MOAT REGIMES & THEIR SIGNATURES IN HEAVY-ION COLLISIONS

Fabian Rennecke

[Pisarski, FR, PRL 127 (2021)]

XXXIII INTERNATIONAL WORKSHOP ON HIGH ENERGY PHYSICS 08/11/2021

MOATS IN THE QCD PHASE DIAGRAM

[Caerlaverock Castle, Scotland (source: Wikipedia)]

Α ΜΟΑΤ

energy dispersion of particle ϕ :

$$E_{\phi}(\mathbf{p}^2) = \sqrt{Z \mathbf{p}^2 + W(\mathbf{p}^2)^2 + m_{\text{eff}}^2}$$

WHERE DOES THE MOAT COME FROM?

• particles subject to a spatial modulation are favored to have finite momentum k_0

• typical for inhomogeneous/crystalline phases or a quantum pion liquid ($Q\pi L$)

WHERE CAN MOAT PHASES APPEAR?

At large μ_B in the QCD phase diagram:

[Fu, Pawlowski, FR (2019)]

indication for extended region with Z < 0 in QCD: moat regime

$$E_{\phi}(\mathbf{p}^2) = \sqrt{Z \, \mathbf{p}^2 + W(\mathbf{p}^2)^2 + m_{\text{eff}}^2}$$

IMPLICATIONS OF THE MOAT

There are basically two possibilities:

Option I: inhomogeneous phase at lower T/larger μ_B

IMPLICATIONS OF THE MOAT

But: fundamental problem with inhomogeneous condensates with fluctuations:

• basic example: fluctuations around O(N) chiral density wave

• tadpole corrections in any dimension lead to linear IR divergences at finite T:

$$T \int \frac{d^d \mathbf{p}}{(2\pi)^d} G_{\phi_{\perp}} \sim \frac{T}{W} k_0^{d-3} \int_{|\mathbf{p}| \sim k_0} \frac{d|\mathbf{p}|}{(|\mathbf{p}| - k_0)^2}$$

transverse fluctuations $\delta \phi_{\perp}$ disorder the system: no inhomogeneous phase for N>2

(rigorous for O(N) chiral density wave at $N \to \infty$) [Pisarski, Tsvelik, Valgushev '20]

IMPLICATIONS OF THE MOAT

0

-0.4

There are basically two possibilities:

 $\langle \phi \rangle = 0$, QSL

0.2

0.4

 m^2

0.0

-0.2

SIGNATURES OF MOATS IN HEAVY-ION COLLISIONS

PROBING THE PHASE DIAGRAM

imprints of the phase structure at freeze-out?

PROBING THE PHASE DIAGRAM

Vary the beam energy to study the phase diagram different densities (smaller energy \leftrightarrow lager μ)

What are the signatures of the the phase diagram in heavy-ion collisions?

SEARCH FOR MOAT REGIMES [Pisarski, FR '21]

Moats arise in regimes with spatial modulations in the phase diagram at large μ_B Characteristic feature: minimal energy at nonzero momentum \Rightarrow enhanced particle production at nonzero momentum

 \rightarrow look for signatures in the **momentum dependence** of particle numbers and correlations

- Note: particle number correlations $\langle N_{\phi}^n \rangle$ are measured from event-by-event fluctuations! prominent application: CEP search
- particles freeze out at certain temperature T_f

 $\bullet \qquad \text{defines 3d hypersurface:} \\ freeze-out surface \Sigma$

How does the moat regime affect particles on Σ ?

GENERALIZED COOPER-FRYE FORMULA

compute particle numbers on the freeze-out surface

• probability distribution of finding a particle ϕ with momentum p in thermal equilibrium: Wigner function

$$F_{\phi}(p) = 2\pi \rho_{\phi}(p_0, \mathbf{p}) f(p_0)$$

• particles on Σ boosted with fluid velocity $u^{\mu}(x)$:

energy:
$$\breve{p}_0 = u^{\mu}p_{\mu}$$

spatial momentum: $\breve{\mathbf{p}}^2 = (u^{\mu}u^{\nu} - g^{\mu\nu}) p_{\mu}p_{\nu}$

• particle spectrum from integrating particle number current over freeze-out surface:

$$\frac{d^{3}N_{\phi}}{d\mathbf{p}^{3}} = \frac{2}{(2\pi)^{3}} \int_{\Sigma} d\Sigma_{\mu} \underbrace{\int \frac{dp_{0}}{2\pi} p^{\mu} \Theta(\breve{p}_{0}) F_{\phi}(\breve{p})}_{= \sigma \text{ particle number current does}}$$

~ particle number current density

• reduces to Cooper-Frye formula for free vacuum spectral function: $\rho_{\phi}(p) = \operatorname{sign}(p_0) \,\delta \left| p_0^2 - \left(\mathbf{p}^2 + m^2 \right) \right|$

