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• Renormalization-group flows from UV to IR in asymptotically free gauge theories;
types of IR behavior; role of an exact or approximate IR fixed point

• Higher-loop calculations of UV to IR evolution, including IR zero of β and anomalous
dimension γψ̄ψ,IR of fermion bilinear up to 5-loop level

• Scheme-independent expansions and calculations of γψ̄ψ,IR and β′
IR using 5-loop

beta function in asymptotically free gauge theories

• Comparison with lattice measurements for various groups G, fermion representations
R, and number, Nf of fermions

• Studies of RG flows in other theories, e.g., Gross-Neveu (2D), φ3 (6D), U(1) (4D),
and λ|~φ|4 (4D),

• Conclusions

We have been interested in RG flows in QFTs for many yrs., since our solution of the
O(N ) nonlinear σ model and its β fn., in the large-N limit, in d = 2+ǫ: Bardeen, Lee,
RS, PRD 14, 985 (1976) (also studied by Brézin, Zinn-Justin, PRB 14, 3110 (1976)).



RG Flow from UV to IR; Types of IR Behavior and Role
of IR Fixed Point

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in a representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The nature of the renormalization-group (RG) flow from large µ in the UV to small µ
in the infrared (IR) is of fundamental field-theoretic interest.

If a fermion had mass m0, it would be integrated out in the low-energy effective field
theory for µ < m0, and hence would not affect the IR limit of interest here, so there is
no loss of generality in using massless fermions.

For some fermion contents, the β function may have an IR zero, which an IR fixed
point (IRFP) of RG.

Notation: we denote running gauge coupling at scale µ as g = g(µ), and let
α(µ) = g(µ)2/(4π) and a(µ) = g(µ)2/(16π2).



The dependence of α(µ) on µ is described by the β function

β ≡
dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ ,

where dt = d lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)ℓ.

Coefficients b1 and b2 in β are independent of regularization/renormalization scheme,
while bℓ for ℓ ≥ 3 are scheme-dependent (restrict to mass-independent schemes here).
Calculations - b1: Gross and Wilczek; Politzer, 1973 [ ’t Hooft, unpub.]; b2: Caswell;
Jones, 1974.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. Denote αcr as minimum
value for formation of bilinear fermion condensates and resultant spontaneous chiral
symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases, can exceed the perturbatively
calculable regime.

• β has a IR zero, αIR, so as µ decreases, α(µ) approaches αIR. In this class of
theories, there are two further generic possibilities: αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the RG; as
µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes exactly
scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ.

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β fn. becomes that of a pure gauge theory, with no
IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx. IRFP of RG.

If αIR is only slightly greater than αcr, then quasiconformal behavior, possible light
pseudo Nambu-Goldstone boson (dilaton), which might be relevant in composite Higgs
models.



Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ. For a given gauge
group G and fermion rep. R, the asymptotic freedom (AF) condition restricts Nf to
be less than an upper (u) value Nu = 11CA/(4Tf).

The (scheme-independent) 2-loop β has an IR zero in the interval I given by upper and
lower (ℓ) ends I : Nℓ < Nf < Nu, where

Nℓ =
17C2

A

2Tf(5CA + 3Cf)

Here, the Casimir invariants C2(R) and T (R) are defined as
∑o(G)

a=1

∑dim(R)
j=1 (T (R)

a )ij(T
(R)
a )jk = C2(R)δik and TrR[T (R)

a T
(R)
b ] = T (R)δab,

where R is the representation, Ta are the generators of the Lie algebra of G, and T (R)

is the matrix of Ta in the rep. R; also, C2(adj) ≡ CA, and for fermions transforming
according to the representation R, we denote C2(R) ≡ Cf and T (R) ≡ Tf ; e.g.,
for G = SU(Nc), CA = Nc, and for R = fund. (F ), Tf = 1/2 and
Cf = (N 2

c − 1)/(2Nc).

In expressions for Nu, Nℓ, etc., formally continue Nf to non-integral real values, with
integral physical values understood implicitly.

The interval I for R = F is 5.55 < Nf < 11 for SU(2) and 8.05 < Nf < 16.5
for SU(3).



At 2-loop level, αIR,2ℓ = −4πb1/b2 and in general, αIR ց 0 as Nf ր Nu.

Define Nf = Nf,cr at αIR = αcr. For Nf,cr < Nf < Nu, IR theory is in a
(deconfined) chirally symmetric non-Abelian Coulomb phase (NACP) while for
Nf < Nf,cr, there is SχSB, confinement.

Lattice studies of gauge theories with various gauge groups G and fermions in various
representations R have been carried out; progress toward determining Nf,cr for various
G and R with applications for possible models with composite Higgs..

At an IRFP in the NACP, scale-invariance, inferred conformal invariance. It is of
fundamental interest to determine the properties of the theory at this IRFP.

Denote the dimension of an operator O as DO; because of interactions, this differs
from the free-field dimension, DO,free; DO = DO, free − γO, where γO is the
anomalous dimension of O.

An example is ψ̄ψ =
∑Nf

j=1 ψ̄jψj with anom. dim. γψ̄ψ. Another quantity of interest
is β′ = dβ/dα; the values of these at an IRFP are scheme-independent. We denote
these as γψ̄ψ,IR and β′

IR.



Higher-Loop Analysis of UV → IR Evolution of Gauge
Theories

For a given G and R, as Nf decreases below Nu, αIR,2ℓ increases. This motivates
calculation of the IR zero in β and anom. dim. γψ̄ψ to higher-loop order. Calculations
for general G and R to 4-loop order in Ryttov and RS, PRD 83, 056011 (2011)
[1011.4542] and Pica and Sannino, PRD 83, 035013 (2011) [1011.5917]. 5-loop
calculations in Ryttov-RS, PRD 94, 105015 (2016) [1607.06866].

Structural properties including β′
IR studied in RS, PRD 87, 105005 (2013) [1301.3209],

PRD 87, 116007 (2013) [1302.5434].

Series expansion in a = α/(4π) for γψ̄ψ: γψ̄ψ =
∑∞

ℓ=1 cℓ a
ℓ, where cℓ is ℓ-loop

coefficient. To calculate the n-loop result for the anom. dim., γψ̄ψ,nℓ, we first
calculate αIR,nℓ, then set α = αIR,nℓ in above eq.

The 1-loop coeff. c1 = 6Cf is scheme-independent, while the cℓ with ℓ ≥ 2 are
scheme-dependent; calcs. of bℓ and cℓ up to ℓ = 4 loop level by van Ritbergen,
Vermaseren, Larin (1997); Chetyrkin (1997); Vermaseren and Larin (1997) in MS
scheme. .



