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MOATS IN THE QCD PHASE DIAGRAM



A MOAT

[Caerlaverock Castle, Scotland (source: Wikipedia)]



A MOAT

Eϕ(p2) = Z p2 + W(p2)2 + m2
eff

energy dispersion of particle :ϕ
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WHERE DOES THE MOAT COME FROM?

spatial oscillation
cos(2π k0 x)

momentum space peak
δ(p− k0 )

pk0x
1/k0

• particles subject to a spatial modulation are favored to have finite momentum k0

moat energy dispersion
(minimal energy at )k0

• typical for inhomogeneous/crystalline phases or a quantum pion liquid (Q L)π



WHERE CAN MOAT PHASES APPEAR?

[Fu, Pawlowski, FR (2019)]

indication for extended region with  in QCD:  moat regimeZ < 0

At large  in the QCD phase diagram:μB

Eϕ(p2) = Z p2 + W(p2)2 + m2
eff

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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not computed

Z < 0



IMPLICATIONS OF THE MOAT
There are basically two possibilities:

Option 1: inhomogeneous phase at lower T/larger μB

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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E

p20

E

p20

 for all E > 0 p2

 at :
instability towards formation of 
an inhomogeneous condensate

E = 0 p2 > 0

• moat is a precursor for an 
inhomogeneous phase

Rep. Prog. Phys. 74 (2011) 014001 K Fukushima and T Hatsuda

Figure 1. Conjectured QCD phase diagram with boundaries that define various states of QCD matter based on SχB patterns.

and sets a natural scale for the critical temperature of
chiral restoration. In the chiral perturbation theory (χPT)
the chiral condensate for two massless quark flavours at
low temperature is known to behave as 〈ψ̄ψ〉T /〈ψ̄ψ〉 =
1 − T 2/(8f 2

π ) − T 4/(384f 4
π ) − · · · with the pion decay

constant fπ $ 93 MeV [29]. Although the validity of
χPT is limited to low temperature, this is clear evidence
of the melting of chiral condensate at a finite temperature.
At low baryon density, likewise, the chiral condensate
decreases as 〈ψ̄ψ〉nB/〈ψ̄ψ〉 = 1 − σπN nB/(f 2

π m2
π )− · · ·

[30–32] where σπN ∼ 40 MeV is the π–N sigma term.
(For higher order corrections, see [33, 34].)
The chiral transition is a notion independent of the
deconfinement transition. In section 3.2 we classify the
chiral transition according to the SχB pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the
phase structure of QCD matter including conjectures which
are not fully established. At present, relatively firm statements
can be made only in limited cases—phase structure at a finite
T with a small baryon density (µB & T ) and that at an
asymptotically high density (µB ' %QCD). Below we will
take a closer look at figure 1 from a smaller to larger value of
µB in order.

Hadron-quark phase transition at µB = 0. The QCD phase
transition at finite temperature with zero chemical potential
has been studied extensively in the numerical simulation on
the lattice. Results depend on the number of colours and
flavours as expected from the analysis of effective theories
on the basis of the renormalization group together with the
universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the
finite-size scaling analysis on the lattice [37], and the critical
temperature is found to be Tc $ 270 MeV. For Nf > 0

light flavours it is appropriate to address more on the chiral
phase transition. Recent analyses on the basis of the staggered
fermion and Wilson fermion indicate a crossover from the
hadronic phase to the quark–gluon plasma for realistic u, d
and s quark masses [38, 39]. The pseudo-critical temperature
Tpc, which characterizes the crossover location, is likely to be
within the range 150–200 MeV as summarized in section 4.2.

Even for the temperature above Tpc the system may be
strongly correlated and show non-perturbative phenomena
such as the existence of hadronic modes or pre-formed
hadrons in the quark–gluon plasma at µB = 0 [28, 40]
as well as at µB (= 0 [41–43]. Similar phenomena can
be seen in other strong-coupling systems such as the high-
temperature superconductivity and in the BEC regime of
ultracold fermionic atoms [44].

