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

Statistical mechanics: This is a system in global equilibrium, described
by a partition function Z(T, V, µ) , whose derivatives give expectation
values 〈E〉 ,fluctuations

〈
(∆E)2

〉
etc. in terms of conserved charges. All

microstates equally likely, which leads to preferred macrostates!

Fluid dynamics: This is the state of a field in local equilibrium which
can be perturbed in an infinity of ways. The perturbations will then
interact and dissipate according to the Euler/N-S equations. What are
micro/macrostates?



More fundamentally: take stationary slab of fluid at local equilibrium.

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

To what extent are these two pictures the same?

• Global equilibrium is also local equilibrium, if you forget fluctuations

• Dissipation scale in local equilibrium η/(Ts) , global equilibration
timescale (Ts)/η



Some insight from maths
Millenium problem: existence and smoothness of the Navier-Stokes
equations

Important tool are “weak solutions” , similar to what we call “coarse-
graining”.

F

(
d

dx
, f(x)

)
= 0 ⇒ F

(∫
d

dx
φ(x)..., f(x)

)
= 0

φ(x) “test function”, similar to coarse-graining!



Existance of Wild/Nightmare solutions and non-uniqueness of weak solutions
shows this tension is non-trivial, coarse-graining “dangerous”

I am a physicist so I care little about the ”existence of ethernal solutions” to
an approximate equation, Turbulent regime and microscopic local equilibria
need to be consistent

Thermal fluctuations could both ”stabilize” hydrodynamics and
”accellerate” local thermalization
But where do microstates,”local” microstates fit here?



of the entropies

the battle

Boltzmann entropy is usually a property of the ”DoF”, and is ”kinetic”
subject to the H-theorem which is really a consequence of the not-so-
justified molecular chaos assumption. Gibbsian entropy is the log of the
area of phase space, and is justified from coarse-graining and ergodicity ,
but hard to define it in non-equilibrium . The two are different even in
equilibrium, with interactions! Note, Von Neumann 〈lnρ̂〉 Gibbsian