At the 2-loop level, we obtained (using abbreviation γIR,nℓ ≡ γψ̄ψ,IR,nℓ)

γIR,2ℓ =
Cf(11CA − 4TfNf)[455C2

A + 99CACf + (180Cf − 248CA)TfNf + 80(TfNf)
2]

12[−17C2
A + 2(5CA + 3Cf)TfNf ]2

with more complicated expressions at the 3-loop and 4-loop levels.

Approximate solution of Schwinger-Dyson eq. for fermion propagator in ladder approx.
suggests SχSB at γψ̄ψ ≃ 1 (Yamawaki et al.; Appelquist et al., 1986).

In the chirally broken phase, just as the IR zero of β is only an approx. IRFP, so also,
the γψ̄ψ,IR is only approx., describing the running of ψ̄ψ and the dynamically
generated running fermion mass, Σ(k), near the zero of β.



Illustrative numerical values of γψ̄ψ,IR,nℓ ≡ γIR,nℓ for SU(2) and SU(3) at the
n = 2, 3, 4 loop level and fermion rep. R = F with Nf ∈ I:

Nc Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 7 > 2 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 > 2 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Thus, the 3-loop and 4-loop results are closer to each other for a larger range of Nf

than the 2-loop and 3-loop results. We also performed these higher-loop calculations for
other fermion reps. R.



Calculation of αIR and γψ̄ψ,IR to 5-Loop Level

In Ryttov and RS, PRD 94, 105015 (2016) [1607.06866] we extended our calculations
of αIR and γψ̄ψ,IR to the 5-loop level, using b5 and c5 from Baikov, Chetyrkin, and

Kühn, 1606.08659 [PRL 118, 082002 (2017)] for SU(3), R = F , again in MS scheme.

With a factor α2 extracted, β5ℓ ∝ b̄1 + b̄2α+ b̄3α
2 + b̄4α

3 + b̄5α
4. One

determines αIR,5ℓ as the smallest real positive root of this polynomial.

Recall that for SU(3), the integral interval of interest, I, is 9 ≤ Nf ≤ 16. For
13 ≤ Nf ≤ 16, we found that αIR,5ℓ is close to, and slightly larger than αIR,4ℓ;
e.g., for Nf = 14, αIR,4ℓ = 0.224, while αIR,5ℓ = 0.233. For Nf ≤ 12, we
make use of an analysis using Padé approximants to obtain the value of αIR,5ℓ.

A [p, q] Padé approximant (PA) to a finite series expansion of n’th degree is the
rational function

[p, q]βr,nℓ =
1 +

∑p
j=1 njα

j

1 +
∑q

k=1 dk α
k

with p+ q = n− 1, where the nj and dj are α-independent coefficients. For
example, for SU(3), R = F , and Nf = 12, we get αIR,5ℓ = 0.41 from the [3,1]
PA, slightly smaller than αIR,4ℓ = 0.47.



We use direct calculation of αIR,5ℓ from β5ℓ for 14 ≤ Nf ≤ 16 and Padé methods
for lower Nf , to get αIR,5ℓ and then evaluate γ5ℓ at α = αIR,5ℓ. Some results for
G = SU(3) and R = F are shown in the table (with γIR,nℓ ≡ γψ̄ψ,IR,nℓ):

Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ γIR,5ℓ
11 1.61 0.439 0.250 0.294
12 0.773 0.312 0.253 0.255
13 0.404 0.220 0.210 0.239
14 0.212 0.146 0.147 0.154
15 0.0997 0.0826 0.0836 0.0843
16 0.0272 0.0258 0.0259 0.0259

For small Nf near the lower end of the NACP, the coupling is too strong for these
perturbative methods to be reliable.



Study of Scheme Dependence in Calculation of IR Fixed
Point

Since coeffs. bn in βnℓ, and hence also αIR,nℓ, are scheme-dependent for n ≥ 3, it is
important to assess the effects of this scheme dependence. We have done this in a
series of papers: Ryttov and RS, PRD 86, 065032 (2012) [1206.2366]; PRD 86, 085005
(2012) [1206.6895]; RS, PRD 88, 036003 (2013) [1305.6524]; RS, PRD 90, 045011
(2014) [1405.6244]; Choi and RS, PRD 90 125029 (2014) [1411.6645]; Choi and RS,
PRD 94, 065038 (2016) [1607.03500]; see also T. Ryttov, PRD 89, 016013 (2014)
[1309.3867]; PRD 89, 056001 (2014) [1311.0848]; PRD 90, 056007 (2014) [1408.5841].

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′) ≡ F (a′)

with f(0) = 1 since ST has no effect in limit of zero coupling.

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s

where k̄s = ks/(4π)s, and smax may be finite or infinite.



The Jacobian J = da/da′ = dα/dα′ = 1 +
∑smax

s=1 (s+ 1)ks(a
′)s, satisfying

J = 1 at a = a′ = 0.

After the scheme transformation is applied, the beta function in the new scheme is
given by

βα′ ≡
dα′

dt
=
dα′

dα

dα

dt
= J−1 βα

with the expansion

βα′ = −2α′
∞
∑

ℓ=1

b′
ℓ(a

′)ℓ

We calculated the b′
ℓ as functions of the bℓ and ks. At 1-loop and 2-loop, this yields

the well-known results b′
1 = b1 and b′

2 = b2; at higher orders, we obtained

b′
3 = b3 + k1b2 + (k2

1 − k2)b1 ,

b′
4 = b4 + 2k1b3 + k2

1b2 + (−2k3
1 + 4k1k2 − 2k3)b1



b′
5 = b5 + 3k1b4 + (2k2

1 + k2)b3 + (−k3
1 + 3k1k2 − k3)b2

+(4k4
1 − 11k2

1k2 + 6k1k3 + 4k2
2 − 3k4)b1

etc. for higher-order b′
ℓ.

We specified a set of conditions that a physically acceptable scheme transformation (of
a perturbatively reliable calculation) must satisfy:

•C1: the ST must map a (real positive) α to a real positive α′

•C2: the ST should not map a moderate value of α, where perturbation theory is
applicable, to a value of α′ so large that perturbation theory is inapplicable.

•C3: J should not vanish (or diverge) or else the ST would be singular.

•C4: Existence of an IR zero of β is a scheme-independent property, so the ST
should satisfy the condition that βα has an IR zero if and only if βα′ has an IR zero.

These conditions can always be satisfied by an ST near the UVFP at α = α′ = 0, but
they are not automatic, and can be quite restrictive, at an IRFP.



