Anomalies for anomalous symmetries

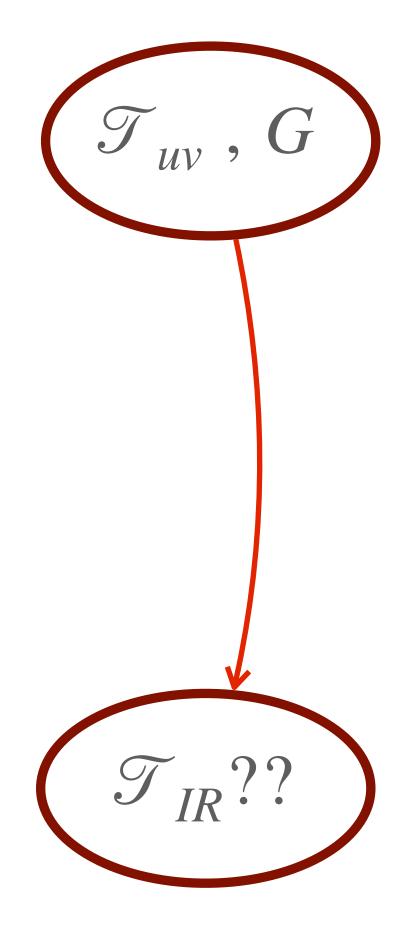
Avner Karasik Cambridge university

Based on 2110.06364

Hard problems of hadron physics: Non-perturbation QCD & related quests Rigorous results in gauge QFT

Anomalies

 't-Hooft anomaly matching conditions is one of the most important theoretical tools in analysing strongly interacting QFTs



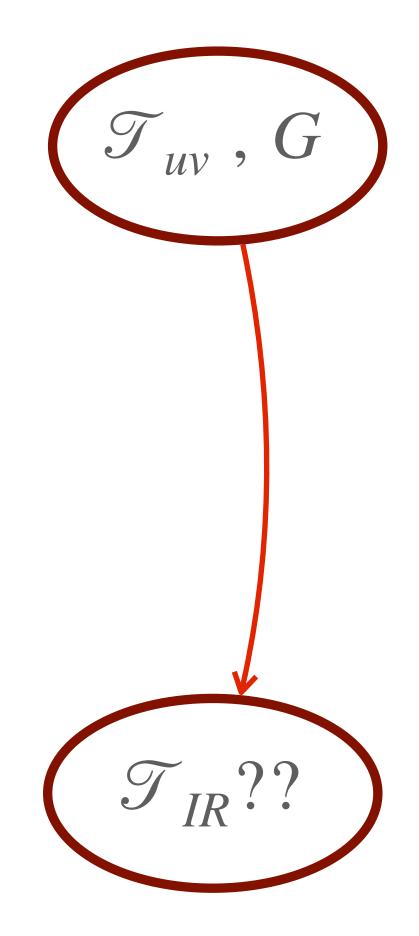
Anomalies

- 't-Hooft anomaly matching conditions is one of the most important theoretical tools in analysing strongly interacting QFTs
- Couple the symmetry G to background gauge fields A. Ο
- The partition function satisfies in general

$$\mathcal{Z}(A) \to \mathcal{Z}(A') =$$

This equation is RG invariant. In particular must be Ο satisfied by the low energy theory \mathcal{T}_{IR}

$$e^{iS(A)}\mathcal{Z}(A)$$



4d SU(N) gauge theories

- ^o Consider a theory $\mathcal{T}_{\mu\nu}$: SU(N) gauge theory + massless fermions
- Axial $U(1)_A \psi_i \to e^{iq_i\alpha}\psi_i$: not a symmetry of $\mathcal{T}_{\mu\nu}$

4d SU(N) gauge theories

- ^o Consider a theory $\mathcal{T}_{\mu\nu}$: SU(N) gauge theory + massless fermions
- Axial $U(1)_A \psi_i \to e^{iq_i \alpha} \psi_i$: not a symmetry of $\mathcal{T}_{\mu\nu}$

