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Construct the effective potential order by order
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Contact interactions

Leading order (LO) Next-to-leading order (NLO)

Chiral effective field theory
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Euclidean time projection



We can write exponentials of the interaction using a Gaussian 
integral identity

We remove the interaction between nucleons and replace it 
with the interactions of each nucleon with a background field.
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Auxiliary field method
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Hidden spin-isospin exchange symmetry
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Essential elements for nuclear binding

What is the minimal nuclear interaction that can reproduce the ground 
state properties of light nuclei, medium-mass nuclei, and neutron 
matter simultaneously with no more than a few percent error in the 
energies and charge radii? 

We construct an interaction with only four parameters.

1. Strength of the two-nucleon S-wave interaction
2. Range of the two-nucleon S-wave interaction
3. Strength of three-nucleon contact interaction
4. Range of the local part of the two-nucleon interaction
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Pinhole algorithm
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Seeing Structure with Pinholes

Consider the density operator for nucleon with spin i and isospin j

We construct the normal-ordered A-body density operator

In the simulations we do Monte Carlo sampling of the amplitude
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Ab initio nuclear thermodynamics
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We compute the quantum mechanical trace over A-nucleon states by 
summing over pinholes (position eigenstates) for the initial and final states  

Ab initio nuclear thermodynamics
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This can be used to calculate the partition function in the canonical ensemble.

In order to compute thermodynamic properties of finite nuclei, nuclear matter, 
and neutron matter, we need to compute the partition function 

Lu, Li, Elhatisari, D.L., Drut, Lähde, Epelbaum, Meißner, PRL 125, 192502 (2020)
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Wave function matching
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Lattice Monte Carlo simulations can compute highly nontrivial 
correlations in nuclear many-body systems.  Unfortunately, sign 
oscillations prevent direct simulations using a high-fidelity Hamiltonian 
based on chiral effective field theory due to short-range repulsion.  

Wave function matching solves this problem by means of unitary 
transformations and perturbation theory.  By using unitary 
transformations, we construct a high-fidelity Hamiltonian that can be 
reached by perturbation theory, starting from a Hamiltonian without a 
sign problem.
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Non-Perturbatively 
Computable Hamiltonians
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Hamiltonians
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Wave function matching
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Let us write the eigenenergies and eigenfunctions for the two interactions 
as 

We would like to compute the eigenenergies of HA starting from the 
eigenfunctions of HB and using first-order perturbation theory.
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Not surprisingly, this does not work very well.  The interactions VA and 
VB are quite different.
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Let P be a projection operator that is nonzero only for separation distances 
r less than R. We define a short-distance unitary operator U such that

There are many possible choices for U.  The corresponding action of U on 
the Hamiltonian is 

and the resulting nonlocal interaction is
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Since they are unitarily equivalent, the phase shifts are exactly the same.
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Ground state wave functions



With wave function matching, we can now compute the eigenenergies
starting from the eigenfunctions of HB and using first-order perturbation 
theory.

40



41



42

Application of wave function matching to the 3S1-3D1 chiral interaction 
at N3LO.
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Work in progress: Elhatisari, Bovermann, et al.



Summary

We began with an introduction to lattice
simulations using chiral effective field
theory. We then discussed a hidden spin-
isospin symmetry of the nucleonic
interactions that can be derived in the
large-Nc limit.

We constructed a minimal nuclear
interaction that can reproduce the ground
state properties of light nuclei, medium-
mass nuclei, and neutron matter.
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We presented first principles calculations of
nuclear thermodynamics using the pinhole
trace algorithm. We probed the nuclear
liquid-vapor phase diagram, the location of
the critical point, and alpha clustering as a
function of density and temperature.

We concluded with a discussion of a new
method called wave function matching.
Using unitary transformations, we
construct a high-fidelity Hamiltonian that
can be reached via perturbation theory
from a Hamiltonian that doesn’t produce a
Monte Carlo sign problem.


