Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia

Yuki Fujimoto

The University of Tokyo

Reference:
Y. Fujimoto, K. Fukushima, Y. Hidaka,"Deconfining Phase Boundary of Rapidly

Rotating Hot and Dense Matter and Analysis of Moment of Inertia,"
Phys. Lett. B 816 (2021) 136184, arXiv:2101.09173 [hep-ph].

Rotating quark-gluon matter

Non-central heavy-ion collisions:

Global \wedge polarization

Experimental estimate (global Λ polarization):

parity-violating weak decay of Λs

$$
\Lambda \rightarrow p+\pi^{-}
$$

(BR: 63.9\%, c $\tau \sim 7.9 \mathrm{~cm}$)

Figure taken from T. Niida's slide

predicts roughly $\omega \sim 6 \mathrm{MeV}$

QCD phase diagram under rotation

Taken from: Baym,Hatsuda,Kojo,Powell,Song,Takatsuka (2017)

Chiral transition of rotating matter

NJL model analysis shows...

\uparrow Rotation suppresses the chiral condensate
More or less accepted consensus:
Critical temperature T_{c} drops with increasing ω

Deconfinement of rotating matter

Lattice formulation of imaginary rotation: Yamamoto,Hirono (2013) Braguta,Kotov,Kuznedelev,Roenko $(2020,21)$
Lattice result of the Polyakov loop in pure QCD
under imaginary rotation $\Omega_{I}=-i \omega$:

Deconfinement temperature T_{c} rises with increasing ω

$$
\frac{T_{c}\left(\Omega_{I}\right)}{T_{c}(0)}=1-C \Omega_{I}^{2}
$$

In tension with chiral transition!?

$$
=1+C \omega^{2}
$$

Deconfinement of rotating matter

Fujimoto,Fukushima,Hidaka (2021)

Our result based on the hadron resonance gas model:

Deconfinement temperature T_{c} drops
with increasing ω
See also: Holography approach: Chen,Zhang,Li,Hou,Huang (2020)
Compact QED approach: Cherdodub (2020) these works also give the same behavior as ours

Our phenomenological approach

Hadron resonance gas (HRG) model
total pressure: $\underset{\text { Only control parameter }(T, \mu) ;}{p(T, \mu)=} \sum_{i \sigma} p_{i}^{\text {ideal }}$
Parameter free (fixed by experiments)
Each particle's contribution is very small, but in total, it becomes big

$$
\begin{aligned}
p_{i}^{\mathrm{ideal}}= & \pm \frac{T}{8 \pi^{2}} \int d k_{r}^{2} \int d k_{z}\left(2 S_{i}+1\right) \\
& \times \log \left\{1 \pm \exp \left[-\frac{E_{k, i}-\mu_{i}}{T}\right]\right\}
\end{aligned}
$$

i : particle specie (e.g., $\pi, \mathrm{K}, \mathrm{p}, \mathrm{n}, \ldots$); $E_{k, i}=\sqrt{k^{2}+m_{i}^{2}}$

Rotating reference frame

General coordinate transformation:
$\bar{x}^{\mu}:$ non-rotating $\rightarrow x^{\mu}:$ rotating

$$
\begin{aligned}
& \bar{x} \rightarrow x=+\bar{x} \cos \omega t+\bar{y} \sin \omega t \\
& \bar{y} \rightarrow \begin{array}{l}
y=-\bar{x} \sin \omega t+\bar{y} \cos \omega t
\end{array} \\
& g_{\mu \nu}=\eta_{a b} \frac{\partial \bar{x}^{a}}{\partial x^{\mu}} \frac{\partial \bar{x}^{b}}{\partial x^{\nu}}=\left(\begin{array}{cccc}
1-\left(x^{2}+y^{2}\right) \omega^{2} & y \omega & -x \omega & 0 \\
y \omega & -1 & 0 & 0 \\
-x \omega & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Energy spectrum: $\varepsilon \rightarrow \varepsilon-(\ell+s) \omega$