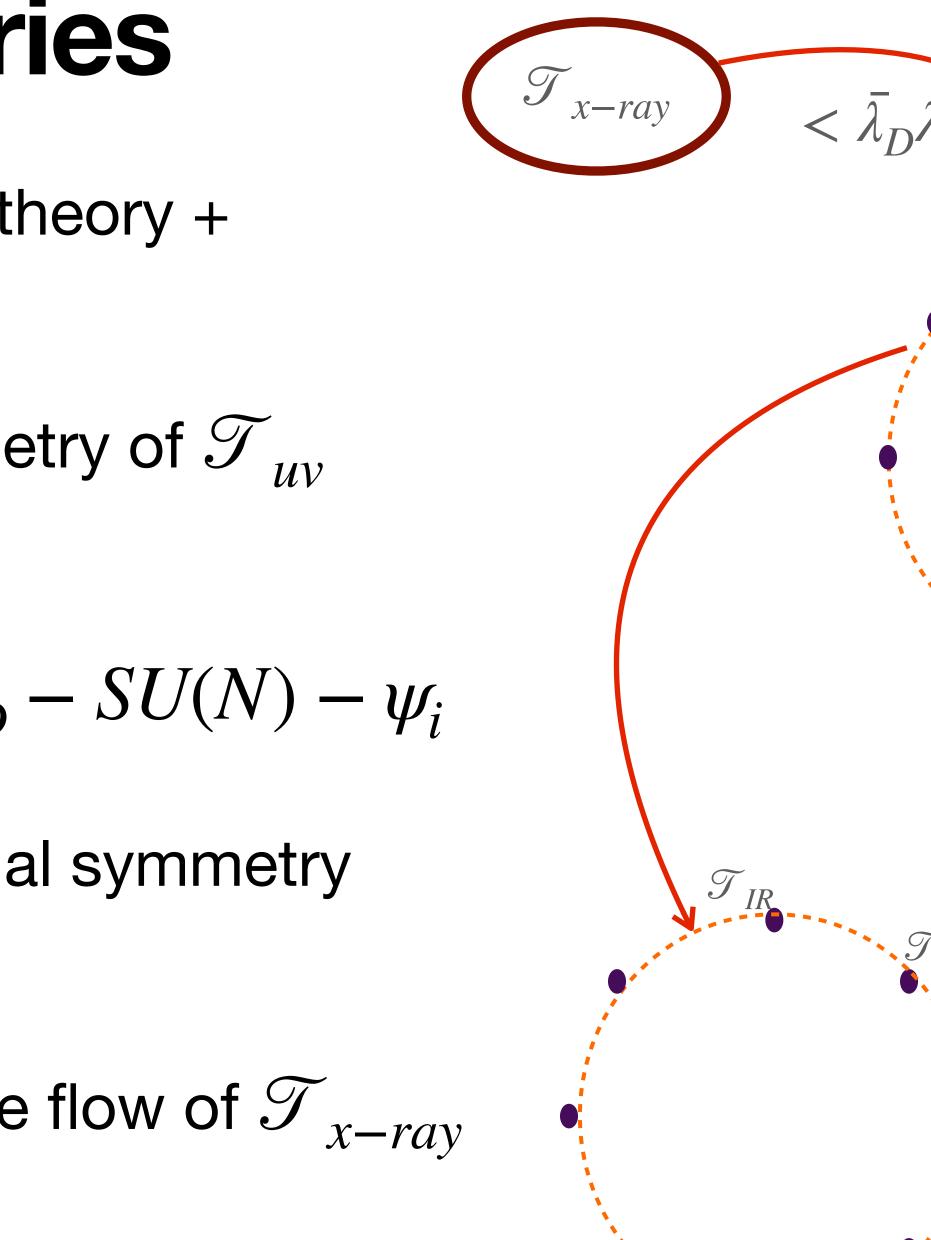
- Idea: define \mathcal{T}_{x-ray} : $SU(N-1) \lambda_D$
- \mathcal{T}_{x-rav} has an exact $\mathbb{Z}_N \subset U(1)_A$ axial symmetry with anomalies
- In the $\Lambda_{N-1} \gg \Lambda_N$ limit, can relate the flow of \mathcal{T}_{x-ray} to the flow of $\mathcal{T}_{\mu\nu} \to \mathcal{T}_{IR}$

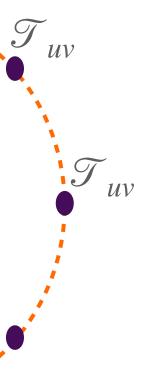
$$-SU(N) - \psi_i$$

4d SU(N) gauge theories

- $^{\rm O}$ Consider a theory \mathcal{T}_{uv} : SU(N) gauge theory + massless fermions
- Axial $U(1)_A \psi_i \to e^{iq_i \alpha} \psi_i$: not a symmetry of \mathcal{T}_{uv}

- Idea: define \mathcal{T}_{x-ray} : $SU(N-1) \lambda_D SU(N) \psi_i$
- \mathcal{T}_{x-ray} has an exact $\mathbb{Z}_N \subset U(1)_A$ axial symmetry with anomalies
- In the $\Lambda_{N-1} \gg \Lambda_N$ limit, can relate the flow of \mathcal{T}_{x-ray} to the flow of $\mathcal{T}_{uv} \to \mathcal{T}_{IR}$





What can we learn about \mathcal{T}_{IR} ?

- In the uv we are already in the \mathbb{Z}_N broken phase.
- There are 4 types of \mathbb{Z}_N anomalies in 4d:
 - 1. $\mathbb{Z}_N \times G^2$, G^2 3d anomaly
 - 2. $\mathbb{Z}_N \times G^2$, G^2 2d anomaly
 - 3. $\mathbb{Z}_N^2 \times G$
 - 4. \mathbb{Z}_N^3