QCD critical points. In the density region beyond µB ∼ T
there is no reliable information from the first-principles lattice
QCD calculation. Investigation using effective models is a
pragmatic alternative then. Most of the chiral models suggest
that there is a QCD critical point located at (µB = µE, T = TE)
and the chiral transition becomes first order (crossover) for
µB > µE (µB < µE) for realistic u, d and s quark masses
[45–48] (see point E in figure 2). The criticality implies
enhanced fluctuations, so that the search for the QCD critical
point is of great experimental interest [49, 50].

There is also a possibility that the first-order phase
boundary ends at another critical point in the lower-T and
higher-µB region whose location we shall denote by (µF, TF)
as shown by point F in figure 2. As discussed in section 6,
the cold dense QCD matter with three degenerate flavours
may have no clear border between superfluid nuclear matter
and superconducting quark matter, which is called the quark–
hadron continuity.

In reality, the fate of the above critical points (E and F)
depends strongly on the relative magnitude of the strange quark
mass ms and the typical values of T and µB at the phase
boundary.

3

[Fukushima, Hatsuda (2010)]



IMPLICATIONS OF THE MOAT

• basic example: fluctuations around  chiral density waveO(N )

But: fundamental problem with inhomogeneous condensates with fluctuations:

ϕ = Δ

cos(k0 z)
sin(k0 z)

0
⋮
0

+ (
δϕ∥

δϕ⊥)

transverse fluctuations  disorder the system: 
no inhomogeneous phase for 

δϕ⊥
N > 2

Gϕ⊥
=

1
W (p2 − k2

0)2

static (large ) propagator of 
transverse (Goldstone) modes

T

double pole at 
nonzero momentum

(rigorous for  chiral density wave at )O(N ) N → ∞

• tadpole corrections in any dimension lead to linear IR divergences at finite T:

T∫
ddp

(2π)d
Gϕ⊥

∼
T
W

kd−3
0 ∫|p|∼k0

d |p|
( |p| − k0)2

[Pisarski, Tsvelik, Valgushev '20]



IMPLICATIONS OF THE MOAT

Option 2: quantum pion liquid [Pisarski, Tsvelik, Valgushev '20]
[Pisarski '21]

• disordered phase with a moat spectrum (  for all )E > 0 p2

• spatial modulations:   for large ⟨ϕ(x)ϕ(0)⟩ ∼ e−mr x cos(mi x) x

quantum pion liquid

(in analogy to quantum spin liquids)

instead of inhomogeneous phase

There are basically two possibilities:

Z

m
2

0

1

2

-0.4 -0.2 0.0 0.2 0.4

〈 φ 〉 ≠ 0

〈 φ 〉 = 0, OSP

〈 φ 〉 = 0, QSL

broken phase

Q Lπ

Z

m2



SIGNATURES OF MOATS
IN HEAVY-ION COLLISIONS



PROBING THE PHASE DIAGRAM

imprints of the phase structure at freeze-out?



PROBING THE PHASE DIAGRAM
Vary the beam energy to study the phase diagram different densities (smaller energy  lager )↔ μ

not computed

moat regime

FRG: crossover
STAR: freeze-out
SPS & AGS: freeze-out
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STAR @ RHIC

s = 7.7 − 200 GeV
μB ≈ 400 − 30 MeV

CBM @ FAIR

s = 2.7 − 4.9 GeV
μB ≈ 730 − 540 MeV

[Fu, Pawlowski, FR '19]
[STAR '17, Andronic et al. '18]

What are the signatures of the the phase diagram in heavy-ion collisions?

future experiments, e.g.,

also: J-PARC, NICA, HIAF

HADES @ GSI

s ≈ 2.4 GeV
μB ≈ 770 MeV



SEARCH FOR MOAT REGIMES

Moats arise in regimes with spatial modulations in the phase diagram at large 

Characteristic feature: minimal energy at nonzero momentum 

 enhanced particle production at nonzero momentum


 look for signatures in the momentum dependence of particle numbers and correlations

