Jet transport coefficient \hat{q} in lattice QCD

J. H. Weber¹ in collaboration with A. Kumar^{2,3} and A. Maiumder³

¹Humboldt-Universität zu Berlin & IRIS Adlershof & RTG 2575, Berlin, Germany ²McGill University, Montréal, Canada ³Wayne State University, Detroit, MI, USA

Rethinking Quantum Field Theory

International Workshop on High Energy Physics "Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests" Logunov Institute, Protvino, Russia, 11/12/2021

> A. Majumder, Phys.Rev.C 87 (2013) 034905; arXiv:2010.14463

Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)	Jets on QGP (lattice)
Outline			
1 Hot matt	er (QGP)		

- 2 Hard probes (Jets)
- 3 Jets on QGP (continuum)
 - Weak-coupling picture
 - Higher twist approach
 - OPE
- 4 Jets on QGP (lattice)
 - OPE and lattice QCD
 - Renormalization in pure gauge theory
 - Beyond pure gauge theory
 - Quantitative comparison and summary

Hot matter (QGP) ●00

۰

Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) 000000

Phase diagram of QCD & heavy-ion collisions

1/20

Hot matter (QGP) ●00

•

Hard probes (Jets) 000 Jets on QGP (continuum)

Jets on QGP (lattice) 000000

Phase diagram of QCD & heavy-ion collisions

- $\bullet\,$ High temperature phase of nuclear matter: quark-gluon plasma (QGP)
- Primordial state of nuclear matter before the hadronic freezeout

1/20

Hot matter (QGP) ●00 Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) 000000

Phase diagram of QCD & heavy-ion collisions

- High temperature phase of nuclear matter: quark-gluon plasma (QGP)
- Primordial state of nuclear matter before the hadronic freezeout
- QGP can be produced in heavy-ion collision (HIC) experiments
- How to define thermodynamic state variables for such dynamic media?

Hot matter (QGP) 0●0 Hard probes (Jets) 000 Jets on QGP (continuum

Jets on QGP (lattice) 000000

20

Interplay between lattice gauge theory and heavy-ion collisions

- Fruitful interplay of lattice gauge theory & heavy-ion collisions
- Search for the critical point and scan of the QCD phase diagram
- \bullet or equation of state, QNS, . . .
- But: many heavy-ion collision experiments shift their focus

Questions @ ALICE, CMS, sPhenix, ...

- How do **parton showers** develop and propagate in QGP?
- How to reconcile asymptotic freedom and observed strongly-coupled QGP
- Which **dynamical degrees of freedom** play a role in QGP?

Answers in terms of models or PQCD...

Hot matter (QGP) 00● Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) 000000

Why focus on hard probes in heavy-ion collisions?

source: Rothkopf, Phys.Rept. 858 (2020) 1-117

- Hard probes are produced in a few **hard processes** in initial collision, neither created or destroyed afterwards, but can alter their nature
- $\bullet\,$ Most important probes: jets, open heavy flavor & heavy quarkonium

heavy quarkonium: \Rightarrow check my talk on Wednesday, 11/10/2021, 12:30 [UTC+3]

• What happens to jets if they impinge on QGP?

Quark-hadron	duality		
	000		
Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)	Jets on QGP (lattice)

- Quark-hadron duality explains hadrons in terms of their partons
- Infinitely many partons partake in the nonperturbative binding
- In particular, microscopic, **nonperturbative calculations** in terms of parton degrees of freedom describe all the known properties of hadrons *Lattice gauge theory demonstrates this convincingly*...
- The probability of finding a parton with specific properties in a hadron is given by its nonperturbative **parton distribution function** (PDF) *PDFs are in principle accessible from lattice gauge theory...*
- Hard probes $(Q^2 \gg \Lambda^2_{\rm QCD})$ resolve individual partons in hadrons Weak-coupling methods apply to hard processes ...
- Nearly instantaneous hard processes on much shorter timescales $(\tau_Q \sim 1/q)$ than rearrangements in hadronic states $(\tau_A \sim 1/A_{QCD})$ Ignore the rearrangements, only need to consider the PDF...

Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)	Jets on QGP (lattice)
	000		
Jets			

• Hard probes $(Q^2 \gg \Lambda^2_{QCD})$ can knock out hard, off-shell partons that carry SU(3)-color charge, and thus must successively radiate hard gluons

source: Majumder, van Leeuwen (2010)

- Radiation softens along path, eventually hadronizes as **collimated jet**
- The hard processes can be treated through **perturbative expansion**
- Factorization of hard and nonperturbative parts of the reaction is possible due to hierarchically ordered scales $-O((A_{QCD}/q)^2)$ corrections

Hot matter (QGP 000 Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) 000000

Jet modification by scattering on bulk nuclear matter

- Initial hard jet **traveling in** -z direction with light-cone momentum $q_i \equiv [q^+, q^-, 0_{\perp}], \quad q^- = [q^0 - q^3]/\sqrt{2} \sim Q \gg q^+ = [q^0 + q^3]/\sqrt{2} \sim \lambda^2 Q$
- Jet scatters on **bulk nuclear matter**, absorbing momentum k $q_f^2 = (q+k)^2 = 2\lambda^2(q^-)^2 + 2\lambda^2q^-k^- + 2k^+(q^-+k^-) - k_{\perp}^2$

- $\bullet\,$ Jet retains off-shellness for $k^\pm\sim\lambda^2 Q$
- $k^+ \sim \lambda Q$ drives jet parton more off-shell, must radiate hard gluons
- k⁻ ~ λQ: energy loss, drives bulk partons off-shell that may radiate
- Many interactions with bulk over length *L*: Gaussian approximation

The first two moments for energy loss and the second moment for transversal momentum broadening specify jet modification in Gaussian approximation: $\hat{e} \equiv \frac{k^-}{L}, \quad \hat{e}_2 \equiv \frac{(\Delta k^-)^2}{L}; \quad \hat{q} \equiv \frac{|k_{\perp}|_L^2}{L} = \frac{|k_{\kappa\perp}|_L^2 + |k_{\gamma\perp}|_L^2}{L}$
 Hot matter (QGP)
 Hard probes (Jets)
 Jets on QGP (continuum)
 Jets on QGP (lattice)

 000
 000
 0000000
 0000000

 Jet transport coefficient \hat{q} and collision kernel in weak coupling (I)

- Jet transport coefficient \hat{q} is truncated integral of collision kernel $C(k_{\perp})$ $\hat{q}(k_{\perp}^{\max}) = \hat{q}_{\text{soft}}(k_{\perp}^{*}) + \hat{q}_{\text{hard}}(k_{\perp}^{*}, k_{\perp}^{\max}) \equiv \int_{0}^{k_{\perp}^{*}} \frac{d^{2}k_{\perp}}{(2\pi)^{2}} k_{\perp}^{2} C_{\text{soft}}(k_{\perp}) + \int_{k_{\perp}^{*}}^{k_{\perp}^{\max}} \frac{d^{2}k_{\perp}}{(2\pi)^{2}} k_{\perp}^{2} C_{\text{hard}}(k_{\perp})$
 - $\bullet\,$ Soft contribution $\left(k_{\perp}\ll T\right)$ to collision kernel known up to $\mathcal{O}(g^6)$ in HTL

$$\begin{split} C_{\rm soft}(k_{\perp}) &= g^2 T C_R \left\{ \frac{m_D^2}{k_{\perp}^2 \left(k_{\perp}^2 + m_D^2\right)} \right\} + g^4 T^2 C_R N_c \times \left\{ \frac{7}{32k_{\perp}^3} + \frac{m_D}{4\pi \left(k_{\perp}^2 + m_D^2\right)} \left[\frac{3}{k_{\perp}^2 + 4m_D^2} - \frac{2}{k_{\perp}^2 + m_D^2} - \frac{1}{k_{\perp}^2} \right] \right. \\ &- \frac{k_{\perp} m_D + 2 \left(k_{\perp}^2 - m_D^2\right) \arctan\left(\frac{k_{\perp}}{m_D}\right)}{4\pi k_{\perp} \left(k_{\perp}^2 + m_D^2\right)^2} + \frac{m_E^2 \arctan\left(\frac{k_{\perp}}{2m_D}\right)}{2\pi k_{\perp}^3 \left(k_{\perp}^2 + m_D^2\right)} + \frac{2k_{\perp} m_D - \left(k_{\perp}^2 + 4m_D^2\right) \arctan\left(\frac{k_{\perp}}{2m_D}\right)}{16\pi k_{\perp}^5} \right\} + \mathcal{O}(g^6) \end{split}$$

Caron-Huot, PRD 79 (2009)

$$\hat{q}_{\text{soft}}(k_{\perp}^{*}) = \frac{g^{2} T m_{D}^{2} C_{R}}{2\pi} \ln \frac{k_{\perp}^{*}}{m_{D}} + \frac{g^{4} T^{2} m_{D} C_{R} N_{c}}{2\pi} \left\{ -\frac{k_{\perp}^{*}}{16m_{D}} + \frac{3\pi^{2} + 10 - 4 \ln 2}{16\pi} + \mathcal{O}\left(\frac{m_{D}}{k_{\perp}^{*}}\right) \right\} + \mathcal{O}(g^{6})$$