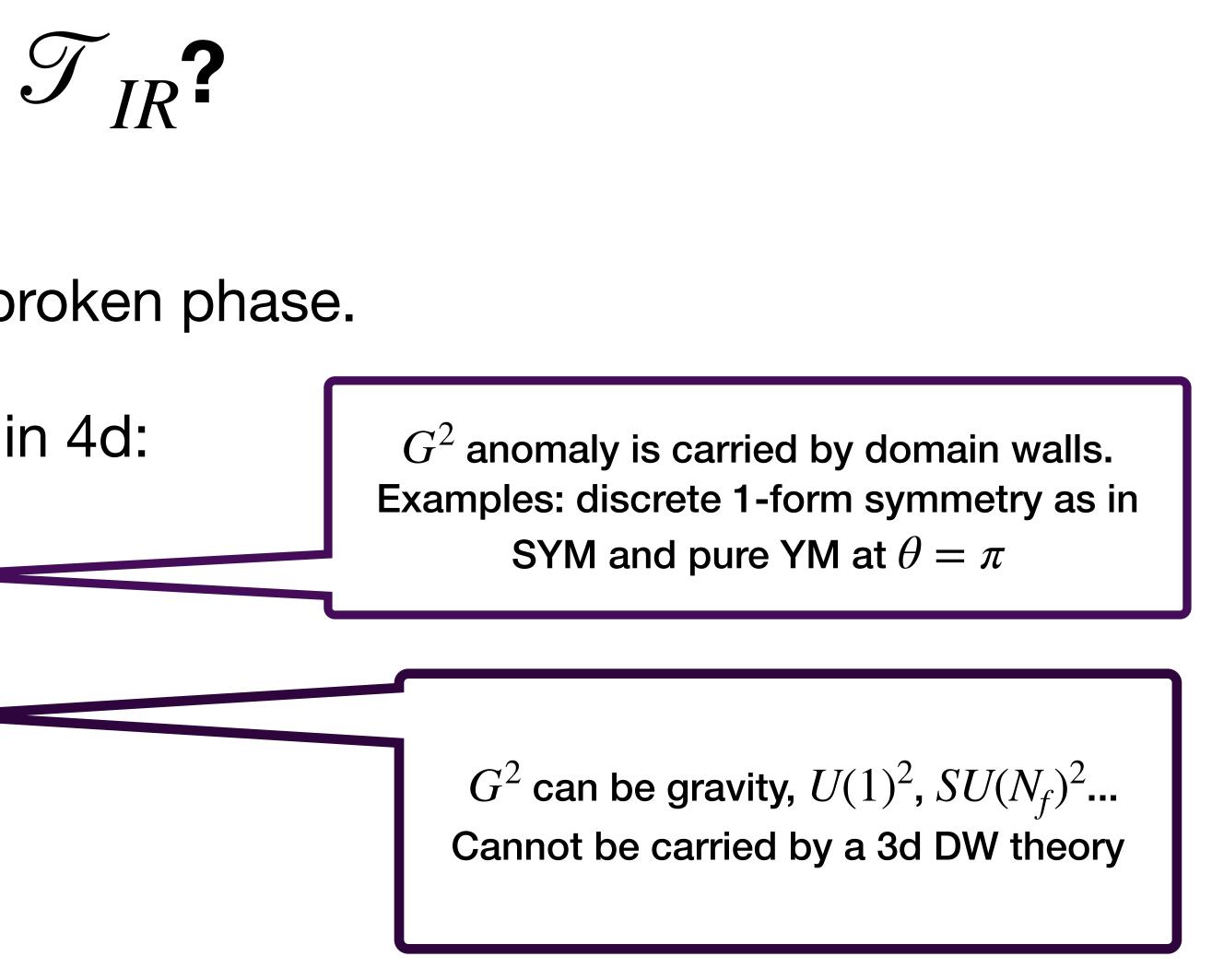
What can we learn about \mathcal{T}_{IR} ?

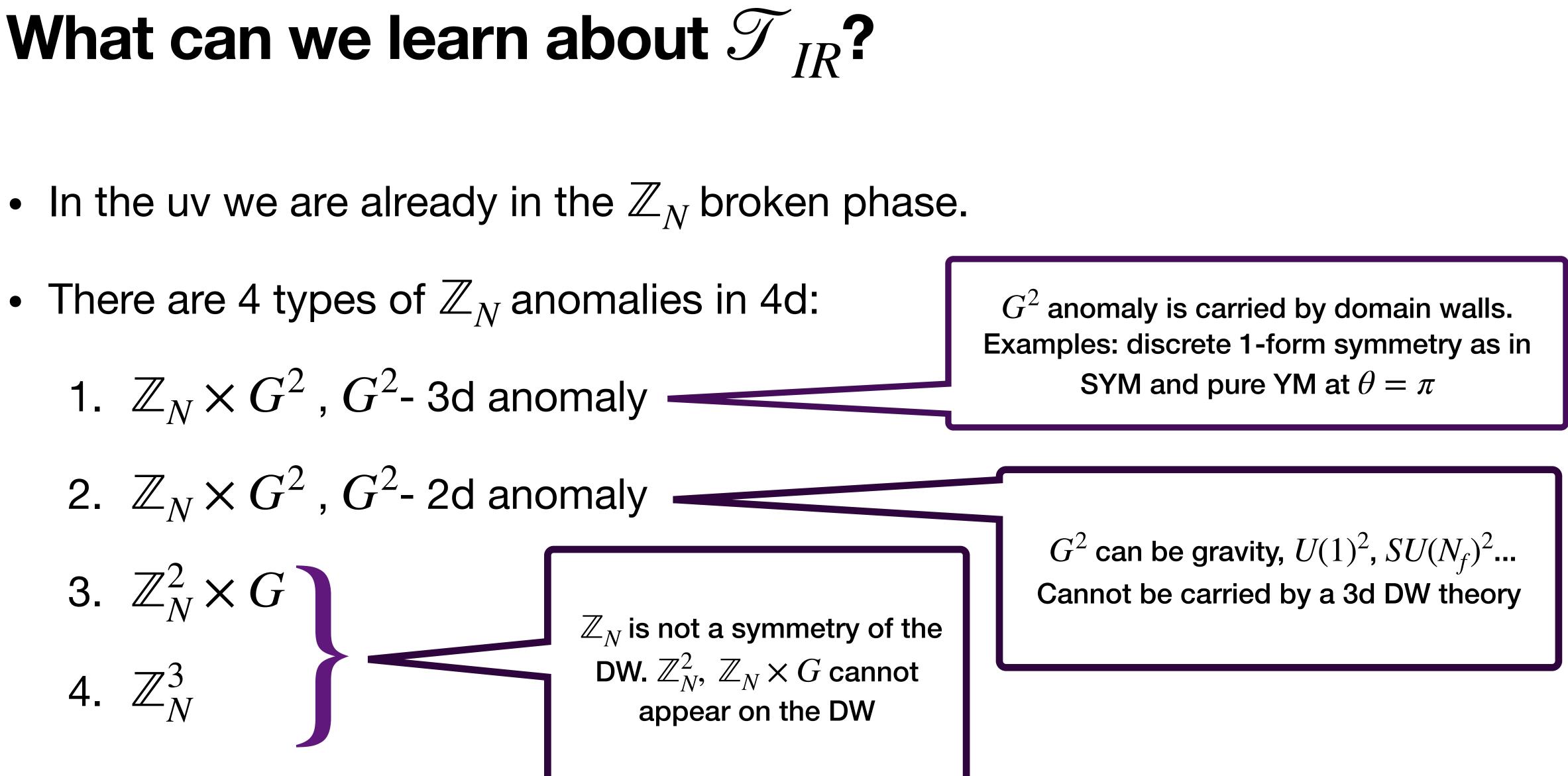
- In the uv we are already in the \mathbb{Z}_N broken phase.
- There are 4 types of \mathbb{Z}_N anomalies in 4d:
 - 1. $\mathbb{Z}_N \times G^2$, G^2 3d anomaly
 - 2. $\mathbb{Z}_N \times G^2$, G^2 2d anomaly
 - 3. $\mathbb{Z}_N^2 \times G$
 - 4. \mathbb{Z}_N^3