For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r
with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

(e.g., for r = 4π, α = tanhα′). This is acceptable for small a, but if a > 1/r, i.e.,
α > 4π/r, it maps a real α to a complex α′ and hence is physically unacceptable.
For r = 8π, e.g., this pathology can occur at the moderate value α = 0.5.

Thus, the issue of scheme dependence at a zero of the beta function away from the
origin in coupling constant space (e.g, at an IRFP in an asymptotically free theory) is
more involved than near the origin (small αs in QCD). For QCD in the perturbative
region, many studies of optimization of schemes (e.g., Brodsky, Lepage, MacKenzie
(1983); Brodsky, Mojaza, Wu, PRD 89, 014027 (2014) [1304.4631], etc.)



We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example, we have used a
sinh transformation (depending on a parameter r):

a =
sinh(ra′)

r
(where we can take r > 0 without loss of generality) with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2

]

Illustrative results with this sinh scheme transformation: Denote the IR zero of βα′ at
the n-loop level in the transformed scheme as α′

IR,nℓ,r:

For SU(3), R = F , Nf = 12, αIR,2ℓ = 0.754, and:

αIR,3ℓ,MS = 0.435, α′
IR,3ℓ,r=3 = 0.434, α′

IR,3ℓ,r=6 = 0.433,

αIR,4ℓ,MS = 0.470, α′
IR,4ℓ,r=3 = 0.470, α′

IR,4ℓ,r=6 = 0.467,



This and other scheme transformations that we have studied suggest that the scheme
dependence of our calculations of anomalous dimensions is not overly large.

This is similar to perturbative calculations of physical quantities in QCD (leading-order,
LO; NLO, NNLO, etc.), which are also scheme-dependent, but very useful in predicting
cross sections at Tevatron, LHC. For these QCD applications, calculations to higher
order have shown reduced scheme dependence.

Since the coefficients bℓ at loop order ℓ ≥ 3 in the beta function are
scheme-dependent, one might expect that it would be possible, at least in the vicinity
of zero coupling, to construct a scheme transformation that would set b′

ℓ = 0 for some
range of ℓ ≥ 3, and, indeed a ST that would do this for all ℓ ≥ 3, so that βα′ would
consist only of the 1-loop and 2-loop terms (’t Hooft scheme).

We have constructed explicit scheme transformations that can do this in the vicinity of
zero coupling constant in Ryttov and RS, PRD 86, 065032 (2012) [arXiv:1206.2366];
PRD 86, 085005 (2012) [arXiv:1206.6895]; RS, PRD 88, 036003 (2013)
[arXiv:1305.6524]; RS, PRD 90, 045011 (2014) [arXiv:1405.6244]. However, we have
also shown that it is more difficult to try to do this at a zero of β away from the origin
(IR zero for an asymp. free theory; UV zero for an IR-free theory).

We proceed to our scheme-independent calculations.



Scheme-Independent Series Expansions

The anomalous dimensions γψ̄ψ,IR and γF 2,IR are physical and hence are obviously
scheme-independent. However, this property is not maintained in finite series
expansions of these anom. dims. in powers of αIR,nℓ, since both αIR,nℓ for ℓ ≥ 3
and higher-loop coefficients are scheme-dependent.

A basic property of the IRFP is that αIR,nℓ → 0 as Nf ր Nu, i.e., as ∆f → 0,
where ∆f = Nu −Nf = [11CA/(4Tf)] −Nf . Hence, one can re-express a series
expansion in powers of αIR,nℓ as a series expansion in the manifestly
scheme-independent variable ∆f , e.g.,

γψ̄ψ,IR =
∞
∑

j=1

κj∆
j
f

Since γψ̄ψ,IR and ∆f are scheme-independent, and this property holds for variable ∆f ,
it follows that each coefficient κf is scheme-independent.

Thus, this expansion has the appealing property that it is scheme-independent to each
finite order, in contrast to the conventional series expansion in powers of α, which is
scheme-dependent beyond the lowest order. With T. Ryttov, we have done this in a
series of papers.



We denote the truncation of the above series to maximal order (power) p as γψ̄ψ,IR,∆p
f
.

Define a denominator factor D = 7CA + 11Cf . The first two κj are

κ1 =
8CfTf

CAD
,

κ2 =
4CfT

2
f (5CA + 88Cf)(7CA + 4Cf)

3C2
AD

3
,

and similarly for κ3 (Ryttov, PRL 117, 071601 (2016) [1604.00687]). In Ryttov and
RS, PRD 94, 105014 (2016) [1608.00068] we calculated κ4 and hence γψ̄ψ,IR to
O(∆4

f) for SU(3) and R = F .

In Ryttov and RS, PRD 95, 085012 (2017) [1701.06083] and Ryttov and RS, PRD 95,
105004 (2017) [1703.08558] we have calculated κ4 and hence γψ̄ψ,IR to O(∆4

f) for
arbitrary gauge group G and R and have studied particular reps. in detail. We use the
5-loop beta fn. coeff. b5 from Herzog, Ruijl, Ueda, Vermaseren, Vogt, JHEP
02(2017)090 [1701.01404] in MS scheme. We find:



κ4 =
T 2

f

35C5

AD
7

[

CACfT
2

f

(

19515671C6

A − 131455044C5

ACf + 1289299872C4

AC
2

f + 2660221312C3

AC
3

f

+1058481072C2

AC
4

f + 6953709312CAC
5

f + 1275715584C6

f

)

+210CfT
2

fD

(

5789C2

A − 4168CACf − 6820C2

f

)

dabcdA dabcdA

dA

−210CACfTfD

(

41671C2

A − 125477CACf − 53240C2

f

)

dabcdR dabcdA

dA

−28 · 112C2

ACfD(2569C2

A + 18604CACf − 7964C2

f

)

dabcdR dabcdR

dA

−214 · 3CAT
2

fD
3
dabcdR dabcdA

dR
+ 213 · 33C2

ATfD
3
dabcdR dabcdR

dR

+28D

[

− 3CACfT
2

fD

(

4991C4

A − 17606C3

ACf + 33240C2

AC
2

f − 30672CAC
3

f + 9504C4

f

)

−24CfT
2

f

dabcdA dabcdA

dA

(

17206C2

A − 60511CACf − 45012C2

f

)

+40CACfTf
dabcdR dabcdA

dA

(

35168C2

A − 154253CACf − 88572C2

f

)

−88C2

ACf
dabcdR dabcdR

dA

(

973C2

A − 93412CACf − 56628C2

f

)

+1440CAT
2

fD
2
dabcdR dabcdA

dR
− 7920C2

ATfD
2
dabcdR dabcdR

dR

]

ζ3



+
4505600CACfD

2

dA

[

− 4T 2

f d
abcd
A dabcdA + 2Tfd

abcd
R dabcdA (10CA + 3Cf) + 11CAd

abcd
R dabcdR (CA − 3Cf)

]

ζ5

]

where (a, b, c, d are group indices)

dabcdR =
1

3!
TrR

[

T a(R)

(

T b(R)T
c
(R)T

d
(R) + cycl.