 Hot matter (QGP)
 Hard probes (Jets)
 Jets on QGP (continuum)
 Jets on QGP (lattice)

 000
 000
 000000
 000000
 000000

 Jet transport coefficient \hat{q} and collision kernel in weak coupling (II)

$$\hat{q}(k_{\perp}^{\max}) = \hat{q}_{ ext{soft}}(k_{\perp}^{*}) + \hat{q}_{ ext{hard}}(k_{\perp}^{*}, k_{\perp}^{\max}) \equiv \int_{0}^{k_{\perp}^{*}} \frac{d^{2}k_{\perp}}{(2\pi)^{2}} k_{\perp}^{2} C_{ ext{soft}}(k_{\perp}) + \int_{k_{\perp}^{*}}^{k_{\perp}^{\max}} \frac{d^{2}k_{\perp}}{(2\pi)^{2}} k_{\perp}^{2} C_{ ext{hard}}(k_{\perp})$$

• Hard contribution $(k_{\perp} \gtrsim T)$ to collision kernel known up to $\mathcal{O}(g^6)$ as well

$$\hat{q}_{\text{hard}}(k_{\perp}^{*}, k_{\perp}^{\max}) = g^{4} T^{3} C_{R} \left\{ \frac{N_{c}}{6\pi} \left[\log\left(\frac{T}{k_{\perp}^{*}}\right) + \frac{\zeta(3)}{\zeta(2)} \log\left(\frac{k_{\perp}^{\max}}{T}\right) - 0.06885 \dots + \frac{3}{16} \frac{k_{\perp}^{*}}{T} + \dots \right] + \frac{N_{f} T_{f}}{6\pi} \left[\log\left(\frac{T}{k_{\perp}^{*}}\right) + \frac{3}{2} \frac{\zeta(3)}{\zeta(2)} \log\left(\frac{k_{\perp}^{\max}}{T}\right) - 0.07286 \dots + \dots \right] \right\}$$
Arnold, Xiao, PRD 78 (2008)

- $\hat{q}_{hard}(k_{\perp}^*, k_{\perp}^{max} \to \infty)$ is finite
- Cancellation of k_{\perp}^* dependence between $\hat{q}_{\text{soft}}(k_{\perp}^*)$, $\hat{q}_{\text{hard}}(k_{\perp}^*, k_{\perp}^{\max})$
- Soft $\mathcal{O}(g^5)$ exceeds $\mathcal{O}(g^4)$ term \Rightarrow expansion in g converges poorly
- Contributions at \$\mathcal{O}(g^6)\$ from magnetic scale \$(g^2\mathcal{T})\$ are small Laine, EPJC 72 (2012)

LO is accidentally small, NLO is regularly large, and the non-perturbative magnetic contribution is hardly relevant – is this the **end of the story**???

Hot matter (QGF 000 Hard probes (Jets

Jets on QGP (continuum)

Jets on QGP (lattice)

Hard jet scattering a QGP brick

- Uniform **QGP** brick of length L, temperature T, Debye mass m_D
- A jet with energy E, virtuality Q traverses this QGP: $E \gg Q \gg T, m_D$
- On-medium scattering is dominated by **one-gluon exchange** (OGE)

- Regularize integrals in finite box $V = L^3$, interaction time $T_I = \frac{L}{c}$
- $\bullet~$ The average momentum broadening among N_e OGE scattering events is

$$\hat{q} = \sum_{i}^{N_e} \frac{[k_{\perp}^i]^2}{N_e T_i}$$

• The tree-level matrix element (implies OGE approximation) for the scattering probability $W^{n,X}(k) = |\mathcal{M}|^2/2N_c$ is given by

$$\mathcal{M}=\langle q_{f}|\otimes \langle X|\int_{0}^{\tau_{f}}dtd^{3}xgar{\psi}(x)\gamma^{\mu}t^{a}A_{\mu}^{a}(x)\psi(x)\ket{n}\otimes \ket{q_{i}}$$

 $\bullet ~|n\rangle$ or $|X\rangle$ represent initial or final states of the nuclear medium

 $\bullet~|q_i\rangle$ or $|q_f\rangle$ represent initial or final states of the hard parton

Hot matter (QGI 000 Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) 000000

Near light-cone separated gauge-invariant definition of \hat{q}

$$\begin{aligned} \hat{q} &= c_0 \int \frac{dy^- d^2 y_{\perp} d^2 k_{\perp}}{(2\pi)^3} e^{i\frac{k_{\perp}^2 y^-}{2q^-} - ik_{\perp} \cdot y_{\perp}} \sum_n \frac{e^{-\beta E_n}}{Z} \\ &\times \langle n | \operatorname{tr} \left[g_0^2 F^{+j}(y^-, y_{\perp}) U^{\dagger}(\infty^-, y_{\perp}; y^-, y_{\perp}) T^{\dagger}(\infty^-, \infty_{\perp}; \infty^-, y_{\perp}) \right. \\ &\times T(\infty^-, \infty_{\perp}; \infty^-, 0_{\perp}) U(\infty^-, 0_{\perp}; 0^-, 0_{\perp}) F_j^+(0) \right] |n\rangle \end{aligned}$$