 G^2 anomaly is carried by domain walls. Examples: discrete 1-form symmetry as in SYM and pure YM at $\theta = \pi$

What can we learn about \mathcal{T}_{IR} ?

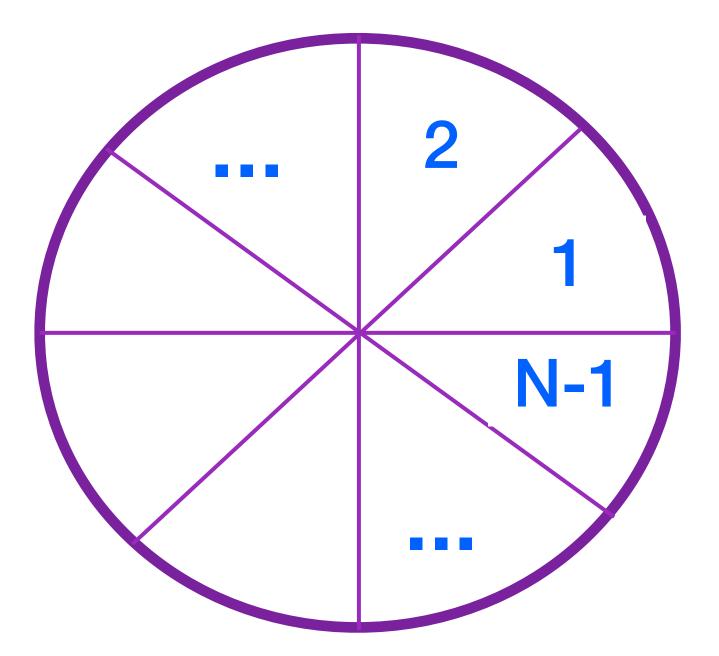
- In the uv we are already in the \mathbb{Z}_N broken phase.
- There are 4 types of \mathbb{Z}_N anomalies in 4d:
 - 1. $\mathbb{Z}_N \times G^2$, G^2 3d anomaly
 - 2. $\mathbb{Z}_N \times G^2$, G^2 2d anomaly
 - 3. $\mathbb{Z}_N^2 \times G$
 - 4. \mathbb{Z}_N^3





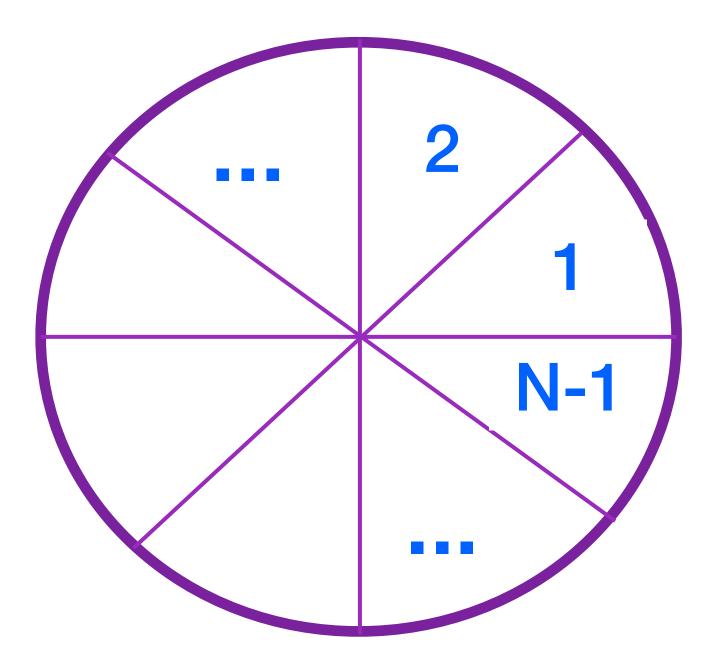
Domain walls junction

- The anomalies constrain the effective 2d theory on the junction
- ^o On the junction, the broken \mathbb{Z}_N symmetry is restored (and embedded inside a U(1))