$$
(s=-S,-S+1, \cdots, S-1, S \text { for spin- } S \text { particles })
$$

Rotating hadron resonance gas model

$$
\begin{gathered}
p(T, \mu, \omega)=\sum_{i} p_{i}^{\text {rot }} \\
p_{i}^{\mathrm{rot}}= \pm \frac{T}{8 \pi^{2}} \int_{\left(\Lambda_{\ell}^{\mathrm{IR})^{2}}\right.} d k_{r}^{2} \int d k_{z} \sum_{\ell=-\infty}^{\infty} \sum_{\nu=\ell}^{\ell+2 S_{i}} J_{\nu}^{2}\left(k_{r} r\right) \\
\times \log \left\{1 \pm \exp \left[-\frac{\left.E_{k, i}-\left(\ell+S_{i}\right) \omega\right)-\mu_{i}}{T}\right]\right\} \begin{array}{c}
k_{r} \geq \frac{\xi_{\ell, 1}}{R} \\
\text { momentum discretization }
\end{array} \\
R \omega \leq 1 \\
\Lambda_{\ell}^{\mathrm{IR}}=\xi_{\ell, 1} \omega
\end{gathered}
$$

Compare with non rotating expression:

$$
\begin{aligned}
p_{i}^{\text {ideal }}= & \pm \frac{T}{8 \pi^{2}} \int d k_{r}^{2} \int d k_{z}\left(2 S_{i}+1\right) \\
& \times \log \left\{1 \pm \exp \left[-\frac{E_{k, i}-\mu_{i}}{T}\right]\right\}
\end{aligned}
$$

HRG model is purely hadronic model, but how can it capture the deconfinement of quarks?

Deconfinement in hadron resonance gas

HRG blow up \rightarrow Signal for deconfinement

Taken from: Baym,Hatsuda,Kojo,Powell,Song,Takatsuka (2017)

Deconfinement in hadron resonance gas

$$
Z=N \int d m \rho(m) e^{-m / T}, \quad \rho(m) \propto e^{m / T_{\mathrm{H}}}
$$

T_{H} : Hagedorn's limiting temeperature
hadron mass spectrum:

Our criterion of deconfinement

For each given (μ, ω), we identify T that satisfies the following condition as T_{c} :

$$
\left.\begin{array}{l}
\frac{p}{p_{\mathrm{SB}}}(T
\end{array} \quad=T_{c}, \mu, \omega\right)=0.18 \text {. } \quad \begin{aligned}
& \quad p_{\mathrm{SB}} \equiv\left(N_{c}^{2}-1\right) p_{\text {gluon }}+N_{c} N_{f}\left(p_{\text {quark }}+p_{\text {antiquark }}\right)
\end{aligned}
$$

p / p_{SB}

Deconfining boundary

Fujimoto,Fukushima,Hidaka (2021)

Deconfinement temperature T_{c} drops with increasing ω

Radial dependence of pressure

$$
\begin{aligned}
& p_{i}^{\mathrm{rot}}= \pm \frac{T}{8 \pi^{2}} \int d k_{r}^{2} \int d k_{z} \sum_{\ell=-\infty}^{\infty} \sum_{\nu=\ell}^{\ell+2 S} J_{\nu}^{2}\left(k_{r} r\right) \text { this } r \text {-dependence leads to } \\
& r \text {-dependent pressure } \\
& \times \log \left\{1 \pm \exp \left[-\frac{E_{k, i}-\left(\ell+S_{i}\right) \omega-\mu_{i}}{T}\right]\right\}
\end{aligned}
$$

Radial dependence of pressure

$$
\sigma=3.21 \stackrel{\sigma \text { can be read off from the plot }}{\longleftarrow} \Delta p(r) \simeq \frac{\sigma}{2} T^{4} r^{2} \omega^{2}
$$

$$
\begin{gathered}
\text { Thermal d.o.f.: } \quad\left(\sigma=\frac{2 \pi^{2} \nu}{45}\right) \\
\nu \simeq 7
\end{gathered}
$$

larger than pion gas, but smaller than QGP \rightarrow crossover region ${ }_{16}$

Radial dependence of pressure

centrifugal force vs pressure gradient

larger pressure outside
\rightarrow smaller free energy outside
\rightarrow Poyakov loop becomes
$e^{-f_{q} / T}=\left\langle\mathscr{P} e^{i g \int d x_{4} A_{4}}\right\rangle \quad$ larger outside

Summary

- Estimated the rotation effect on the deconfinement transition in QCD:
the critical temperature T_{c} drops with increasing rotation
- We used the Hadron Resonance Gas model: a phenomenological and parameter-free approach
- Still there is a tension between our and the lattice result; We are looking for the thermodynamics at finite rotation on lattice.
- Radial dependent pressure may be interesting to see in the future analysis. Also, HRG only for gluonic sector?