)]

dabcdA = dabcdR for R = adj, dR = dim(R), and ζs =
∑∞
n=1

1
ns

is the Riemann zeta function.

This calculation of κj requires, as inputs, the values of the bℓ for 1 ≤ ℓ ≤ j + 1 and
the cℓ for 1 ≤ ℓ ≤ j. As is evident, it requires that the IRFP be exact and hence
applies in the non-Abelian Coulomb phase (NACP).

If the phase change from the (conformal) NACP to the quasi-conformal regime with
SχSB for Nf slightly below Nf,cr is continuous, our scheme-independent calc. of
γψ̄ψ,IR may give approx. info. on γψ̄ψ,IR,eff. in this quasiconformal regime.



For G = SU(Nc) and R = F , our results for general G and R reduce to

κ1,F =
4(N2

c − 1)

Nc(25N2
c − 11)

, κ2,F =
4(N2

c − 1)(9N2
c − 2)(49N2

c − 44)

3N2
c (25N2

c − 11)3

κ3,F =
8(N2

c − 1)

33N3
c (25N2

c − 11)5

[

(

274243N8
c − 455426N6

c − 114080N4
c + 47344N2

c + 35574
)

− 4224N2
c (4N

2
c − 11)(25N2

c − 11)ζ3

]

κ4,F =
4(N2

c − 1)

34N4
c (25N2

c − 11)7

[

(

263345440N12
c − 673169750N10

c + 256923326N8
c

− 290027700N6
c + 557945201N4

c − 208345544N2
c + 6644352

)

+ 384(25N2
c − 11)

(

4400N10
c − 123201N8

c + 480349N6
c

− 486126N4
c + 84051N2

c + 1089
)

ζ3

+ 211200N2
c (25N2

c − 11)2(N6
c + 3N4

c − 16N2
c + 22)ζ5

]



Numerical results for SU(2) and SU(3):

SU(2) : γψ̄ψ,IR,F,∆4

f
= ∆f

[

0.067416 + (0.73308 × 10−2)∆f + (0.60531 × 10−3)∆2
f

+ (1.62662 × 10−4)∆3
f

]

SU(3) : γψ̄ψ,IR,F,∆4

f
= ∆f

[

0.049844 + (0.37928 × 10−2)∆f + (0.23747 × 10−3)∆2
f

+ (0.36789 × 10−4)∆3
f

]

Plots of γψ̄ψ,IR,∆p
f

with 1 ≤ p ≤ 4 for SU(2) and SU(3) and fermion rep. R = F ,

as functions of Nf ∈ I. Curves: γψ̄ψ,IR,F,∆f
(red), γψ̄ψ,IR,F,∆2

f
(green),

γψ̄ψ,IR,F,∆3
f

(blue), γψ̄ψ,IR,F,∆4
f

(black).







Nc Nf γIR,F,∆f
γIR,F,∆2

f
γIR,F,∆3

f
γIR,F,∆4

f

2 6 0.337 0.520 0.596 0.698
2 7 0.270 0.387 0.426 0.467
2 8 0.202 0.268 0.285 0.298
2 9 0.135 0.164 0.169 0.172
2 10 0.0674 0.07475 0.07535 0.0755

3 8 0.424 0.698 0.844 1.036
3 9 0.374 0.587 0.687 0.804
3 10 0.324 0.484 0.549 0.615
3 11 0.274 0.389 0.428 0.462
3 12 0.224 0.301 0.323 0.338
3 13 0.174 0.221 0.231 0.237
3 14 0.125 0.148 0.152 0.153
3 15 0.0748 0.0833 0.0841 0.0843
3 16 0.0249 0.0259 0.0259 0.0259

Values of γψ̄ψ,IR,∆p
f

= γIR,∆p
f

with 1 ≤ p ≤ 4 for SU(2), SU(3), and R = F .



We have also calculated and analyzed the special cases of our general results for
G = SU(Nc) and other fermion representations R, including adjoint (adj), and
symmetric and antisymmetric rank-2 tensor reps. S2 and A2.

Positivity properties: κ1 and κ2 are manifestly positive for all G and R. For
G = SU(Nc) and all above fermion reps., we find κ3 and κ4 are also positive.

We derive two monotonicity properties for SU(Nc) and these R:

• For a fixed p with 1 ≤ p ≤ 4, the anom. dim. γψ̄ψ,IR,∆p
f

is a monotonically

increasing function of ∆f , i.e., increases monotonically with decreasing Nf , for
Nf ∈ I.

• For a fixed Nf ∈ I, γψ̄ψ,IR,∆p
f

is a monotonically increasing function of p in the

range 1 ≤ p ≤ 4.

These monotonicity properties are evident in the figures. In addition to the manifestly
positive κ1 and κ2, a conjecture is that, for these fermion representations R, κj > 0
for all j ≥ 3. We find this is true in N = 1 SQCD: see Ryttov-RS, PRD 96, 105018
(2017) [arXiv:1706.06422] using results from Novikov, Shifman, Vainshtein, Zakharov,
Seiberg; see also Kataev, Stepanyanz.



From our comparison of γIR,∆p
f

with γIR,nℓ with n ≃ p, we find that these agree very

well with each other for Nf in the upper end of the non-Abelian Coulomb phase,
NACP, i.e., with Nf not too far below Nu.

In our papers we have discussed the accuracy of these finite order-p calculations and
resultant γIR,∆p

f
values. A rough estimate can be obtained from the figures. Where

the curves for the γIR,∆p
f

with different p are close to each other, higher-order terms

are expected to be small. As Nf decreases, these curves deviate progressively more
from each other, and higher-order terms are more important.

For example, for SU(2) and R = F , the curves for γIR,∆p
f

with p = 2, 3, 4 are very

close to each other for Nf ≥ 8 and deviate from each other for Nf = 7 and 6.

For SU(3) and R = F , the curves for γIR,∆p
f

with p = 2, 3, 4 are very close to

each other for Nf ≥ 13 and moderately close for Nf = 12, deviating more from
each other as Nf decreases further to 9.