Domain walls junction

- The anomalies constrain the effective 2d theory on the junction
- ^o On the junction, the broken \mathbb{Z}_N symmetry is restored (and embedded inside a U(1))



If we think of the \mathbb{Z}_N as coming from a broken U(1), the junction comes from a vortex-string. The anomalies are carried by it as in Callan-Harvey

 $\tilde{\psi}_{2d}$

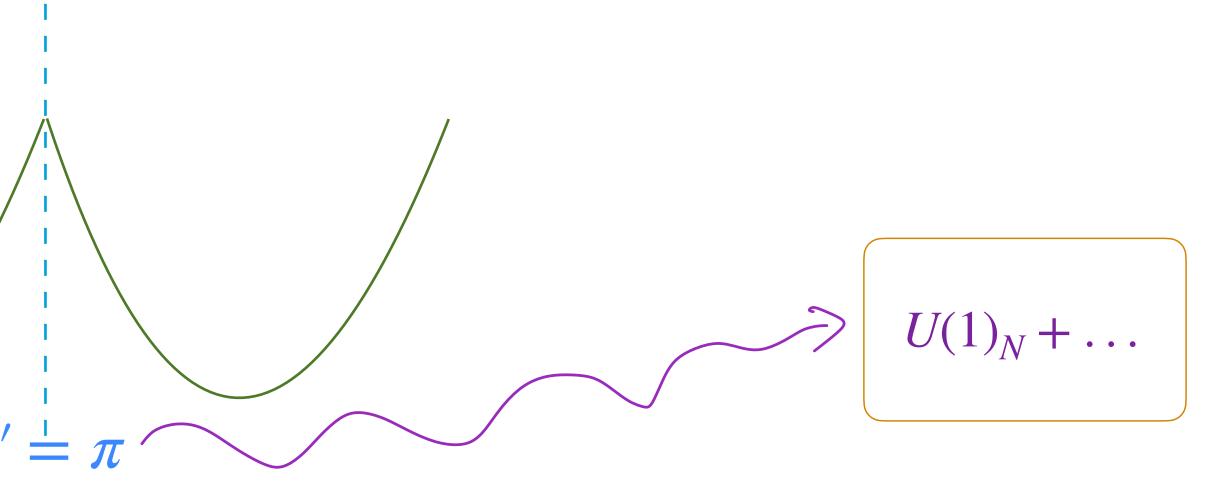
Example: $N_f = 1$ QCD

- ^o SU(N) + 1 massless fundamental Dirac fermion ψ
- ^o The only symmetry is $U(1)_{R} = U(1)_{V}/\mathbb{Z}_{N}$ which is anomaly free
- The low energy theory is expected to be trivially gapped. But that doesn't mean it is completely boring!

^o Assume $\langle \bar{\psi}\psi \rangle \neq 0$ and denote it's phase by $\eta' = -i log(\bar{\psi}\psi)$

Cusp

- Large N arguments show that there is a cusp at $\eta' = \pi$ (Witten, Veneziano, Di-Vecchia)
- For $N_f > 1$, there must be a cusp due to anomalies involving $\mathbb{Z}_{N_f} \subset SU(N_f)_L$
- The anomalies constrain the effective 3d theory living on the cusp (related to the DW theory)
- ^o There are conjectures about the $N_f = 1$ cusp and domain walls (Gaiotto, Komargodski, Seiberg)



Baryons

- $\ln N_f > 1$ QCD, there is a mixed $U(1)_f$
- Baryons must be part of the low energy effective theory!
- One consequence of the anomaly: A background with $\frac{1}{8\pi^2} \int_{space} tr\left(A_L \wedge dA_L \frac{2i}{3}A_L^3\right) = 1$ has baryon charge 1
- ^o To see it, plug in $dUU^{\dagger} = iA_L$ and get exactly the skyrmion number
- ^o There are conjectures about the $N_f = 1$ baryons (Komargodski; AK)

$$_B \times SU(N_f)_L^2$$
 anomaly

$$\frac{1}{24\pi^2} \int tr \left(dUU^{\dagger} \right)^3 = 1 \text{ which is}$$

 $(\mathbb{Z}_N)_L$ anomalies for $N_f = 1$ QCD

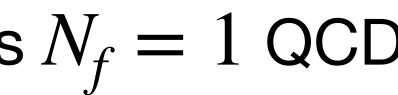
- Define \mathcal{T}_{x-rav} as an $SU(N-1) \times SU(N)$ gauge theory with λ in the $(\Box, \overline{\Box})$ and ψ in the $(1, \Box)$.
- There is a $\mathbb{Z}_N \times \frac{U(1)_{\psi}}{\mathbb{Z}_N} \times \frac{U(1)_{\lambda}}{\mathbb{Z}_{N-1}}$ anomaly