PARTICLE SPECTRUM IN A MOAT PHASE

use simple models to show general structure

Particle in a moat regime:

• low-energy model of free bosons in a moat regime (Z < 0, W > 0):

$$\mathscr{L}_{0} = \frac{1}{2} \left(\partial_{0}\phi\right)^{2} + \frac{Z}{2} \left(\partial_{i}\phi\right)^{2} + \frac{W}{2} \left(\partial_{i}^{2}\phi\right)^{2} + \frac{m_{\text{eff}}^{2}}{2} \phi^{2}$$

• gives simple in-medium spectral function

$$\rho_{\phi}(p_0, \mathbf{p}^2) = \operatorname{sign}(p_0) \,\delta\left[p_0^2 - E_{\phi}^2(\mathbf{p}^2)\right] \text{ with } E_{\phi}(\mathbf{p}^2) = \sqrt{Z \,\mathbf{p}^2 + W(\mathbf{p}^2)^2 + m_{\text{eff}}^2}$$

• boost symmetry broken! (but spatial rotation symmetry still intact)

Fluid velocity and freeze-out surface from hydro evolution

• boost invariant freeze-out at fixed temperature T_f and fixed proper time $\tau_f (= \sqrt{t^2 - z^2})$

$$u^r = \bar{u} \, \frac{r}{\bar{R}} \, \theta(\bar{R} - r)$$

[Schnedermann, Sollfrank, Heinz (1993)] [Teaney (2003)]

PARTICLE SPECTRUM IN A MOAT PHASE

use simple models to show general structure

model parameters:

• pick a beam energy of $\sqrt{s} = 5 \text{ GeV}$ and read off thermodynamic and blast wave parameters:

 $T_f = 115 \text{ MeV}$ $\mu_{B,f} = 536 \text{ MeV}$ $\bar{u} = 0.3$ $\bar{R} = 8 \text{ fm}$ $\tau_f = 5 \text{ fm/c}$

[Andronic, Braun-Munzinger, Redlich, Stachel (2018)]

[Zhang, Ma, Chen, Zhong (2016)]

• thermodynamics (used later) from a hadron resonance gas [Braun-Munzinger, Redlich, Stachel (2003)]

• moat parameters: purely illustrative

if Z < 0: $W = 2.5 \,\text{GeV}^{-2}$

PARTICLE SPECTRUM IN A MOAT PHASE

transverse momentum spectrum

• compare normal phase (gray, W = 0) to moat phase (yellow, $W = 2.5 \text{ GeV}^{-2}$)

enhanced particle production at nonzero momentum! maximum related to the wavenumber of the spatial modulation

PARTICLE NUMBER CORRELATIONS

- correlations sensitive to in-medium modifications
- difficult to compute in systems with long-range order due to multi-particle correlations
- $Q\pi L$ is disordered: single particle correlations can capture relevant features

 \longrightarrow correlations on Σ from (generalized) Cooper-Frye formula

[Pisarski, FR (2021)] [Floerchinger (unpublished)]

n-particle correlation:

$$\left\langle \prod_{i=1}^{n} \frac{d^{3} N_{\phi}}{d\mathbf{p}_{i}^{3}} \right\rangle = \left[\prod_{i=1}^{n} \frac{2}{(2\pi)^{3}} \int d\Sigma_{i}^{\mu} \int \frac{dp_{i}^{0}}{2\pi} (p_{i})_{\mu} \Theta(\breve{p}_{i}^{0}) \right] \left\langle \prod_{i=1}^{n} F_{\phi}(\breve{p}_{i}) \right\rangle$$

thermodynamic average

- fluctuations, e.g., of thermodynamic quantities lead to fluctuations of F_{ϕ}
- consider small fluctuations T, μ_B, u with $\kappa_i^{\mu}(x) = (T(x), \mu_B(x), u^{\mu}(x))_i$:

$$\left\langle F_{\phi} F_{\phi} \right\rangle_{c} = \frac{\partial F_{\phi}}{\partial \kappa_{i}^{\mu}} \frac{\partial F_{\phi}}{\partial \kappa_{j}^{\nu}} \bigg|_{\bar{\kappa}} \left\langle \delta \kappa_{i}^{\mu} \delta \kappa_{j}^{\nu} \right\rangle + \mathcal{O}(\delta \kappa^{3})$$

connected correlator

fluctuations of T, μ_B , u

THERMODYNAMIC CORRELATIONS

- correlations $\langle ... \rangle$ from thermodynamic average
- weight configurations with the change in entropy due to fluctuations, Δs^{μ} [Landau, Lifshitz (vol. 5)]