• $c_0 = 16\pi \alpha_s \sqrt{2}/(N_c^2 - 1)C_R$: quadratic Casimir $C_R = C_F = (N_c^2 - 1)/2N_c$ (hard quark)

- Bare field strength tensors F^{+j} are at *near* light-cone separation
- Specific path of infinite Wilson lines in adjoint representation

Garcia-Echevarria, et al., PRD84 (2011)

- Infinite transverse Wilson lines τ, τ^{\dagger} (transverse to light cone)
- \bullet Infinite light-cone Wilson lines U, U^{\dagger} along (-) light-cone direction
- Covariant gauge to eliminate transverse Wilson lines
- Light-cone gauge to eliminate light-cone Wilson lines

Not straightforward to realize on the lattice ...

Hot matter (QGI 000 Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) 000000

Near light-cone separated gauge-covariant definition of \hat{q}

$$\hat{q} = c_0 \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + ik_\perp \cdot y_\perp} \sum_n \frac{e^{-\beta E_n}}{Z}$$

 $\times \langle n | \ \mathrm{tr} \left[F^{+j}(0) F_j^+(y^-, y_\perp) \right] | n \rangle \,, \qquad j = \{1,2\} \ \mathrm{transverse \ directions}$

Make this amenable to lattice calculation

- Fix light-cone gauge: $A^-=0$
- Omit remaining Wilson lines
- $\bullet~{\rm Rephrase}~{\rm as}~{\rm gauge-invariant}~{\rm OPE}$
- \bullet Refrain from k- and y- integration
- Study a generalized coefficient $\hat{Q}(q^+)$

$$\hat{Q}(q^{+}) = c_0 \int \frac{d^4 y d^4 k}{(2\pi)^4} \frac{2q^- e^{ik \cdot y}}{(q+k)^2 + i\epsilon} \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \operatorname{tr} \left[g_0^2 F^{+j}(0) F_j^+(y) \right] | n \rangle$$

C II I I	· · · ·	+ \	
000	000	00000000	000000
Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)	Jets on QGP (lattice)

Generalized jet coefficient $Q(q^+)$

$$\hat{Q}(q^{+}) = c_0 \int \frac{d^4 y d^4 k}{(2\pi)^4} \frac{2q^- e^{ik \cdot y}}{(q+k)^2 + i\epsilon} \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \operatorname{tr} \left[g_0^2 F^{+j}(0) F_j^+(y) \right] | n \rangle$$

- Q̂(q⁺) has a branch cut in the region q⁺ ~ T ≪ q⁻, at which the internal quark propagator with q + k goes on the mass shell
- $\bullet\,$ Incoming hard quark is light-like $q_i^2=2q^+q^-\sim TQ\sim 0$ at branch cut
- Thermal discontinuity is related to \hat{q} : Disc $\left[\hat{Q}(q^+)\right]\Big|_{q^+ \sim T} = 2\pi i \hat{q}$

source: dissertation A. Kumar

- Vacuum discontinuity of $\hat{Q}(q^+)$ at $q^+ \in (0, \infty)$: real hard gluon radition
- $\hat{Q}(q^+)$ for $q^+ \approx -q^-$ (deep space-like region) has no discontinuities nearby
- \Rightarrow Turn $\frac{1}{(q+k)^2}$ into geometric series

$$\boxed{\frac{1}{(q+k)^2} \simeq \frac{-\frac{1}{2(q^-)^2}}{1 - \frac{(k^+ - k^-)}{q^-}} = \frac{-1}{2(q^-)^2} \sum_{m=0}^{\infty} \left[\frac{\sqrt{2}k_3}{q^-}\right]^m}$$

ntogration through contour deformation						
000	000	00000000	000000			
Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)				

Integration through contour deformation

- Roll over $k_3^m F_i^+(y)$ as partial derivative, then promote to $(iD_{y_3})^m F_i^+(y)$
- No k-dependence besides $e^{ik\cdot y},\,k$ integration yields $\delta^4(y),\, {\rm then}\,\, y\to 0$

• $-T_1$, T_2 bound the thermal discontinuity of $q^+ = k^+ + k_{\perp}^2/2(q^- + k^-)$

