Nucleon axial form factors from lattice QCD

Constantia Alexandrou

The 23rd International Workshop on High Energy Physics Hard problems of hadron physics: non-perturbative QCD and related quests 8-12 Nov. 2021

Motivation

- Proton Electromagnetic form factors are well-measured
 - → can be used as bench mark quantities for lattice QCD
- Axial form factors are not well measured
 - → important for weak interactions, neutrino scattering, and parity violation experiments.
 - → check of PCAC and Goldberger-Treiman relations, and enables extraction axial and pseudo-scalar couplings

C. A. et al. (ETMC) Phys.Rev.D 103 (2021) 3, 034509, arXiv: 2011.13342

C. A., S. Bacchio, M. Constantinou, K. Hadjiyiannakou, K. Jansen G. Koutsou, Phys. Rev. D 104 (2021) 074503, arXiv: 2106.13468

Introduction

***** Gauge ensembles generated by ETMC

These are now generated with 2+1+1 flavours at physical values of the light, strange and charm quark masses

***** Analysis of these ensembles for various observables

***** Main collaborators for nucleon form factors

- S. Bacchio, The Cyprus Institute
- M. Constantinou, Temple University
- J. Finkenrath, The Cyprus Institute
- K. Hadjiyiannakou, University of Cyprus & The Cyprus Institute
- K. Jansen, DESY-Zeuthen
- G. Koutsou, The Cyprus Institute
- T. Leontiou, Frederick University

Gauge ensembles generated by ETMC

- ***** 4 ensembles at physical pion mass
 - 3 lattice spacings 0.05<a<0.1 fm —> take continuum limit directly at the physical point avoiding chiral extrapolation removing a major systematic error in the baryon sector
 - Two volumes at a=0.08 fm of Lm_{π} =3.6 (5.1 fm) and

 $Lm_{\pi}=5.4$ (7.7 fm)

C. A. et al. (ETMC), "Simulating twisted mass fermions at physical light, strange and charm quark masses" Phys. Rev., D98(5):054518, 2018

Status of current simulations

- Algorithmic improvements needed to go to
 a<0.05 fm due to critical slow down in HMC (long autocorrelations)
 - —> new approaches e.g. Machine learning approaches using equivariant flows

G. Kanwar, et al., Phys. Rev. Lett. 125 (2020) no.12, 121601, 2003.06413; D. Boyda, et al., 2008.05456

***** A number of collaborations has physical point ensembles:

- Wilson-type: **ETMC**, **BMW**, **CLS**, **PACS**
 - Most have 1-2 lattice spacings 0.05<a<0.1 fm
 - PACS has a large volume ensemble
- Staggered at physical point: MILC with 3 lattice spacings 0.06<a<0.15 fm
- Domain wall at physical point RBC/UKQCD with 2 lattice spacings

Systematics & Challenges

Systematic effects from chiral extrapolation are eliminated

Ground-state identification

Cross-check (one-, two- and three-state fits, summation) Two-particle state contribution complicate the identification of the ground state

Renormalisation

Non-perturbatively with improvements e.g using perturbative subtraction of lattice artefacts

 In what follows we assume isospin symmetry i.e. up and down quarks have equal mass, and neglect EM effects

Axial and pseudo scalar form factors (isovector)

Extract from
$$(N(p', s')|A_{\mu}|N(p, s)) = \bar{u}_{N}(p', s') \left[\gamma_{\mu}G_{A}(Q^{2}) - \frac{Q_{\mu}}{2m_{N}}G_{P}(Q^{2})\right]\gamma_{5}u_{N}(p, s)$$

