QCD phase transition for various number of flavours

A. Yu. Kotov

A.Yu. Kotov, M.P. Lombardo and A. Trunin, *Phys.Lett.B* 823 (2021) 136749 A.Yu. Kotov, M.P. Lombardo and A. Trunin, *Symmetry* 13 (2021) 10, 1833

XXXIII International Workshop on High Energy Physics "Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests», 2021

Outline

- QCD phase transition from $N_f=2$ till the onset of conformal window
- $N_f=2+1+1$ (physical strange and charm, various m_{π})
 - scaling behaviour
 - new order parameter
 - thresholds in QGP

• $N_{f}=2+1$ with strange quark mass as an interpolator between $N_{f}=2$ and $N_{f}=3$

Symmetries of QCD $L_{\text{OCD}} = \bar{\psi}_L \mathcal{D} \psi_L + \bar{\psi}_R \mathcal{D} \psi_R + m(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L) + \text{gauge part}$

Symmetry at m=0: $SU_I(N) \times SU_R(N) \times U_V(1) \times U_A(1)$

Spontaneously broken to $SU_V(N)$

- Imprint on hadron spectrum
 - Goldstone bosons
 - Symmetry partners
- Restoration at finite temperature lacksquare
- Nature of the QCD phase transition for various N

Baryon number

Broken by anomaly

Scenarios for thermal phase transition

Scenarios for thermal phase transition

Scenarios for thermal phase transition

[Cuteri, Philipsen, Sciarra, 2021]

Between Nf=2 and Nf=3

Scaling windows

Our ensembles $N_f = 2 + 1 + 1$ Wilson twisted mass fermions $m_{\pi}^{\text{phys}} < m_{\pi} < 380 \text{ MeV}$ $0.06 \text{ fm} \leq a \leq 0.08 \text{ fm}$

Fixed scale approach a = const

m _π [MeV]	a [fm]
139.7(3)	0.0801(4)
225(5)	0.0619(18)
383(11)	0.0619(18)
376(14)	0.0815(30)

New order parameter

- Chiral condensate $\langle \bar{\psi} \psi \rangle$ has large linear in m contributions (divergence, regular)
- $\langle \bar{\psi}\psi \rangle_3 = \langle \bar{\psi}\psi \rangle m\chi$ is free from linear terms in mass [W. Unger, 2010]
- **EoS**: $\langle \bar{\psi}\psi \rangle = Ah^{1/\delta}f(x) + \dots, h \equiv n$

$$n, \quad x = t/h^{1/\beta\delta}$$

Observable	X	$ar{\psi}\psi$	0
k_s	1.35(3)	0.74(4)	0.59(1)

$$T_c = T_0 + Ak_s m_\pi^{2/\beta\delta}$$

New order parameter <u>New order parameter</u>: $\langle \bar{\psi}\psi \rangle_3 = \langle \bar{\psi}\psi \rangle - m\chi$

- terms $\sim m$ cancel: divergences/regular
- $\sim m^3$ (symmetric phase)

•
$$\langle \bar{\psi}\psi \rangle_3 \sim t^{-\gamma-2\beta\delta}$$
 vs $\langle \bar{\psi}\psi \rangle \sim t^{-\gamma}$ as $t \to \infty$

11

Physical pion mass

Critical temperature and chiral extrapolation

		$T(m_{\pi} = 139 \text{ MeV})$ [MeV]	$T(m_{\pi} = 0)$ [MeV]
	$\langle \bar{\psi}\psi \rangle$	157.8(12)	138(2)
	χ	153(3)	132(4)
500	$\langle \bar{\psi}\psi \rangle_3$	146(2)	132(3)

 $T_0 = 134^{+6}_{-4} \text{ MeV}$

13

Scaling of $\langle \bar{\psi} \psi \rangle_3$

O(4) vs mean field

Mild tension between data and MF for m_{π} =139 MeV

m_l	Scalling window 72	Mean field	scaling window O4	
1st o	rder m_s^c	•• ***	04	m_s

m_{π} [MeV]	T ₀ [MeV]
139	142(2)
225	159(3)
383	174(2)

Z₂ scaling

Can also describe data for $m_{\pi}^{c} \in [0, m_{\text{phys}}]$

Large temperature behaviour

- O(4): $\langle \bar{\psi}\psi \rangle_3 \sim t^{-\gamma 2\beta\delta}$
- Griffith analyticity: $\langle \bar{\psi}\psi \rangle_3 \sim m^3 \sim m_\pi^6$
- $T \sim 300 \,\mathrm{MeV}$

Beyond the scaling behaviour

- $T \sim 300$ MeV: scaling behaviour \Leftrightarrow leading order Griffith analyticity
- Coincides with the onset of DIGA behaviour [Burger et al., 2018]
- Thresholds in QGP: [Glozman, 2019][Alexandru, Horvath, 2019] [Cardinali, D'Elia, Pasqui, 2021]

Conclusions

Consistency with O(4) scaling for light pions $m_{\pi} \lesssim m_{\pi}^{\rm phys}$ and temperatures T<300 MeV Order parameter $\langle \bar{\psi}\psi \rangle_3 = \langle \bar{\psi}\psi \rangle - m\chi$

$$T = 134^{+6}_{-4}$$
 MeV in the chiral limit

From

- Scaling of pseudocritical temperatures
- Scaling of $\langle \bar{\psi} \psi \rangle_3$
- Fit to the Equation of State

T=300 MeV is close to the onset of DIGA behaviour, thresholds in QGP