• 7-independent vacuum discontinuity: subtract vacuum analog

Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)	Jets on QGP (lattice)
		0000000	
	nt, local OPE for \hat{q}		

$$\left(\frac{\hat{q}}{T^3} = \sum_{m=0}^{\infty} \left[\frac{T}{q^-}\right]^{2m} c_0 \frac{T}{T_1 + T_2} \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr}\left[F^{+j}(0)\Delta^{2m}F_j^+(0)\right]}{T^4} | n \rangle_{T-V} \quad \text{with} \quad \Delta \equiv i\sqrt{2}D_3/T$$

- Width of thermal discontinuity $T_1 + T_2 \simeq 2\sqrt{2}T$
- $\bullet\,$ Terms odd in $\varDelta \propto D_3$ are odd under either parity or time reflection
- $\Rightarrow\,$ vanish for a medium at rest that satisfies these invariances
 - Manifestly gauge-invariant & local; $[T/q^-]^{2m}$ suppresses higher twist
 - Our result equally applies for both pure gluon plasma or full QGP

Evaluate the gauge-invariant, local operators on the lattice $O_m \equiv \sum_{n} \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr} \left[F^{+j}(0) \Delta^{2m} F_j^+(0) \right]}{T^4} | n \rangle_{T-V}$ What could go wrong?

Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)	Jets on QGP (lattice)
		0000000	
	nt, local OPE for \hat{q}		

$$\left(\frac{\hat{q}}{T^3} = \sum_{m=0}^{\infty} \left[\frac{T}{q^-}\right]^{2m} c_0 \frac{T}{T_1 + T_2} \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr}\left[F^{+j}(0)\Delta^{2m}F_j^+(0)\right]}{T^4} | n \rangle_{T-V} \quad \text{with} \quad \Delta \equiv i\sqrt{2}D_3/T$$

- Width of thermal discontinuity $T_1 + T_2 \simeq 2\sqrt{2}T$
- $\bullet\,$ Terms odd in $\varDelta \propto D_3$ are odd under either parity or time reflection
- \Rightarrow vanish for a medium at rest that satisfies these invariances
 - Manifestly gauge-invariant & local; $[T/q^-]^{2m}$ suppresses higher twist
 - Our result equally applies for both pure gluon plasma or full QGP

Evaluate the gauge-invariant, local operators on the lattice $O_m \equiv \sum_{n} \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr} \left[F^{+j}(0) \Delta^{2m} F_j^+(0) \right]}{T^4} | n \rangle_{T-V}$

What could go wrong? Much more than we initially anticipated...

		tors in imaginary time	
000	000	0000000	00000
Hot matter (QGP)	Hard probes (Jets)	Jets on QGP (continuum)	Jets on QGP (lattice)

$$O_m \equiv \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr} \left[F^{+j}(0) \Delta^{2m} F_j^+(0) \right]}{T^4} | n \rangle_{T-V}$$

• To use MCMC in lattice QCD: Wick rotation to imaginary time $x^0 \rightarrow ix^4$, $A^0 \rightarrow iA^4 \Rightarrow F^{0j} \rightarrow iF^{4j}$, $F^{+j} \rightarrow iF^{4j} - F^{3j}$ $\Rightarrow F^{+j} \Delta^{2m} F^{+j} \rightarrow \left[F^{3j} \Delta^{2m} F^{3j} - F^{4j} \Delta^{2m} F^{4j} \right] + i \left[F^{3j} \Delta^{2m} F^{4j} + F^{4j} \Delta^{2m} F^{3j} \right]$

tr $\left[F^{3j}\Delta^{2m}F^{4j} + F^{4j}\Delta^{2m}F^{3j}\right]$ not invariant under parity or time reflection, contributes only in a moving frame; vanishes for QGP in its rest frame

- Leading-twist operator O_0 is (up to $T_F = 1/2$) just gluonic contribution to the non-singlet component of energy-momentum-tensor (EMT) $T_c^{(9)}$
- In QCD, $T_{c}^{(9)}$ mixes with contribution from sea quark flavors $T_{c}^{(9)}$
- Total EMT is conserved, i.e. $T_G^{(9)}$ in pure gauge, or $T_G^{(9)} + T_O^{(9)}$ in QCD
- \Rightarrow QCD result for O_0 (and thus \hat{q}) is necessarily scheme dependent
 - Consider pure gauge plasma first (using Wilson plaquette action)
 - Later: (2+1)-flavor QCD plasma (using Symanzik + HISQ action)

Hot matter	(QGF

Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) ○●○○○○

Renormalization and mixing on quenched lattices

$$O_m \equiv \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr} \left[F^{3j}(0) \Delta^{2m} F^{3j}(0) - F^{4j}(0) \Delta^{2m} F^{4j}(0) \right]}{T^4} | n \rangle_{T-V}$$