lattice QCD $(N(p', s')|P_{5}|N(p, s)) = G_{5}(Q^{2})\bar{u}_{N}(p', s')\gamma_{5}u_{N}(p, s)$ $q^{2}=-Q^{2}$
* Check the PCAC : $\partial^{\mu}A_{\mu} = 2m_{q}P, m_{q} = m_{u} = m_{d}$
 $G_{A}(Q^{2}) - \frac{Q^{2}}{4m_{N}^{2}}G_{P}(Q^{2}) = \frac{m_{q}}{m_{N}}G_{5}(Q^{2})$
* Relate to pion field: $G_{5}(Q^{2}) = \frac{F_{\pi}m_{\pi}^{2}}{m_{q}}\frac{G_{\pi NN}(Q^{2})}{m_{\pi}^{2} + Q^{2}}$
 $G_{P}(Q^{2}) = \frac{4m_{N}^{2}}{Q^{2} + m_{\pi}^{2}}G_{A}(Q^{2})$ $m_{N}G_{A}(Q^{2}) = F_{\pi}G_{\pi NN}(Q^{2})$
* At the pion pole we get the pion nucleon coupling: $q_{A}w_{N} = G_{A}w_{N}(Q^{2}) = -m^{2}$

* At the pion pole we get the pion nucleon coupling: $g_{\pi NN} \equiv G_{\pi NN} (Q^2 = -m_{\pi}^2)$

$$\lim_{Q^2 \to -m_{\pi}^2} (Q^2 + m_{\pi}^2) G_P(Q^2) = 4m_N F_{\pi} g_{\pi NN}$$

and
$$g_{\pi NN} = m_N G_A(-m_\pi^2)/F_\pi \xrightarrow{\mathbf{m}_\pi \to \mathbf{0}} \frac{m_N}{F_\pi} g_A$$

Extracting Nucleon Axial Form Factors

N_f=2=1+1 twisted mass fermion ensembles

Nf	Ens. ID	Vol.	a [fm]
2+1+1	cB211.072.64	64×128	0.081
2 + 1 + 1	cB211.072.96	96×192	0.081
2 + 1 + 1	cC211.060.80	80×160	0.070

$$(\vec{x}_{s}, t_{s})$$
Analysis completed
Analysis ongoing

$$C_{2\text{pt}}(\Gamma_0; \vec{p} = \vec{0}, t_s) = \sum_{\vec{x}_s} \text{Tr} \left[\langle \Gamma_0 J_N(t_s, \vec{x}_s) \bar{J}_N(t_0, \vec{x}_0) \rangle \right] \stackrel{t_s \to \infty}{\longrightarrow} A_0 e^{-m_N t_s} + A_1 e^{-E_1 t_s} + \cdots$$

Nucleon matrix elements

 $C_{3\text{pt}}^{\mu\nu}(\Gamma; \vec{q} = 0, t_s, t_{\text{ins}}) = \sum_{\vec{x}_{\text{ins}}, \vec{x}_s} \text{Tr}\left[\langle \Gamma J_N(t_s, \vec{x}_s) \mathcal{O}^{\mu\nu}(t_{\text{ins}}, \vec{x}_{\text{ins}}) \bar{J}_N(t_0, \vec{x}_0) \rangle \right]$

***** Identification of nucleon matrix element $M(t_0=0)$

Plateau and two-state fit:

$$R^{\mu\nu}(\Gamma; \vec{q} = \vec{0}, t_s, t_{\text{ins}}) = \frac{C_{3\text{pt}}^{\mu\nu}(t_s, t_{\text{ins}})}{C_{2\text{pt}}(\Gamma_0, t_s)} \longrightarrow \mathcal{M} + \mathcal{O}(e^{-\Delta E(t_s - t_{\text{ins}})}) + \mathcal{O}(e^{-\Delta E t_{\text{ins}}})$$
Summation:

Included in the two-state fit

$$\sum_{t_{\rm ins}=a}^{\iota_s-a} R^{\mu\nu}(\Gamma; \vec{q} = \vec{0}, t_s, t_{\rm ins}) \longrightarrow c + \mathcal{M}t_s + \mathcal{O}(e^{-\Delta E t_s})$$

L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti, Nucl. Phys., B293: 420, 1987

Isovector matrix elements

for isovector only connected

Statistics for connected contribution

Increase statistics to keep approx. constant error

Analysis of 3-pt functions

*We allow the first excited state to be different in the two- and three-point functions, motivated by chiral perturbation theory, O. Baer, Phys. Rev. D 99, 054506 (2019).

Analysis of 3-pt functions

₩We allow the first excited state to be different in the two- and three-point functions, motivated by chiral perturbation theory, O. Baer, Phys. Rev. D 99, 054506 (2019).