This suggests that the ∆f expansion may be reasonably reliable for a substantial
portion of the non-Abelian Coulomb phase, including, in particular, the upper part.



In Ryttov and RS, Phys. Rev. D 96, 105015 (2017) [1709.05358], we have extended
our analysis by evaluating our general-(G,R) results for gauge groups G = SO(Nc)
and Sp(Nc) for a variety of fermion representations R.

Further insight can be obtained from calculation and analysis of Padé approximants
(PAs) for γψ̄ψ,IR. We have done this in Ryttov and RS, PRD 97, 025004 (2018)
[1710.06944] and get results in agreement with our previous calculations.

We have generalized our analysis to the case of theories with fermions in multiple
representations in Ryttov-RS, PRD 97, 016020 (2018) [1710.00096]; PRD 98, 096003
(2018) [arXiv:1809.02242]; Girmohanta, Ryttov, RS, PRD 99, 116022 (2019)
[arXiv:1903.09672]. For simplicity, we only consider theories with fermions in a single
representation here.

It is of interest to compare our higher-loop calculations of γψ̄ψ,IR with lattice
measurements. (Note that for several G and R, there is not yet a consensus as to the
value of Nf,cr, i.e., the lower end of conformal regime.)

A heavily studied case is G = SU(3), R = F , and Nf = 12 - Appelquist et al.
(LSD Collab.), Hasenfratz et al., Lombardo et al., and LatKMI find this is IR-conformal,
while the Fodor, Kuti, Nogradi et al. find it is not IR-conformal.



For this SU(3) theory with Nf = 12, our series calculation in powers of the IR
coupling gives γIR,3ℓ = 0.312 γIR,4ℓ = 0.253 γIR,5ℓ = 0.255. Some
lattice results for this SU(3), R = F , Nf = 12 case are the following, with
γψ̄ψ,IR ≡ γ (see papers for details of uncertainty estimates):

0.2 <∼ γ <∼ 0.4 - Kuti et al., [1205.1878]; Fodor et al., PRD 94, 091501 (2016)
[1607.06121]; PoS (Lattice2019)019 121, [1912.07653] (with SχSB, so γeff. ).

γ = 0.27(3) - Hasenfratz et al., PoS(Lattice 2012)034 [1207.7162]; γ ≃ 0.25;
Hasenfratz et al., PoS(Lattice 2013)075 [1310.1124]; Hasenfratz and Schaich, JHEP
1802 (2018) 132 [1610.10004]; γ = 0.26(2) - Carroso, Hasenfratz, Neil, PRL 121,
201601 (2018) [1806.01385].

γ = 0.235(46) - Lombardo, Miura, Nunes, Pallante, JHEP 12(2014)183 [1410.0298].

So our 4-loop and 5-loop calculations are in good agreement with these lattice
measurements. Our scheme-independent values are γIR,∆3

f
= 0.32, γIR,∆4

f
= 0.34.

See our papers for comparisons with lattice measurements for other G, R, and Nf .

We have also calculated series expansions of the anom. dim. of the ψ̄σµνψ at the
IRFP in Ryttov-RS, PRD 94, 125005 (2016) [arXiv:1610.00387] and of the anom. dim.
of baryon operators in Gracey, Ryttov, and RS, PRD 97, 116018 (2018)
[arXiv:1805.02729].



Another interesting scheme-independent quantity is dβ
dα

∣

∣

∣

αIR
= β′

IR = −γF 2,IR at the

IRFP, where γF 2,IR gives the anom. dim. of Tr(FµνF
µν). We calculated series

expansions for this in powers of αIR in RS, PRD 87, 105005 (2013); RS, PRD
87,116007 (2013) and scheme-independent series expansions up to O(∆4

f) in Ryttov

and RS, PRD 94, 125005 (2016) [1610.00387] and to O(∆5
f) in Ryttov and RS, PRD

95, 085012 (2017) [1701.06083], PRD 95, 105004 (2017) [1703.08558]; PRD 96,
105015 (2017) [1709.05358]; PRD 97, 025004 (2018) [arXiv:1710.06944].

We write

β′
IR =

∞
∑

j=2

dj ∆
j
f

We find
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We have analyzed the results for G = SU(Nc) and fermion reps. R = F , adj, S2,
and A2. Note that the dj are not all positive, in contrast to our calculated κj. For
R = F we find:

SU(2) : β′
IR,F,∆5

f
= ∆2

f

[

(1.99750 × 10−2 + (3.66583 × 10−3)∆f

−(3.57303 × 10−4)∆2
f − (2.64908 × 10−5)∆3

f

]

SU(3) : β′
IR,F,∆5

f
= ∆2

f

[

(0.83074 × 10−2) + (0.98343 × 10−3∆f

−(0.46342 × 10−4)∆2
f − (0.56435 × 10−5)∆3

f

]

Table and plots for SU(2), SU(3), R = F : curves are for β′
IR,F,∆2

f
(red); β′

IR,F,∆3
f

(green), β′
IR,F,∆4

f
(blue); and β′

IR,F,∆5
f

(black).



Nc Nf β
′
IR,F,2ℓ β

′
IR,F,3ℓ,MS

β′
IR,F,4ℓ,MS

β′
IR,F,∆2

f
β′
IR,F,∆3

f
β′
IR,F,∆4

f
β′
IR,F,∆5

f

2 6 6.061 1.620 0.975 0.499 0.957 0.734 0.6515
2 7 1.202 0.728 0.677 0.320 0.554 0.463 0.436
2 8 0.400 0.318 0.300 0.180 0.279 0.250 0.243
2 9 0.126 0.115 0.110 0.0799 0.109 0.1035 0.103
2 10 0.0245 0.0239 0.0235 0.0200 0.0236 0.0233 0.0233

3 9 4.167 1.475 1.464 0.467 0.882 0.7355 0.602
3 10 1.523 0.872 0.853 0.351 0.621 0.538 0.473
3 11 0.720 0.517 0.498 0.251 0.415 0.3725 0.344
3 12 0.360 0.2955 0.282 0.168 0.258 0.239 0.228
3 13 0.174 0.1556 0.149 0.102 0.144 0.137 0.134
3 14 0.0737 0.0699 0.0678 0.0519 0.0673 0.0655 0.0649
3 15 0.0227 0.0223 0.0220 0.0187 0.0220 0.0218 0.0217
3 16 2.21e-3 2.20e-3 2.20e-3 2.08e-3 2.20e-3 2.20e-3 2.20e-3

Lattice calculation by Hasenfratz and Schaich, JHEP 02(2018) 132 obtains
β′
IR = 0.26(2) for SU(3) with Nf = 12, in agreement with our calculations.