- Reduced symmetry group in the lattice formulation: $SO(4) \xrightarrow{\text{broken}} SW_4$
- $\Rightarrow\,$ Analyze operators in terms of irreps of SW_4 of given mass dimension

Gluonic contributions to EMT	dim.	irrep.	-
$1 \delta_{\mu\nu}$	0	$\operatorname{singlet}$	cancels against $T = 0$
$T_F^{1/4} \operatorname{tr} [F^{\mu\rho}F^{\mu\rho}] \delta_{\mu\nu}$	4	$\mathbf{singlet}$	mixes with $\dim = 0$
$T_F \text{tr} \left[F^{\mu\rho} F^{\mu\rho} - F^{\nu\rho} F^{\nu\rho} \right] \left[1 - \delta_{\mu\nu} \right]$	4	triplet	$O_0 \equiv T_F T_G^{(3)}$
$T_F \text{tr} \left[F^{\mu\rho} F^{\nu\rho} + F^{\nu\rho} F^{\mu\rho} \right] \left[1 - \delta_{\mu\nu} \right]$	4	sextet	vanishes at rest

- $\bullet~{\rm EMT}$ components on lattice need renormalization $T_G^{(3)R}=Z_T^{(3)}T_G^{(3)B}$
- $Z_T^{(3)} \equiv z_T Z_T^{(6)}$: non-perturbative finite momentum Ward Identities (WI) $z_T, Z_T^{(6)}$ in $\overline{\text{MS}}$ for plaquette action from Giusti, Pepe, PRD 91 (2015); PLB 769 (2017)
- Higher-twist: O_m , $m \ge 1$ mix with lower-twist, *T*-dependent operators \Rightarrow no cancellation vs T = 0! mixing not studied systematically yet
- \Rightarrow Consider $q^- \rightarrow \infty$ first: higher-twist operators do ${\bf NOT}$ contribute!

Hot matter (QG 000 Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice)

Leading-twist operator for a pure gauge plasma

$$O_0 \equiv \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr} \left[F^{3j} F^{3j} - F^{4j} F^{4j} \right]}{T^4} | n \rangle_{T-V}$$

- We use Wilson plaquette action in pure gauge theory
- The renormalized lattice result
 $$\begin{split} &O_0^R[a(g_0^2),\,T=1/N,\,a(g_0^2)]=\\ &Z^{(3)}(g_0^2)O_0^B[a(g_0^2),\,T=1/N,\,a(g_0^2)] \end{split}$$

is extrapolated at fixed T to the continuum via $1/N_{\tau}^2 = (aT)^2 \rightarrow 0$

 \bullet For $N_{\tau}>4:$ cutoff effects $\sim 10\%$

Renormalized triplet comp. in rest frame \Rightarrow entropy density $T^{(3)R} = Ts = 2O_0^R$

Common approximation in lattice gauge theory: use tadpole factors $u_0(g_0^2)=\sqrt[4]{\langle \mathrm{tr}\;[U_{\mu,\nu}]\rangle/N_e}$

in place of renormalization factor: $1/u_0^4(g_0^2) \approx Z_T^{(3)}(g_0^2)$: overestimation ~10%

Hot matter (QGP 000 Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice)

QCD: explicit sea quarks as uninvited guests

$$O_0 \equiv \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr} \left[F^{3j} F^{3j} - F^{4j} F^{4j} \right]}{T^4} | n \rangle_{T-V}$$

- \bullet Symmetry breaking $SO(4) \stackrel{\rm broken}{\to} SW_4$ in QCD as in pure gauge theory
- $\Rightarrow \text{ Quark contributions in same irreps of } SW_4: \ T_Q^{(1)} \to T_Q^{(1)}, \ T_Q^{(9)} \to \{T_Q^{(3)}, T_Q^{(6)}\}$

Fermionic contribution to EMT	dim.	irrep.	-
$1 \delta_{\mu u}$	0	$\mathbf{singlet}$	cancels against $T = 0$
$m \ \bar{\psi} \psi \ \delta_{\mu u}$	4	$\operatorname{singlet}$	mixes with $\dim = 0$
$ar{\psi}\left[\gamma_{\mu} D_{\mu} - \gamma_{ u} D_{ u} ight]\psi\left[1 - \delta_{\mu u} ight]$	4	triplet	mixes with $T_G^{(3)}$
$\bar{\psi} \left[\gamma_{\mu} D_{\nu} + \gamma_{\nu} D_{\mu} \right] \psi \left[1 - \delta_{\mu\nu} \right]$	4	sextet	vanishes at rest