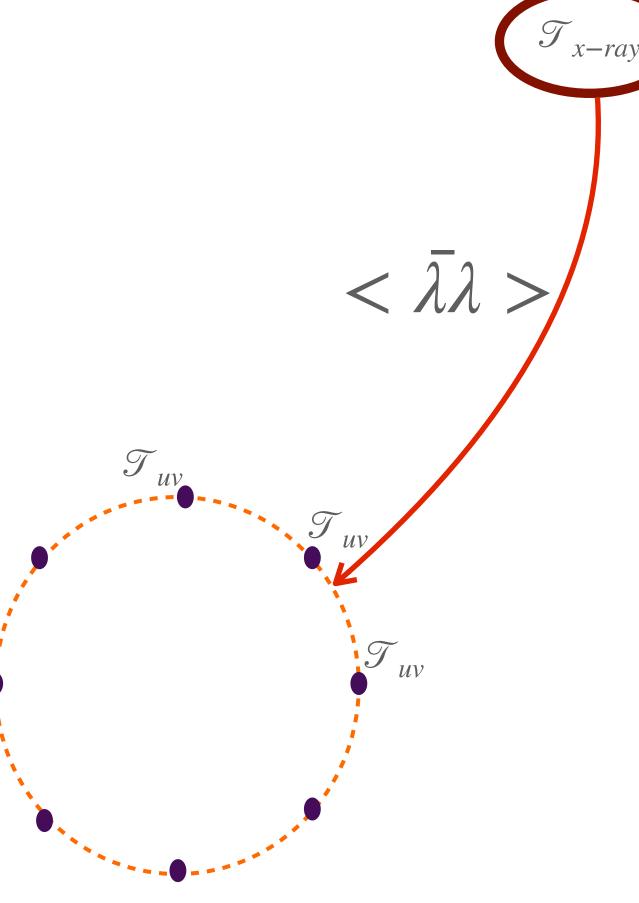
Symmetries: $U(1)_{\psi}: \ \psi \to e^{i\alpha}\psi, \ \lambda \to e^{i\alpha}\lambda$ $U(1)_{\lambda}: \psi \to \psi, \lambda \to e^{i\beta}\lambda$ $(\mathbb{Z}_N)_L: \ \psi_L \to e^{\frac{2\pi i}{N}}\psi_L \ , \ \lambda_L \to e^{\frac{2\pi i}{N}}\lambda_L$

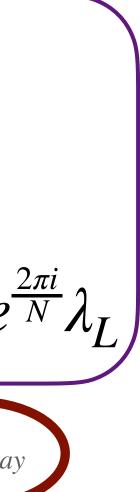
 $(\mathbb{Z}_N)_L$ anomalies for $N_f = 1$ QCD

- Define \mathcal{T}_{x-rav} as an $SU(N-1) \times SU(N)$ gauge theory with λ in the $(\Box, \overline{\Box})$ and ψ in the $(1, \Box)$.
- There is a $\mathbb{Z}_N \times \frac{U(1)_{\psi}}{\mathbb{Z}_N} \times \frac{U(1)_{\lambda}}{\mathbb{Z}_{N-1}}$ anomaly
- ^o At energies $\Lambda_N \ll E \ll \Lambda_{N-1}$, there are k-Vacua: $< \overline{\lambda} \lambda > \sim \rho^{\frac{2\pi i k}{N}}$
- ^o The choice of vacuum breaks $(\mathbb{Z}_N)_L$
- The effective theory at each vacuum is $N_f = 1$ QCD

Symmetries: $U(1)_{\psi}: \ \psi \to e^{i\alpha}\psi, \ \lambda \to e^{i\alpha}\lambda$ $\begin{bmatrix} U(1)_{\lambda} : & \psi \to \psi, \ \lambda \to e^{i\beta} \lambda \\ (\mathbb{Z}_N)_L : & \psi_L \to e^{\frac{2\pi i}{N}} \psi_L, \ \lambda_L \to e^{\frac{2\pi i}{N}} \lambda_L \end{bmatrix}$