—>The induced pesudoscalar increases

Axial and induced pseudoscalar form factors

*Negligible effect on G_A; larger effect on G_P but not large enough to fulfil pion pole dominance

- ***** For G_5 we find a similar similar behaviour to G_P
- * Other lattice QCD collaborations find bigger effects when not constraining the first edited state in the 3-point function

Y.-C. Jang, R. Gupta, B. Yoon, and T. Bhattacharya, Phys. Rev. Lett. 124, 072002 (2020) G. S. Bali, et al. (RQCD Collaboration), J. High Energy Phys. 05 (2020) 126

PCAC and pion pole dominance

Lattice cut-off effects

* Large effects on $G_P(Q^2)$ at low $Q^2 \longrightarrow$ may (partly) explain the discrepancy from pion dominance * Cut-off effects small for $G_A \longrightarrow$ for the rest of this talk we will use lattice results on G_A to extract G_P * G_5 shows the same behaviour as observed for G_P

Results and comparisons

***** G_P and G_5 still needs investigation - our data are extracted from G_A , RQCD data from M2 fits and PACS from plateau fits ***** Fitting the Q²-dependence we extract the axial mass and radius, $g_P^*=G_P(0.88m_\mu)$ and $g_{\pi NN}$

Beyond isovector - each flavour contribution

Quark flavour decomposition of GA

Contribution of disconnected diagrams

- Significant contribution of disconnected to u+d combination
- Negative disconnected contribution: subtracts from connected
- Good signal for strange contribution: clearly non-zero and negative

Quark flavour decomposition of G_P

Contribution of disconnected diagrams

- Significant contribution of disconnected to u+d combination
- Negative large disconnected contribution: subtracts from connected
- Large negative strange quark contribution

Charm quark contributions

*****Clearly non-zero negative contributions for both axial form factors

Check SU(3) symmetry

***** In the SU(3) limit disconnected contributions should vanish in the octet combination u+d-2s***** Deviations of up to 10% are seen in $G_{A^{u+d-2s}}(0)$ and up tp 50% in $G_{P^{u+d-2s}}(0)$

Conclusions

* Axial form factors including contributions form non-valence quarks can be extracted precisely (precision era of lattice QCD) - we can extract a lot of interesting physics and make predictions

*The calculation of sea quark contributions is feasible providing valuable input e.g. for the determination of strange and charm form factors and for checking SU(3) symmetry

*****Further study of PCAC and GT relations is required

*****Way forward:

- ♦ continuum limit, study of volume effects
- ◆ other hadrons, higher Mellin moment, direct computation of PDFs and GDPS, ...

Very much progress over the last five years!!

Backup slides

Nucleon propagator

Fit the nucleon two-point function or effective mass keeping up to two excited states

Renormalisation

• Non-perturbative renormalisation employing the RI' -MOM scheme:

the forward amputated Green function computed in the chiral limit and at a given (large Euclidean) scale $p^2 = \mu^2$ is set equal to its tree-level value.

G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa and A. Vladikas, Nucl. Phys. B 445 (1995) 81, hep-lat/9411010

- Use N_f =4 ensembles to take chiral limit very mild dependence
- Subtract lattice artefacts to $\mathcal{O}(g^2 a^{\infty})$ perturbatively
- For scheme dependent operators translate them to the \overline{MS} scheme at $\mu = 2$ GeV using a conversion factor computed in perturbation theory to three-loops

C.A, M. Constantinou, H. Panagopoulos, Phys. Rev. D95, 034505 (2017), 1509.00213

• Momentum source method leads to small statistical errors

M. Gockeler et al. (QCDSF) Nucl. Phys. B544, 699 (1999), hep-lat/9807044; Phys. Rev. D 82 (2010) 114511, 1003.5756

Axial and pseudoscalar form factors for two lattice spacings

*****Smaller cut-off effects on G_A; Larger for G_P and G₅

Crucial to take the continuum limit. Analysis of the third ensemble is ongoing.Volume effects small but we statistical errors still large; increased of statistics is ongoing