• Renormalization of EMT in QCD requires complete mixing matrix

$$\left(\begin{array}{c} T_{G}^{(3)R} \\ T_{Q}^{(3)R} \end{array}\right) = \mathcal{Z} \left(\begin{array}{c} T_{G}^{(3)B} \\ T_{Q}^{(3)B} \end{array}\right), \quad \mathcal{Z} \equiv \left(\begin{array}{c} \mathcal{Z}_{GG}^{(3)} & \mathcal{Z}_{GQ}^{(3)} \\ \mathcal{Z}_{QG}^{(3)} & \mathcal{Z}_{QQ}^{(3)} \end{array}\right)$$

Image Still missing the bare quark contribution ⇒ straightforward to compute
 All four renormalization factors unknown for choice of action ⇒ could obtain 2 out of 4 via finite momentum WI via QCD in a moving frame Dalla Brida, et al., JHEP 04 (2020)

Hot matter (QGI 000 Hard probes (Jets)

Jets on QGP (continuum)

Jets on QGP (lattice) ○○○○●○

QCD: estimating the influence of the sea quarks

$$O_0 \equiv \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \frac{\operatorname{tr} \left[F^{3j} F^{3j} - F^{4j} F^{4j} \right]}{T^4} | n \rangle_{T-V}$$

- We use Symanzik + HISQ action in (2+1)-flavor QCD
- Mixing between $T_G^{(i)}$ and $T_Q^{(i)}$: N_f -dependent coefficients smaller than N_f independent ones $Z_T^{(i)}$ at 1-loop level (plaquette+Wilson) Dalla Brida, et al., JHEP 04 (2020) \Rightarrow mixing ~ 10% correction to $T_c^{(i)R}$

 $\begin{array}{l} \text{Compare } o_{o}^{g}/u_{o}^{*} \text{ to entropy density } \mathcal{T}^{(3)R} = \mathcal{T}s \text{ rescaled by weak-coupling ratio} \\ R\left(\frac{T}{T_{c}}\right) = \frac{\left[s^{N_{t}=0}/T^{3}\right]\left(T/T_{c}\right)}{\left[s^{N_{t}=3}/T^{3}\right]\left(T/T_{c}\right)} \quad \text{using} \quad T_{c} \approx \left\{ \begin{array}{c} 270 \text{ MeV} & N_{f} = 0 \\ 155 \text{ MeV} & N_{f} = 3 \end{array} \right. \\ N_{f}\text{-dependent "critical" temperatures and } \mathcal{T}_{F} = \frac{1}{2}; \text{ deviation } \lesssim 30\% \end{array}$

We employ $N_{\tau} = 6$ assuming $\mathcal{Z}_{GG}^{(3)} \approx 1/u_0^4$, $\mathcal{Z}_{GQ}^{(3)} \approx 0$, 30% systematic error

Hot matter (QG 000 Hard probes (Jets)

Jets on QGP (continuum) 00000000

Quantitative comparison: HTL, lattice, models, phenomenology

- 1-loop, $N_f = \{0, 3\}$, $\overline{\text{MS}}$ running coupling $g_R^2(\mu)$, scale $\mu = (2...4)\pi T$
- Volume $V \cdot T^3 = \frac{N_\sigma}{N_\tau} = 4$ for T > 0
- T = 0 ensembles with $N_{\tau} = N_{\sigma}$
- Pure gauge: $0.2 \,\mathrm{GeV} \lesssim T \lesssim 1 \,\mathrm{GeV}$
- QCD $N_{\tau} = 6$: 0.15 GeV $\lesssim T \lesssim 0.8$ GeV
- \hat{q}_{∞}/τ^3 is nearly **flat** at $\tau > 0.3 \,\mathrm{GeV}$
- Phenomenological results by JET & JETSCAPE collaborations Burke, et al. (JET), PRC 90 (2014); Soltz (JETSCAPE), PoS HardProbes 2018
- Stochastic vacuum model $N_f = 0$ (lattice input): Landau damping
- Antonov, Pirner, EPJC55 (2008) • Soft contribution in $N_f = 2$ EQCD: $\hat{q}_{soft} \approx \hat{q}_{NLO}|_{m_L^{O} \to m_N^{OP}}$

Panero, et al., PRL 112 (2014)

• LO HTL with $q^- = 100 \text{ GeV}$ for $N_f = 0$ or $N_f = 3$

20 / 20

Thank you for your attention!