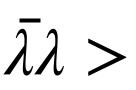


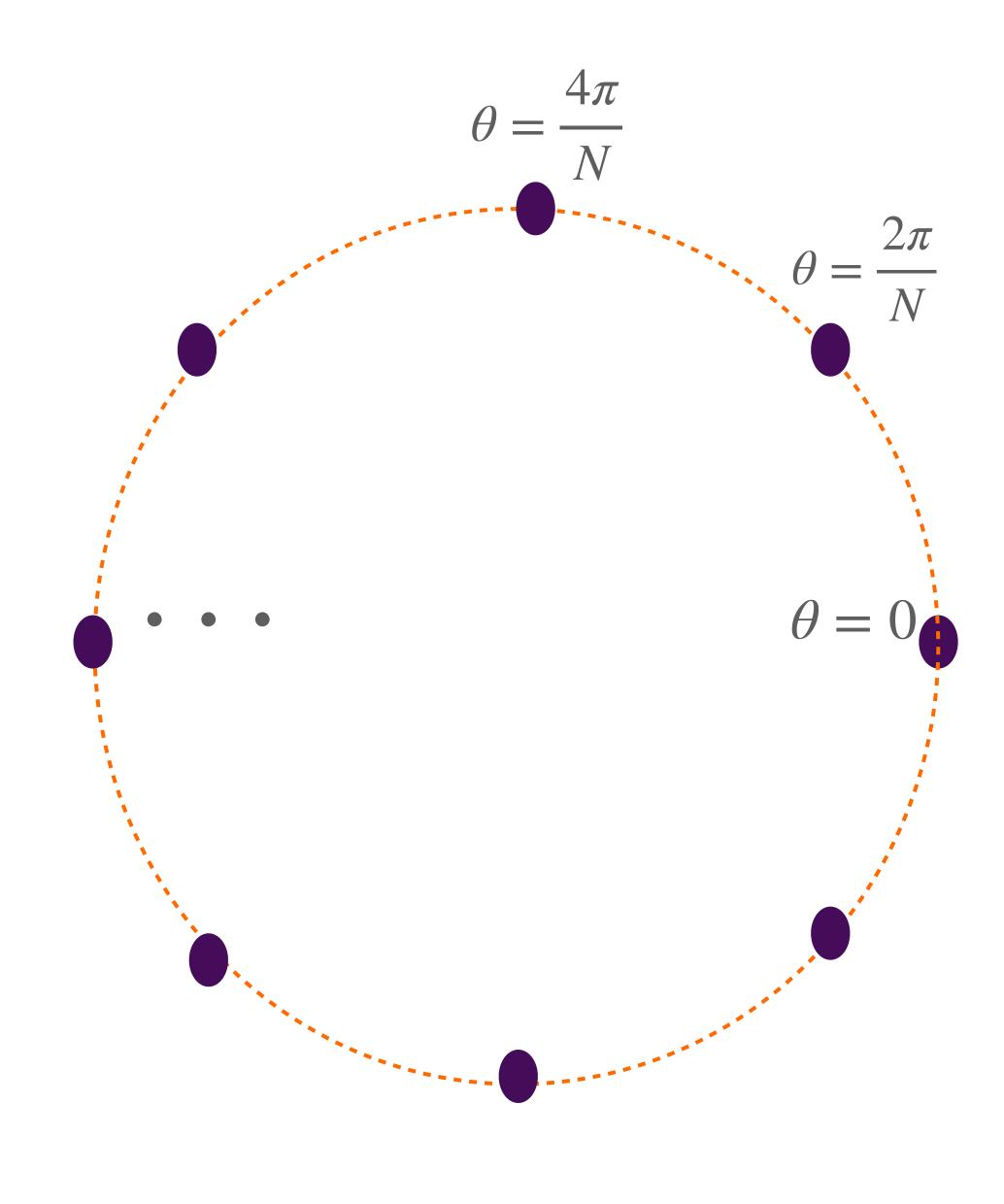


$(\mathbb{Z}_N)_L$ anomalies for $N_f = 1$ QCD

- ^o Some of the anomaly is carried by the $<\lambda\lambda>$ condensate, some is carried by ψ : $S_{anomaly} = S_{\lambda} + S_{\psi}$
- S_{ψ} should be carried by the $\langle \bar{\psi}\psi \rangle$ condensate in the IR.

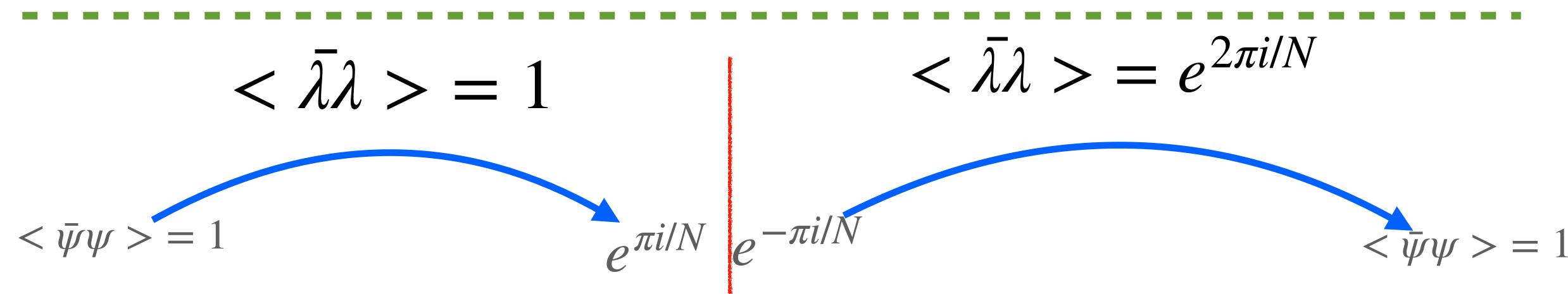
•
$$S_{\psi}$$
 includes $(\mathbb{Z}_N)_L \times \left(\frac{U(1)_{\psi}}{\mathbb{Z}_N}\right)^2$ and $(\mathbb{Z}_N)_L^2 \times \frac{U(1)_{\psi}}{\mathbb{Z}_N}$

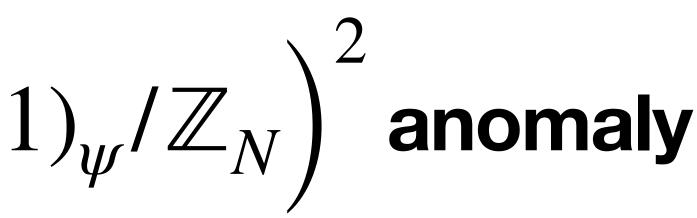




The cusp and the $(\mathbb{Z}_N)_L \times \left(U(1)_{\psi} / \mathbb{Z}_N \right)^2$ anomaly

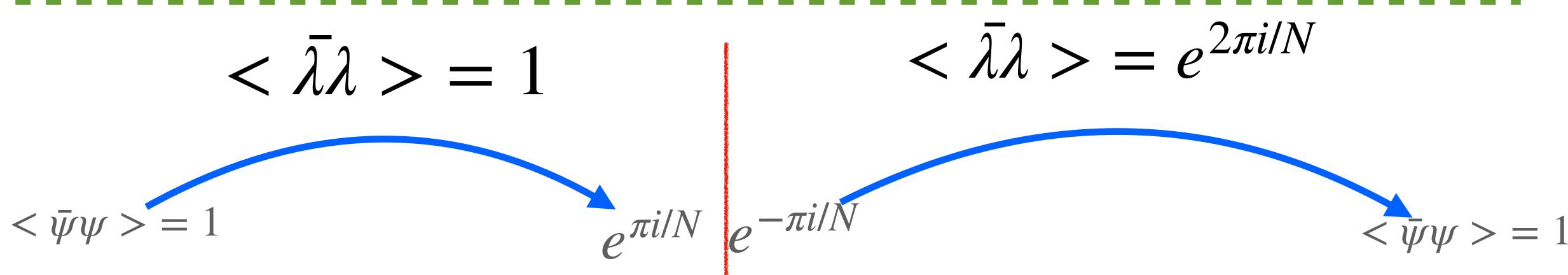
- There is no such anomaly in the "x-ray". In the uv, the contribution from $< \overline{\lambda} \lambda >$ is cancelled by an opposite contribution from ψ
- ^o In the IR, the contribution from $< \lambda \lambda >$ must be cancelled by $\langle \bar{\psi}\psi \rangle$.