RG Flows in Other Theories

We have also performed higher-loop calculations of RG flows and investigated possible
zeros of beta functions for other theories, both asymptotically free and
non-asymptotically free:

• 2D Gross-Neveu model

• 6D φ3 theories

• 4D U(1) gauge theory with (charged) fermions

• 4D λ|~φ|4 theory

We briefly discuss these next.

(In separate work, we have studied RG evolution of asymptotically free chiral gauge
theories; e.g., see Appelquist and RS, PLB 548, 204 (2002); PRL 90, 201801 (2003);
PRD 88, 105012 (2013); Quigg and RS, PRD 79, 096002 (2009); Shi and RS, PRD 91,
045004 (2015); PRD 92, 105032 (2015); PRD 92, 125009 (2015); PRD 94, 065001
2016); Ryttov and RS, PRD 97, 016020 (2018).)



Study of RG Flows for the Finite-N Gross-Neveu Model

The Gross-Neveu (GN) model is a QFT in d = 2 dimensions with an N -component
massless fermion, ψj, j = 1, ..., N and a four-fermion interaction. The Lagrangian is

L = iψ̄∂/ψ +
G

2
(ψ̄ψ)2

This model has been of interest because it exhibits some properties similar to QCD,
namely asymptotic freedom and formation of massive bound states of fermions. The
model was solved exactly in the N → ∞ limit with NG fixed by Gross and Neveu
(1974). In this limit, the beta function has no IR zero.

This leaves open the question of whether the beta function has an IR zero for finite N .
We investigated this, using the beta function up to the 4-loop level, in Choi, Ryttov,
and RS, PRD 95, 025012 (2017) [arXiv:1612.05580].

As part of our study, we calculate and analyze Padé approximants and evaluate effects
of scheme dependence.

From our study, we find that in the range of coupling where the perturbative calculation
of the beta function is reliable, it does not exhibit robust evidence for an IR zero.



Study of RG Flows for φ3 Theories in d = 6 Dimensions

φ3 theories in d = 6 dimensions are asymptotically free, and it is of interest to
investigate whether they exhibit IRFPs. We have done this, using beta functions
calculated up to the 4-loop order, in Gracey, Ryttov, and RS, PRD 89, 045019 (2014)
[1311.5268]; Ryttov and RS, PRD 102, 056016 (2020) [2008.06772].

As before, without loss of generality, we take the matter field to be massless, since a φ
field with nonzero mass mφ would be integrated out of the low-energy effective theory
for momentum scales µ < mφ.

Lagrangian for this φ3
6 theory with real 1-component φ field:

L =
1

2
(∂µφ)(∂µφ) −

g

3!
φ3 .

Lagrangian for the φ3
6 theory with φ field transforming according to the fundamental

representation of a global SU(N ) symmetry:

L2 = (∂µφ)†(∂µφ) −
g

3!
dijk(φ

iφjφk + h.c.)

where dijk is the symmetric rank-3 tensor for SU(N ).

For both of these φ3 theories in d = 6, we find evidence against an IRFP.



Study of RG Flows for Non-Asymptotically-Free Theories

If the β function of a theory is positive near zero coupling, then this theory is IR-free;
as the reference scale µ decreases, the coupling decreases toward 0. As µ increases
from the IR, the coupling increases, and a basic question is whether the beta function
has a UV zero (in the perturbatively calculable range), which would be a UV fixed point
of the RG.

At d = 2, the O(N ) nonlinear σ model is asymptotically free. For d = 2 + ǫ, this
model is IR-free and provides an example of a UVFP in an IR-free theory. From a
solution of this model in the N → ∞ limit (involving a sum of an infinite number of
Feynman diagrams that dominate in this limit), one finds, for small ǫ,

β(ξ) = ǫξ
(

1 −
ξ

ξc

)

where ξ is the effective coupling and ξc = 2πǫ: Bardeen, B. W. Lee, RS, PRD 14,
985 (1976); and Brézin, Zinn-Justin, PRB 14, 3110 (1976).

Hence, assuming that ξ is small for small µ, it follows that as µ increases, ξ
approaches the UV fixed point at ξc as µ → ∞.



U(1) Gauge Theory

In the early history of QED, it was noted that the beta function is positive, so the
theory is IR-free. The 1-loop and 2-loop coefficients are both positive, so there is no
UV zero in β at the maximal scheme-independent order.

We have studied this further up to 5-loop level in RS, PRD 89, 045019 (2014)
[1311.5268], using b4 from Gorishny, Kataev, Larin, Surguladze (1991) and b5 from
Kataev, and Larin, JETP Lett. 96, 61 (2012); Baikov, Chetyrkin, Kühn, Rittinger, NPB
867, 182 (2013) in MS scheme.

We find evidence against a UVFP in the U(1) gauge thy. As before, we have studied
effects of scheme transf; see also Kataev and Molokoedov, PRD 92, 054008 (2015).

This does not imply that a Landau pole occurs, since the coupling α becomes too large
for perturbative calculations to be reliable as one approaches this pole.

In the Standard Model, the U(1)em gauge symmetry results from the electroweak
symmetry breaking of SU(2)L ⊗ U(1)Y , so the question is then the UV behavior of
the hypercharge U(1)Y . In grand unified theories, the U(1)Y theory is embedded in the
non-abelian GUT gauge group, so the question of asymptotic behavior of a U(1) gauge
interaction does not arise.



RG Flows in the O(N) λ|~φ|4 Theory

The 4D O(N )-symmetric λ|~φ|4 theory with an N -component scalar field ~φ is another
interesting IR-free theory. We consider

L =
1

2
(∂µ~φ) · (∂µ~φ) −

λ

4!
|~φ|4

where ~φ = (φ1, ..., φN). In RS, PRD 90, 065023 (2014) [1408.3141]; PRD 94,
125026 (2016) [1610.03733]; PRD 96, 056010 (2017) [arXiv:1707.06248] we have
investigated RG flows and searched for a possible UVFP using the beta function up to
6-loop order (5-loop term from Kleinert, Neu, Schulte-Frohlinde, Chetyrkin, Larin, 1991,
1993); 6-loop term from Kompaniets and Panzer, PRD 96, 036016 (2017) [1606.09210]
in MS scheme).

With dt = d lnµ as before, we write

βλ =
dλ

dt
= λ

∞
∑

ℓ=1

bℓ a
ℓ
λ ,

where aλ = λ/(4π)2.