μB

⇒
→

 [Pisarski, FR '21]

• particles freeze out at certain temperature Tf
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[Floerchinger, Wiedemann '13]

defines 3d hypersurface: 
freeze-out surface Σ

How does the moat regime affect particles on ?Σ

• Note: particle number correlations  are measured from event-by-event fluctuations!⟨Nn
ϕ⟩

prominent application: CEP search



GENERALIZED COOPER-FRYE FORMULA

• probability distribution of finding a particle  with momentum  in thermal equilibrium: 
Wigner function

ϕ p

compute particle numbers on the freeze-out surface

Fϕ(p) = 2π ρϕ(p0, p) f(p0)

spectral function

• particle spectrum from integrating particle number current over freeze-out surface:

d3Nϕ

dp3
=

2
(2π)3 ∫Σ

dΣμ ∫
dp0

2π
pμ Θ( p̆0) Fϕ( p̆)

• reduces to Cooper-Frye formula for free vacuum spectral function: ρϕ(p) = sign(p0) δ[p2
0 − (p2 + m2)]

• particles on  boosted with fluid velocity :Σ uμ(x)

                 energy:  

spatial momentum:   

p̆0 = uμpμ

p̆2 = (uμuν − gμν) pμpν

~ particle number current density



PARTICLE SPECTRUM IN A MOAT PHASE

• low-energy model of free bosons in a moat regime ( , ):Z < 0 W > 0

ℒ0 =
1
2 (∂0ϕ)2 +

Z
2 (∂i ϕ)2 +

W
2 (∂2

i ϕ)2 +
m2

eff

2
ϕ2

• gives simple in-medium spectral function

  with  ρϕ(p0, p2) = sign(p0) δ[p2
0 − E2

ϕ(p2)] Eϕ(p2) = Z p2 + W(p2)2 + m2
eff

use simple models to show general structure

• boost invariant freeze-out at fixed temperature  and fixed proper time  ( )Tf τf = t2 − z2

Particle in a moat regime:

• boost symmetry broken! (but spatial rotation symmetry still intact)

Fluid velocity and freeze-out surface from hydro evolution

• blast wave approximation 
for the fluid velocity: ur = ū

r
R̄

θ(R̄ − r)

time

radial size of the system

[Schnedermann, Sollfrank, Heinz (1993)]
[Teaney (2003)]



PARTICLE SPECTRUM IN A MOAT PHASE
use simple models to show general structure

model parameters:

• pick a beam energy of  and read off thermodynamic and blast wave parameters:s = 5 GeV

Tf = 115 MeV
μB, f = 536 MeV

ū = 0.3
R̄ = 8 fm
τf = 5 fm/c

[Andronic, Braun-Munzinger, Redlich, Stachel (2018)] [Zhang, Ma, Chen, Zhong (2016)]

• thermodynamics (used later) from a hadron resonance gas [Braun-Munzinger, Redlich, Stachel (2003)]

• moat parameters: purely illustrative

if :   Z < 0 W = 2.5 GeV−2



PARTICLE SPECTRUM IN A MOAT PHASE
transverse momentum spectrum

Z = 1
Z = 0.5
Z = -0.003
Z = -0.05
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• compare normal phase (gray, ) to moat phase (yellow, )W = 0 W = 2.5 GeV−2

enhanced particle production at nonzero momentum!

maximum related to the wavenumber of the spatial modulation

d3N
pT dpT dy dϕp



PARTICLE NUMBER CORRELATIONS
• correlations sensitive to in-medium modifications

• difficult to compute in systems with long-range order due to multi-particle correlations

• Q L is disordered: single particle correlations can capture relevant featuresπ

correlations on  from (generalized) Cooper-Frye formulaΣ

⟨
n

∏
i=1

d3Nϕ

dp3
i ⟩ = [

n

∏
i=1

2
(2π)3 ∫ dΣμ

i ∫
dp0

i

2π
(pi)μ Θ( p̆0

i )] ⟨
n

∏
i=1

Fϕ( p̆i)⟩

[Pisarski, FR (2021)]
[Floerchinger (unpublished)]