generating functional of (connected) thermodynamic correlations

$$W[J] = \ln \int \mathscr{D}\kappa(x) \exp \int d\Sigma_{\mu} \left[\Delta s^{\mu}(x) + J(x)_{i\nu} \hat{v}^{\mu} \delta \kappa_{i}^{\nu}(x) \right]$$

normal to Σ

- connected n-particle correlations $\langle \delta \kappa^n \rangle_c$ from $\frac{\delta^n W[J]}{\delta J^n} \Big|_{J=0}$
- change of entropy in an ideal fluid $(T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + p\Delta^{\mu\nu})$ with Gaussian fluctuations:

$$\hat{v}_{\mu}\Delta s^{\mu} = -\frac{1}{2}\delta\kappa_{i\mu}(x) \mathcal{F}_{ij}^{\mu\nu}(x) \delta\kappa_{j\nu}(x)$$

$$\mathcal{F}_{ij}^{\mu\nu} = \frac{1}{T} \begin{pmatrix} \hat{u} \frac{\partial s}{\partial T} & \hat{u} \frac{\partial s}{\partial \mu_B} & s\hat{v}^{\nu} \\ \hat{u} \frac{\partial s}{\partial \mu_B} & \hat{u} \frac{\partial n}{\partial \mu_B} & n\hat{v}^{\nu} \\ \hat{v}_{\mu} & n\hat{v}^{\mu} & -\hat{u}(Ts + \mu_B n)g^{\mu\nu} \end{pmatrix}_{ij}$$

PARTICLE NUMBER CORRELATIONS

• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products thereof (Wick's theorem))

$$\left\langle \frac{d^{3}N_{\phi}}{d\mathbf{p}_{1}^{3}} \frac{d^{3}N_{\phi}}{d\mathbf{p}_{2}^{3}} \right\rangle_{c} = \frac{4}{(2\pi)^{6}} \int d\Sigma^{\mu} \int \frac{dp_{1}^{0}}{2\pi} \frac{dp_{2}^{0}}{2\pi} (p_{1})_{\mu} (\hat{v} \cdot p_{2}) \Theta(\breve{p}_{1}^{0}) \Theta(\breve{p}_{2}^{0}) \left(\frac{\partial F_{\phi}(\breve{p}_{1})}{\partial \kappa_{i}^{\rho}} \frac{\partial F_{\phi}(\breve{p}_{2})}{\partial \kappa_{j}^{\sigma}} \right) \right|_{\bar{\kappa}} \left(\mathscr{F}_{ij}^{\rho\sigma}(w) \right)^{-1}$$

• look at normalized two-particle correlation $\Delta n_{12} = \left\langle \left(\frac{d^{3}N}{d\mathbf{p}^{3}} \right)^{2} \right\rangle_{c} / \left\langle \frac{d^{3}N}{d\mathbf{p}^{3}} \right\rangle^{2}$

(relatively) flat two-particle p_T correlation in the normal phase

PARTICLE NUMBER CORRELATIONS

• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products thereof (Wick's theorem))

$$\left\langle \frac{d^{3}N_{\phi}}{d\mathbf{p}_{1}^{3}} \frac{d^{3}N_{\phi}}{d\mathbf{p}_{2}^{3}} \right\rangle_{c} = \frac{4}{(2\pi)^{6}} \int d\Sigma^{\mu} \int \frac{dp_{1}^{0}}{2\pi} \frac{dp_{2}^{0}}{2\pi} (p_{1})_{\mu} (\hat{v} \cdot p_{2}) \Theta(\breve{p}_{1}^{0}) \Theta(\breve{p}_{2}^{0}) \left(\frac{\partial F_{\phi}(\breve{p}_{1})}{\partial \kappa_{i}^{\rho}} \frac{\partial F_{\phi}(\breve{p}_{2})}{\partial \kappa_{j}^{\sigma}} \right) \bigg|_{\bar{\kappa}} \left(\mathscr{F}_{ij}^{\rho\sigma}(w) \right)^{-1}$$

• look at normalized two-particle correlation $\Delta n_{12} = \left\langle \left(\frac{d^{3}N}{d\mathbf{p}^{3}} \right)^{2} \right\rangle_{c} / \left\langle \frac{d^{3}N}{d\mathbf{p}^{3}} \right\rangle^{2}$

moat phase

pronounced peak and ridges at nonzero p_T related to wavenumber of spatial modulation!

SUMMARY

Moats arise in regimes with spatial modulations

• expected to occur at large μ_B

Enhanced production of moat particles at nonzero momentum

- characteristic peaks (and ridges) in particle spectra and correlations at nonzero p_{T}

Opportunity to discover novel phases with low-energy heavy-ion collisions through differential measurements of particles and their correlations at small momenta

So far: basic description of qualitative effects To do: quantitative description of moat regimes