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Why chiral plasmas?
Collective motion of chiral fermions

• High-energy physics:
✓ Quark-gluon plasma
✓ Neutrinos/leptons in Early Universe

✓ Neutrinos in supernovae cores (lfree~1cm)
• Condensed matter physics:
✓ Liquid He3 [G. Volovik]
✓ Weyl semimetals
✓ Topological insulators



Chiral anomaly [Adler-Bell-Jackiw 1969]
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Corresponding conserved current: axial current  

Upon quantization, one finds  
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Anomalous transport and heavy ions
Ideal hydro

Viscous hydro

Anomalous hydro

Elliptic
flow

Parity-odd
fluctuations

Isobar run RHIC 2018 – results this September!

https://indico.
bnl.gov/event
/12758/

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Findico.bnl.gov%2Fevent%2F12758%2F&data=04%7C01%7CS.J.Hands%40Swansea.ac.uk%7C26d2589865784ed0f56408d969724dd7%7Cbbcab52e9fbe43d6a2f39f66c43df268%7C0%7C0%7C637656762478036889%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=SfOat46R4JAcgbSZe0%2BW3IO4FvjexvkCFwJiHWsCh24%3D&reserved=0


Anomalous transport and heavy ions
In order to better control the influence of signal and backgrounds, the STAR Collaboration 

performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions 

of 9644Ru+9644Ru and 9640Zr+9640Zr at sNN−−−√=200 GeV. ….

No CME signature that satisfies the predefined criteria 
has been observed in isobar collisions in this blind 
analysis. 

[STAR Collaboration, ArXiv:2109.00131]



Anomalous transport coefficients
• Input for hydrodynamic simulations of HICs
• Get unknown corrections in real QCD

• Due to broken chiral symmetry [PB’1312.1843]

• Perturbatively [Miransky 1304.4606] [Gursoy 1407.3282]

• Due to influence of heavy quark flavors [Suenaga 2012.15173]



Anomalous transport coefficients
Lattice studies so far:
• [Yamamoto’1105.0385]:  ~20% of Chiral Magnetic Effect
• [Braguta et al’ 1401.8095]:  ~5% of Chiral Vortical Effect

• So far hydro simulations with free-fermion transport 
coefficients only

• Lattice conclusions can question the hydro interpretation 
of RHIC results

BUT: Wilson-Dirac/Quenched overlap/non-conserved 
currents/energy-momentum



Pure SU(3 )gauge theory

T > Tc

[PB, M. Puhr, 
ArXiv: 
1611.07263]



Pure SU(3 )gauge theory

T > Tc
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1611.07263]



CSE with dynamical fermions
• What can be the order of magnitude of corrections?
• Sign problem in full QCD              use SU(2) gauge 

theory, no sign problem
• Features confinement-deconfinement crossover and 

χSB, QCD-like dynamics at small μ < mπ/2 . 
• Diquark condensation at μ > mπ/2, absent in real QCD



Phase diagram of SU(2) gauge theory
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Lattice setup: sea quarks & gauge action
• Nf=2 light flavours with mu=md = 0.005, pion mass mπ = 0.158 

• Rooted staggered sea quarks

• Tadpole-improved gauge action

• Spatial lattice sizes Ls=24 and Ls=30

• Single gauge coupling = single lattice spacing

• Temporal lattice sizes Lt=4 … 26

• Standard Hybrid Monte Carlo

• Acceleration using GPUs

• Small diquark source term 
added for low temperatures to 
facilitate diquark condensation



Lattice setup: valence quarks
• Wilson-Dirac and Domain-Wall valence quarks

• HYP-smeared gauge links in the Dirac operator: 

reduces additive mass renormalization and lattice 

artifacts

• Better quality of signal than for staggered quarks

• Bare mass for Wilson-Dirac/Domain-Wall quarks tuned 

to match the pion mass calculated with sea quarks

• GMOR relation works with good precision



• Sign problem even in SU(2)
gauge theory at finite μ and 
magnetic field
• We use linear response 
approximation w.r.t. 
magnetic field

Measuring the CSE



Numerical results

High T,
Small μ

Disconnected 
contribution



Numerical results

Critical T,
Large μ

Disconnected 
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Numerical results

Low T,
Small μ

Disconnected 
contribution



Numerical results

Critical T,
Large μ

Disconnected 
contribution



σCSE vs temperature, low μ

Significant 
suppression 
towards low 
temperatures! 

Rescaled 
charge 
density



σCSE vs temperature, medium μ

Data moving 
closer to the free 
fermion results 

Rescaled 
charge 
density
(same coefficient)



σCSE vs temperature, large μ

Data quite close 
to the free 
fermion results 



Describing CSE suppression
• ChPT result for flavor-non-singlet axial current 

[Avdoshkin,Sadofyev,Zakharov’ 1712.01256]:
• We work with flavor-singlet axial current, has 

different status in ChPT
• Singlet and non-singlet currents become 

similar at large Nc
• Phenomenological formula works well in the 

low-T, low-μ regime even for singlet axial 
current in SU(2) gauge theory

Disconnected 
contribution appears 
to be small!



Kondo effect in non-Abelian gauge theory

• Suppression of an interesting effect feels somewhat 
unfortunate…

• Is there something that can enhance the CSE?

• Yes, QCD Kondo Effect [Suenaga et al., 2012.15173]



Kondo effect in non-Abelian gauge theory
• Kondo effect: scattering of light fermion near a Fermi 
surface off a heavy fermion of mass M enhanced as log(M)

• Mean-field approach for QCD [Yasui,Suzuki,Itakura, 1604.07208]: 
spontaneous emergence of Kondo condensate

• Suppresses low-T, finite-μ conductivity [Yasui,Ozaki, 1710.03434]

• But… CSE is enhanced [Suenaga,Araki,Suzuki,Yasui, 2012.15173]

• We only consider CSE of light quarks



Numerical results for CSE in 
Nf=2+1 SU(2) LGT

--- mQ = 0.2
--- mQ = 0.5
--- mQ = 1.0
--- mQ = +∞

• Lt=20, low-
temperature 
regime

• CSE enhanced 
by more than 
30% for
mQ=0.2 a



Numerical results for CSE in 
Nf=2+1 SU(2) LGT

--- mQ = 0.2
--- mQ = 0.5
--- mQ = 1.0
--- mQ = +∞

• Lt=18, a bit 
higher 
temperature

• Enhancement not 
so large

• Not a conventional 
Kondo, Fermi 
surface not well-
defined



Conclusions

• CSE close to  free-quark result at high temperatures and/or high densities
• Significant suppression at low temperatures and low densities
• σCSE approximately proportional to charge density rather than chemical 

potential
• Similar to ChPT calculation of [Avdoshkin,Sadofyev,Zakharov’ 1712.01256] 

for axial non-flavor-singlet current, although non-singlet and singlet axial 
currents are physically quite different

• CSE can be enhanced in the presence of additional fermion flavors –
signature of Kondo effect

• Next step: conductivity at finite density with heavy quarks 