• fluctuations, e.g., of thermodynamic quantities lead to fluctuations of 

• consider small fluctuations , ,  with  : 

Fϕ

T μB u κμ
i (x) = (T(x), μB(x), uμ(x))i

thermodynamic average

⟨Fϕ Fϕ⟩c
=

∂Fϕ

∂κμ
i

∂Fϕ

∂κν
j κ̄

⟨δκμ
i δκν

j ⟩ + 𝒪(δκ3)

connected correlator fluctuations of , , T μB u

-particle 
correlation:
n



THERMODYNAMIC CORRELATIONS
• correlations  from thermodynamic average

• weight configurations with the change in entropy due to fluctuations, 

⟨…⟩

Δsμ

generating functional of (connected) thermodynamic correlations

[Landau, Lifshitz (vol. 5)]

W[J] = ln∫ 𝒟κ(x) exp∫ dΣμ [Δsμ(x) + J(x)iν ̂vμ δκν
i (x)]

normal to Σ

• connected n-particle correlations  from⟨δκn⟩c
δnW[J]

δJn
J=0

• change of entropy in an ideal fluid ( ) with Gaussian fluctuations:Tμν = ϵ uμuν + pΔμν

̂vμΔsμ = −
1
2

δκiμ(x) ℱμν
ij (x) δκjν(x)

ℱμν
ij =

1
T

̂u
∂s
∂T

̂u
∂s

∂μB
s ̂vν

̂u
∂s

∂μB
̂u

∂n
∂μB

n ̂vν

s ̂vμ n ̂vμ − ̂u (Ts + μBn)gμν
ij

fluctuation matrix ( )̂u = ̂vμ uμ

local fluctuations!



PARTICLE NUMBER CORRELATIONS
• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products 

thereof (Wick's theorem))

⟨
d3Nϕ

dp3
1

d3Nϕ

dp3
2 ⟩

c

=
4

(2π)6 ∫ dΣμ ∫
dp0

1

2π
dp0

2

2π
(p1)μ ( ̂v⋅p2) Θ( p̆0

1) Θ( p̆0
2) (

∂Fϕ( p̆1)
∂κρ

i

∂Fϕ( p̆2)
∂κσ

j )
κ̄

(ℱρσ
ij (w))

−1

• look at normalized two-particle correlation Δn12 = ⟨(d3N
dp3 )

2

⟩
c
/⟨ d3N

dp3 ⟩
2

normal phase

Δn12

(relatively) flat two-particle  
correlation in the normal phase

pT



PARTICLE NUMBER CORRELATIONS
• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products 

thereof (Wick's theorem))

• look at normalized two-particle correlation Δn12 = ⟨(d3N
dp3 )

2

⟩
c
/⟨ d3N

dp3 ⟩
2

moat phase

pronounced peak and ridges at 
nonzero  related to wavenumber 

of spatial modulation!
pT

Δn12

⟨
d3Nϕ

dp3
1

d3Nϕ

dp3
2 ⟩

c

=
4

(2π)6 ∫ dΣμ ∫
dp0

1

2π
dp0

2

2π
(p1)μ ( ̂v⋅p2) Θ( p̆0

1) Θ( p̆0
2) (

∂Fϕ( p̆1)
∂κρ

i

∂Fϕ( p̆2)
∂κσ

j )
κ̄

(ℱρσ
ij (w))

−1



SUMMARY

Moats arise in regimes with spatial modulations

• characteristic peaks (and ridges) in particle spectra 
and correlations at nonzero pT

• expected to occur at large μB

Enhanced production of moat particles at nonzero momentum

Opportunity to discover novel phases with low-energy 
heavy-ion collisions through differential measurements of 

particles and their correlations at small momenta

So far: basic description of qualitative effects
To do: quantitative description of moat regimes