Ideally, for a UVFP here, we would find that the beta function calculated to
progressively higher loop orders would exhibit a zero for each order, and the values
a
λ,UV,nℓ

at which this zero occurs at the n-loop order would be similar for successive
loop orders.

As is evident in the table, we do not find this. The notation u means “unphysical”; the
zero in βλ closest to origin is negative or consists of a complex-conjugate pair.

As before, we use a combination of analysis of the power series expansion in aλ, Padé
resummation methods, and scheme transformations to check this.

So we do not find convincing evidence of a UVFP in the λ|~φ|4 theory.



N a
λ,UV,2ℓ

a
λ,UV,3ℓ

a
λ,UV,4ℓ

a
λ,UV,5ℓ

a
λ,UV,6ℓ

1 0.5294 u 0.2333 u 0.1604

2 0.5000 u 0.2217 u 0.1529

3 0.4783 u 0.2123 u 0.1467

4 0.4615 u 0.2044 u 0.1414

5 0.4483 u 0.1978 u 0.1368

6 0.4375 u 0.1920 u 0.1328

7 0.4286 u 0.1869 u 0.1292

8 0.42105 u 0.1823 u 0.1259

9 0.4146 u 0.1783 u 0.1229

10 0.4091 u 0.1746 u 0.1202

30 0.3654 u 0.1362 u 0.09033

100 0.3439 u 0.1012 u 0.05965

300 0.3370 u 0.07944 u 0.03783

500 0.3355 u 0.07341 0.08045 0.03074

800 0.3347 u 0.07137 0.02871 0.02866

890 0.3346 u 0.07164 0.02559 0.03829

900 0.3346 u 0.07170 0.02530 u

1000 0.3344 u 0.07241 0.02276 u

2000 0.3339 u 0.1054 0.01231 u

3000 0.3337 u 0.5475 0.008850 u

4000 0.3336 u u 0.007042 u

104 0.3334 u u 0.003460 u



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and the nature of the IR

behavior is of fundamental field-theoretic interest.

• Our higher-loop calculations give information on this UV to IR flow and on determination of IR

properties; we now have results up to the 5-loop level.

• We have investigated effects of scheme-dependence of IR zero in the beta function in higher-loop

calculations.

• We have calculated scheme-independent series expansions for γψ̄ψ,IR to O(∆4
f) and β′

IR to

O(∆5
f) using 5-loop inputs.

• In addition to these O(∆4
f) and O(∆5

f) calculations, extrapolations and Padé approximants give

further insight.

• These continuum calculations provide useful comparisons with lattice measurements.

• We have also studied RG flows and investigated possible RG fixed points in other interesting theories.



Appendices

Scheme Transformations to Remove ℓ ≥ 3 Loop Terms in the Beta Function

We describe the construction of a scheme transformation (ST), denoted SR,m,k1
, that removes the

terms in the beta function from loop order 3 up to m+ 1, inclusive, for small coupling. In the limit

m → ∞, this transforms to the ’t Hooft scheme.

To construct this ST, first, we take advantage of the property that in b′
ℓ, the ST coefficient kℓ−1 appears

only linearly. For example, b′
3 = b3 + k1b2 + (k2

1 − k2)b1, etc. for higher-ℓ b′
ℓ. So solve eq. b′

3 = 0

for k2, obtaining

k2 =
b3

b1

+
b2

b1

k1 + k2
1

This determines SR,2,k1
.

To get SR,3,k1
, substitute this k2 into expression for b′

4 and solve eq. b′
4 = 0, obtaining

k3 =
b4

2b1

+
3b3

b1

k1 +
5b2

2b1

k2
1 + k3

1

This determines SR,3,k1
.



We continue this procedure iteratively to calculate SR,m,k1
for higher m. In general, the equation

b′
ℓ = 0 is a linear equation for kℓ−1, so one is guaranteed a unique solution.

So the ST SR,m,k1
has nonzero ks, s = 1, ...,m and in the transformed beta function, sets b′

ℓ = 0 for

ℓ = 3, ...,m+ 1.

The coefficients ks for this ST depend on the bn in the original beta function for n = 1, ...,m+ 1,

and on the parameter k1.

In addition to the successful application near the origin, α = 0, we have shown that this ST SR,m,k1
can

be applied over part, but not all, of the interval I where the 2-loop beta function has an IR zero.



Method for Scheme-Independent Series Calculations

The method of calculation is as follows. To calculate κj, one begins by writing aIR = αIR/(4π) as a

series expansion in ∆f :

aIR =
∞
∑

j=1

aj ∆
j
f

For β, extracting a prefactor, define a reduced

βr =
β

(−8πa2)
=

∞
∑

ℓ=1

bℓ a
ℓ−1

so the condition for the IR zero is βr = 0 at a = aIR. Next, one expands the coefficients bℓ in Taylor

series around Nf = Nu, i.e., ∆f = 0, and substitutes the resulting expansions for bℓ and the ∆f

expansion for aIR in the eq. βr = 0 at a = aIR. The result can be written as

βr

∣

∣

∣

α=αIR
= 0 =

∞
∑

n=1

kn∆n
f

Since the sum is zero for all ∆f , each kn = 0. This yields a set of linear equations that one can solve

for the an in terms of the Taylor series coefficients of bℓ in the expansion about ∆f = 0.

Next, one inserts these expressions for the an in the ∆f expansion for aIR. Then, one carries out similar

Taylor series expansions of the cℓ around ∆f = 0 and substitutes these, with the aIR, in the expansion

γψ̄ψ,IR =
∑

ℓ cℓ a
ℓ
IR. This yields the κj.



LNN Limit

For G = SU(Nc) and R = F , one may consider the LNN (large Nc, large Nf ’t Hooft-Veneziano)

limit

LNN : Nc → ∞ , Nf → ∞ with r ≡
Nf

Nc

fixed and finite

and ξ(µ) ≡ α(µ)Nc finite (1)

Let x = ξ/(4π) and define a rescaled beta function that is finite in this limit:

βξ =
dξ

dt
= lim

LNN
Nc β = −8πx

∞
∑

ℓ=1

b̂ℓx
ℓ

where the n-loop coeffs. that are finite in this LNN limit are

b̂ℓ = lim
LNN

bℓ

N ℓ
c

.

Asymptotic freedom requires r < 11/2. The interval of r where βξ,2ℓ has an IR zero is

Ir : rℓ < r < ru, i.e., 2.615 < r < 5.500

where

rℓ = lim
LNN

Nℓ

Nc

=
34

13
= 2.615 , ru = lim

LNN

Nu

Nc

=
11

2



We have studied the approach to the LNN limit and find that this is quite rapid, with leading correction

terms in physical quantities suppressed by 1/N2
c : RS, PRD 87, 105005, 116007 (2013).

