Chiral Separation Effect and Kondo effect in finitedensity SU(2) gauge theory

PAVEL BUIVIDOVICH (UNIVERSITY OF LIVERPOOL), LORENZ VON SMEKAL (GIESSEN UNIVERSITY), DOMINIK SMITH (GSI DARMSTADT)

Why chiral plasmas? Collective motion of chiral fermions

- High-energy physics:
 - ✓ Quark-gluon plasma

- ✓ Neutrinos/leptons in Early Universe
- ✓ Neutrinos in supernovae cores (*I_{free}~1cm*)
- <u>Condensed matter physics:</u>
 - ✓ Liquid He₃ [G. Volovik]
 - ✓ Weyl semimetals
 - ✓ Topological insulators

Upon quantization, one finds

$$\partial_{\mu} j^A_{\mu} = \frac{1}{2\pi^2} \vec{E} \cdot \vec{B}$$

Anomalous transport $Q_A(\pi_0)$ Axial anomaly

Chiral Magnetic Effect

Chiral Separation Effect

Anomalous transport and heavy ions **Ideal hydro** Elliptic Viscous hydro flow **Parity-odd** Anomalous hydro fluctuations **Isobar run RHIC 2018 – results this September!**

https://indico. bnl.gov/event /12758/

Anomalous transport and heavy ions

In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of 9644Ru+9644Ru and 9640Zr+9640Zr at sNN---V=200 GeV.

No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

[STAR Collaboration, ArXiv:2109.00131]

Anomalous transport coefficients

- Input for hydrodynamic simulations of HICs
- Get unknown corrections in real QCD
- Due to broken chiral symmetry [PB'1312.1843]
- Perturbatively [Miransky 1304.4606] [Gursoy 1407.3282]
- Due to influence of heavy quark flavors [Suenaga 2012.15173]

Anomalous transport coefficients Lattice studies so far:

- [Yamamoto'1105.0385]: ~20% of Chiral Magnetic Effect
- [Braguta et al' 1401.8095]: ~5% of Chiral Vortical Effect
- So far hydro simulations with free-fermion transport coefficients only
- Lattice conclusions can question the hydro interpretation of RHIC results

BUT: Wilson-Dirac/Quenched overlap/non-conserved currents/energy-momentum

Pure SU(3) gauge theory

[PB, M. Puhr, ArXiv: 1611.07263]

Pure SU(3) gauge theory

[PB, M. Puhr, ArXiv: 1611.07263]

CSE with dynamical fermions

- What can be the order of magnitude of corrections?
- Sign problem in full QCD use SU(2) gauge theory, no sign problem
- Features confinement-deconfinement crossover and χ SB, QCD-like dynamics at small $\mu < m_{\pi}/2$.
- Diquark condensation at $\mu > m_{\pi}/2$, absent in real QCD

Phase diagram of SU(2) gauge theory

Lattice setup: sea quarks & gauge action

- $N_f=2$ light flavours with $m_u=m_d=0.005$, pion mass $m_{\pi}=0.158$
- Rooted staggered sea quarks
- Tadpole-improved gauge action
- Spatial lattice sizes *L_s=24* and *L_s=30*
- Single gauge coupling = single lattice spa_
- Temporal lattice sizes L_t=4 ... 26
- Standard Hybrid Monte Carlo
- Acceleration using GPUs

 Small diquark source term added for low temperatures to facilitate diquark condensation

Lattice setup: valence quarks

- Wilson-Dirac and Domain-Wall valence quarks
- HYP-smeared gauge links in the Dirac operator: reduces additive mass renormalization and lattice artifacts
- Better quality of signal than for staggered quarks
- Bare mass for Wilson-Dirac/Domain-Wall quarks tuned to match the pion mass calculated with sea quarks
- GMOR relation works with good precision

Measuring the CSE

- Sign problem even in SU(2)
- gauge theory at finite $\boldsymbol{\mu}$ and

magnetic field

$$\vec{j}_A = \sigma_{CSE} \left(\mu, T \right) \, \vec{B}$$

• We use linear response

approximation w.r.t.

magnetic field

$$\left\langle j_{1}^{A}\left(k_{3}\right)j_{2}^{V}\left(-k_{3}
ight)
ight
angle =\sigma_{\mathrm{CSE}}\,k_{3}$$

Numerical results

 $L_t = 12, a\mu = 0.05$

Numerical results

Numerical results

L_t = 16, aμ = 0.50

σ_{CSE} vs temperature, low μ

aμ = 0.05

σ_{CSE} vs temperature, medium μ

aμ = 0.10

σ_{CSE} vs temperature, large μ

 $a\mu = 0.20$

Data quite close to the free fermion results

Describing CSE suppression

- ChPT result for flavor-non-singlet axial current [Avdoshkin,Sadofyev,Zakharov' 1712.01256]:
- We work with flavor-singlet axial current, has different status in ChPT
- Singlet and non-singlet currents become similar at large Nc
- Phenomenological formula works well in the low-T, low-μ regime even for singlet axial current in SU(2) gauge theory

Disconnected contribution appears to be small!

$$\sigma_{CSE}\left(\mu,T\right) = \alpha \,\rho_V\left(\mu,T\right)$$

Kondo effect in non-Abelian gauge theory

- Suppression of an interesting effect feels somewhat unfortunate...
- Is there something that can enhance the CSE?
- Yes, QCD Kondo Effect [Suenaga et al., 2012.15173]

- Kondo effect in non-Abelian gauge theory
- Kondo effect: scattering of light fermion near a Fermi surface off a heavy fermion of mass M enhanced as *log(M)*
- Mean-field approach for QCD [Yasui,Suzuki,Itakura, 1604.07208]: spontaneous emergence of Kondo condensate $\langle \bar{Q} q \rangle$
- Suppresses low-T, finite-μ conductivity [Yasui,Ozaκı, 1/10.03434]
- But... CSE is enhanced [Suenaga, Araki, Suzuki, Yasui, 2012.15173]
- We only consider CSE of light quarks

Numerical results for CSE in Nf=2+1 SU(2) LGT

Conclusions

- CSE close to free-quark result at high temperatures and/or high densities
- Significant suppression at low temperatures and low densities
- σ_{CSE} approximately proportional to charge density rather than chemical potential
- Similar to ChPT calculation of [Avdoshkin,Sadofyev,Zakharov' 1712.01256] for axial non-flavor-singlet current, although non-singlet and singlet axial currents are physically quite different
- CSE can be enhanced in the presence of additional fermion flavors signature of Kondo effect
- Next step: conductivity at finite density with heavy quarks