Explict derivation of \hat{q}

• **Ergodicity** implies that we can replace an average over N_e events by an average over **Boltzmann-weighted initial medium states**

$$=\sum_{n,X}\frac{e^{-\beta E_n}}{ZT_I}\int d^2k_{\perp}k_{\perp}^2\frac{d^2W^{n,X}(k_{\perp})}{d^2k_{\perp}}$$

- SCET power counting of A_{μ} fields: $A^+_{\mu} \sim \lambda^2 Q, \quad A^{\perp}_{\mu} \sim \lambda^3 Q$
- \bullet Roll over k_{\perp}^2 to derivatives ∂_{\perp} on A_{μ}
- Prop up to field strength tensors F_j^+ from here: transverse comp. $j \in \{1, 2\}$

- Use finite volume wave-functions for the spinors
- Shift one vertex to origin, eliminate $\int d^4x$ against prefactor $1/v\tau_i$
- Eliminate final medium state $|X\rangle$ via completeness $1 = \sum_{x} |X\rangle \langle X|$
- k^+ -integral is eliminated by on-shell delta function $\delta[k^+ k_{\perp}^2/(2q^-)]$
- Integrate over $k^- \ll q^- \Rightarrow$ delta function $2\pi\delta[y^+]$, integrate $y^+ \to 0$

Sufficiently-improved field-strength operator on the lattice

• Plaquette operator is most simple, but has real and imaginary parts

$$U_{\mu,\nu}(x) = \exp\left[a^2 i g_0 F_{\mu\nu}(x)\right] + \mathcal{O}(a^3)$$

• Clover operator is more symmetric, suppresses lattice artifacts

$$Q_{\mu\nu} = \frac{U_{\mu,\nu} + U_{\nu,-\mu} + U_{-\mu,-\nu} + U_{-\nu,\mu}}{4} = \exp{[a^2 i g_0 F_{\mu\nu}]} + \mathcal{O}(a^4)$$

• Traceless-antihermitean projection

$$[Q]_{\mathrm{TA}} = \frac{Q - Q^{\dagger} - \frac{\mathrm{tr} \left[Q - Q^{\dagger}\right]}{N_c}}{2}$$

- Weak-coupling picture dysfunctional in practice $[Q_{\mu,\nu}]_{TA} \simeq a^2 i g_0 F_{\mu\nu}$
- Tadpole improvement with factor $u_0 = \sqrt[4]{\langle \operatorname{Tr}[U_{\mu,\nu}] \rangle / N_c}$ $(\lim_{a,g_0 \to 0} u_0 = 1)$
- Traceless-antihermitian projected, tadpole-improved clover operator $ig_0 \mathcal{F}_{\mu\nu}(x) = \frac{[Q_{\mu\nu}(x)]_{\mathrm{TA}}}{a^2 u_0^4} = ig_0 \mathcal{F}_{\mu\nu} + \mathcal{O}(a^2)$

Higher twist on the lattice (I)

source: arXiv:2010.14463

Higher twist on the lattice (II)

$$O_m = \frac{1}{q^-} \sum_n \frac{e^{-\beta E_n}}{Z} \langle n | \operatorname{tr} \left[F^{3j}(0) \Delta^{2m} F^{3j}(0) - F^{4j}(0) \Delta^{2m} F^{4j}(0) \right] | n \rangle$$

- Dimension six operators have many more SW_4 irreps not fully sorted
- Covariant derivatives via finite differences on the lattice
- \Rightarrow Gauge-field dependence implies different renormalization of hopping and on-site terms, giving rise to obvious power-law divergences of form

source: dissertation A. Kumar

$$O_{1}^{\mathrm{B}} \equiv X_{6}^{\mathrm{B}} = \#_{6,i}Z_{6,i}^{-1}X_{6,i}^{\mathrm{R}}(T) + \#_{4,i}Z_{4,i}^{-1}X_{4,i}^{\mathrm{R}}(T) a^{-2} + \#_{1,i}I a^{-6} \bullet \text{ Instead could use } q^{+} = -xq^{-}, x \sim 1
$$\underbrace{\frac{1}{(q+k)^{2}} \simeq \frac{-1}{2x(q^{-})^{2}} \sum_{m=0}^{\infty} \left[\frac{\frac{1-x}{x}k_{0} + \frac{1+x}{x}k_{3}}{\sqrt{2q^{-}}}\right]^{m}}_{m=0}$$$$

• Linear combination of different integrals could alleviate mixing

Missing contributions

- Hard parton at NLO interacting with non-perturbative medium
- $\Rightarrow\,$ Quite possible that NLO contribution is larger than the tree-level one
- Flavor-changing scattering diagrams generate corrections, suppressed by odd powers $[T/q^{-}]^{2m+1} \Rightarrow$ more relevant than $O_m, m > 0$.
- **not even considered yet** in published results using strict HTL perturbation theory or phenomenology
- Contribute both in QCD and in pure gauge theory: a presence of parton's flavor in the quark sea not necessary (but certainly important)

- Emissions within the medium yield more complicated lattice operators
- \Rightarrow similar issues as higher-twist ops.?

All approaches so far consider only **independent scattering** events.