Define the scaled scheme-independent expansion parameter for the LNN limit

∆r ≡
∆f

Nc

= ru − r =
11

2
− r .

As r decreases from ru to rℓ in the interval Ir, ∆r increases from 0 to a maximal value

(∆r)max = ru − rℓ =
75

26
= 2.8846

For the scheme-independent expansion, define rescaled coefficients that are finite in this LNN limit:

κ̂j,F ≡ lim
LNN

N j
c κj,F

The anomalous dimension γψ̄ψ,IR is finite in the LNN limit and is given by

R = F : lim
LNN

γψ̄ψ,IR =
∞
∑

j=1

κj,F∆j
f =

∞
∑

j=1

κ̂j,F∆j
r .



From our general results, we obtain

κ̂1,F =
22

52
= 0.1600 , κ̂2,F =

588

56
= 0.037632 ,

κ̂3,F =
2193944

33 · 510
= 0.83207 × 10−2 ,

κ̂4,F =
210676352

34 · 513
+

90112

33 · 510
ζ3 +

11264

33 · 58
ζ5 = 0.36489 × 10−2

Hence, numerically, to order O(∆4
r),

γIR,LNN,∆4
r
= 0.160000∆r + 0.037632∆2

r + 0.0083207∆3
r + 0.003649∆4

r



r γ
IR,F,2ℓ

γ
IR,F,3ℓ

γ
IR,F,4ℓ

γIR,F,∆r γIR,F,∆2
r
γIR,F,∆3

r
γIR,F,∆4

r

2.8 > 2 1.708 0.190 0.432 0.706 0.870 1.064

3.0 > 2 1.165 0.225 0.400 0.635 0.765 0.908

3.2 > 2 0.854 0.264 0.368 0.567 0.668 0.770

3.4 > 2 0.656 0.293 0.336 0.502 0.579 0.650

3.6 1.853 0.520 0.308 0.304 0.440 0.497 0.5445

3.8 1.178 0.420 0.306 0.272 0.381 0.422 0.452

4.0 0.785 0.341 0.288 0.240 0.325 0.353 0.371

4.2 0.537 0.277 0.257 0.208 0.272 0.290 0.300

4.4 0.371 0.222 0.217 0.176 0.2215 0.233 0.238

4.6 0.254 0.1735 0.1745 0.144 0.1745 0.1805 0.183

4.8 0.170 0.129 0.131 0.112 0.130 0.133 0.134

5.0 0.106 0.0889 0.0900 0.0800 0.0894 0.09045 0.0907

5.2 0.0562 0.0512 0.0516 0.0480 0.0514 0.0516 0.0516

5.4 0.0168 0.0164 0.0164 0.0160 0.0164 0.0164 0.0164

Table of values of n-loop (nℓ) γIR,F,nℓ and scheme-independent γ
IR,F,∆

j
f

values for r ∈ Ir.



Appendix: Proof that γO,IR is scheme-independent, where O is some (gauge-invariant) operator, such

as ψ̄ψ, etc.

Denote the (vertex) renormalization constant for O as ZO. The anomalous dimension of O is (with

dt = d lnµ)

γO =
d lnZO

dt

Denote the coupling and renorm. const. in the transformed scheme as α′ and Z′
O(α′), given by

Z′
O(α′) = ZO(α)G(α), and the anom. dim. as γ′

O(α′). Then

γ′
O(α′) =

d lnZ′
O

dt
=
d

dt

[

ln(ZO(α)) + ln(G(α))

]

= γO(α) +
dα

dt

d ln(G(α))

dα

= γO(α) + β(α)
d ln(G(α))

dα

Hence, at α = αIR where β(αIR) = 0, it follows that γ′
O(α′

IR) = γO(αIR), i.e.,

γO(αIR) = γO,IR is scheme-independent.



Proof that dβ
dα

∣

∣

∣

α=αIR
is scheme-independent: denote the scheme transformation (ST) function as

F (α′), so α = F (α′), satisfying F (α′) → α′ as α′ → 0, since a ST has no effect in the free-field

limit. We have

β(α) =
dα

dt
, β′(α′) =

dα′

dt
,

dα

dα′
=
dF (α′)

dα′
=

[dα′

dα

]−1

Now

β(α) =
dα

dt
=
d

dt

[

F (α′)
]

=
dα′

dt

dF (α′)

dα′
= β′(α′)

dF (α′)

dα′

so

dβ(α)

dα
=

d

dα

[

β′(α′)
dF (α′)

dα′

]

=
dα′

dα

d

dα′

[

β′(α′)
dF (α′)

dα′

]

=
[dF (α′)

dα′

]−1 [dβ′(α′)

dα′

dF (α′)

dα′
+ β′(α′)

d2F (α′)

dα′2

]

Hence, at α′
IR where β′(α′

IR) = 0 and equivalently, β(αIR) = 0,

dβ(α)

dα
=

[dF (α′)

dα′

]−1 dβ′(α′)

dα′

dF (α′)

dα′
=
dβ′(α′)

dα′

which shows that dβ
dα

∣

∣

∣

α=αIR
is scheme-independent.



Relation between β′
IR and γF 2,IR:

We have LF 2 = 1
4g2
F a
µν,rF

a,µν
r , where F a

µν,r = gF a
µν. Denote F a

µν,rF
a,µν
r ≡ F 2, with anomalous

dimension γF 2. The energy-momentum tensor T νµ is given in terms of F a
µρF

a,ρν, and its trace is

T ≡ T ρρ =
β

16πα2
F 2

The scaling dimension ∆O of an operator O is given by d
dt

O = −∆O O. The energy-momentum

tensor is conserved, so it has canonical dimension 4; so same is true for trace: d
dt
T = −4T . Hence,

d

dt
T = −4T =

d

dt

[

β

16πα2
F 2] =

1

16π

[

1

α2
(
dβ

dα

dα

dt
)F 2 −

2β

α3

dα

dt
F 2 +

β

α2

dF 2

dt

]

=
1

16π

[

β′ β

α2
F 2 −

2β2

α3
F 2 +

β

α2
(−∆F 2F 2)

]

=
β

16πα2
F 2

[

β′ −
2β

α
− ∆F 2

]

Hence, −4 = β′ − 2β
α

− ∆F 2, so ∆F 2 = 4 + β′ − 2β
α

≡ 4 − γF 2 and therefore γF 2 = −β′ + 2β
α

.

At a zero of β (here, the IRFP), this reduces to

γF 2,IR = −β′
IR