The cusp and the $(\mathbb{Z}_N)_L \times \left(U(1)_{\psi} / \mathbb{Z}_N \right)^2$ anomaly

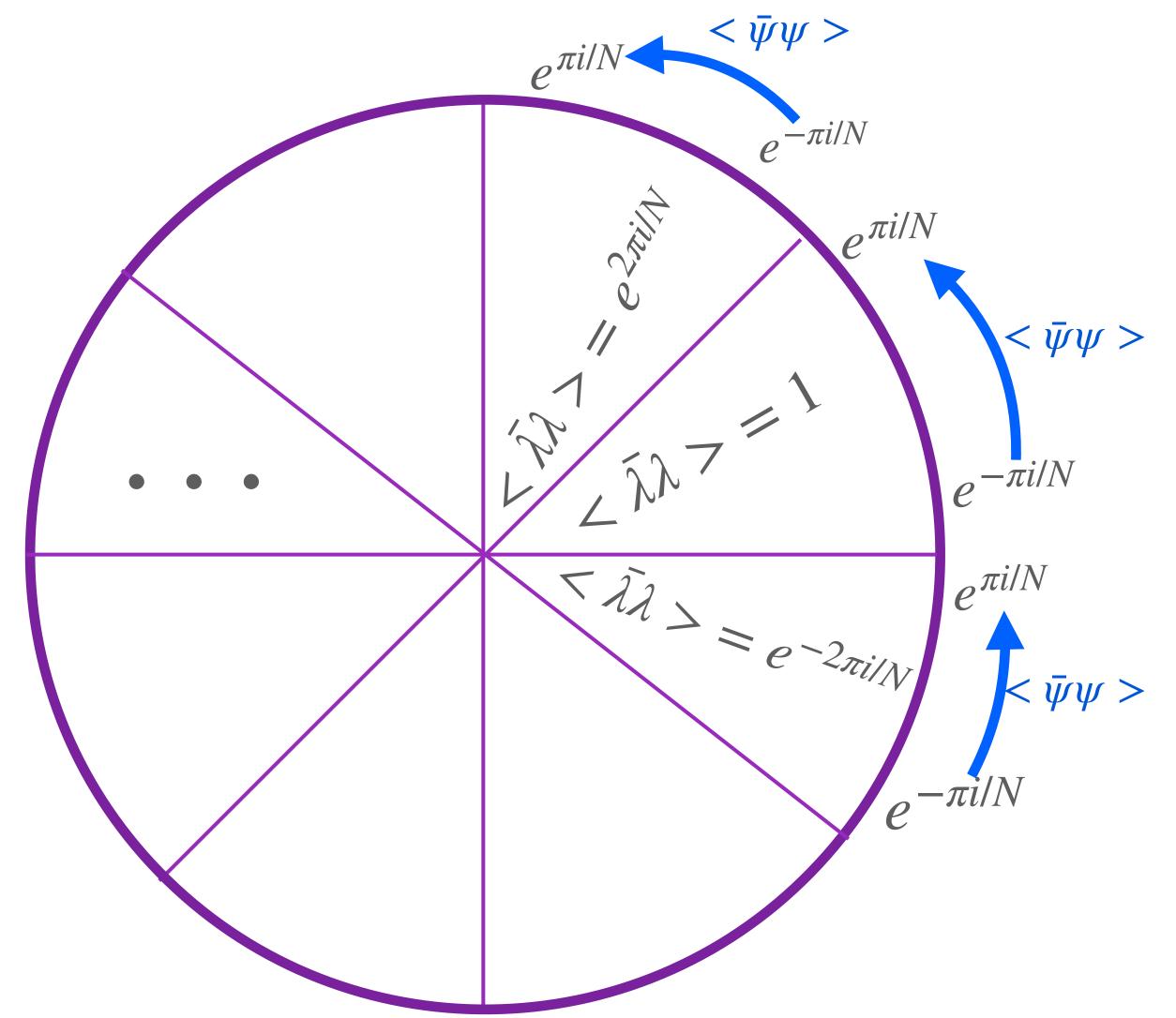
- There is no such anomaly in the "x-ray". In the uv, the contribution from $< \lambda \lambda >$ is cancelled by an opposite contribution from ψ
- ^o In the IR, the contribution from $< \lambda \bar{\lambda} >$ must be cancelled by $\langle \bar{\psi}\psi \rangle$.



- This fixes the coupling of η' to $U(1)_w$ gauge field $-\frac{1}{8\pi^2 N}\eta' dA_{\psi} \wedge dA_{\psi}$
- ^o The potential for η' cannot be smooth. A cusp with $U(1)_N$ CS can do the job

$N_f = 1$ baryons and the $(\mathbb{Z}_N)_L^2 \times U(1)_{\psi}/\mathbb{Z}_N$ anomaly

On the junction, $(\mathbb{Z}_N)_L$ is restored and enhanced to a U(1)



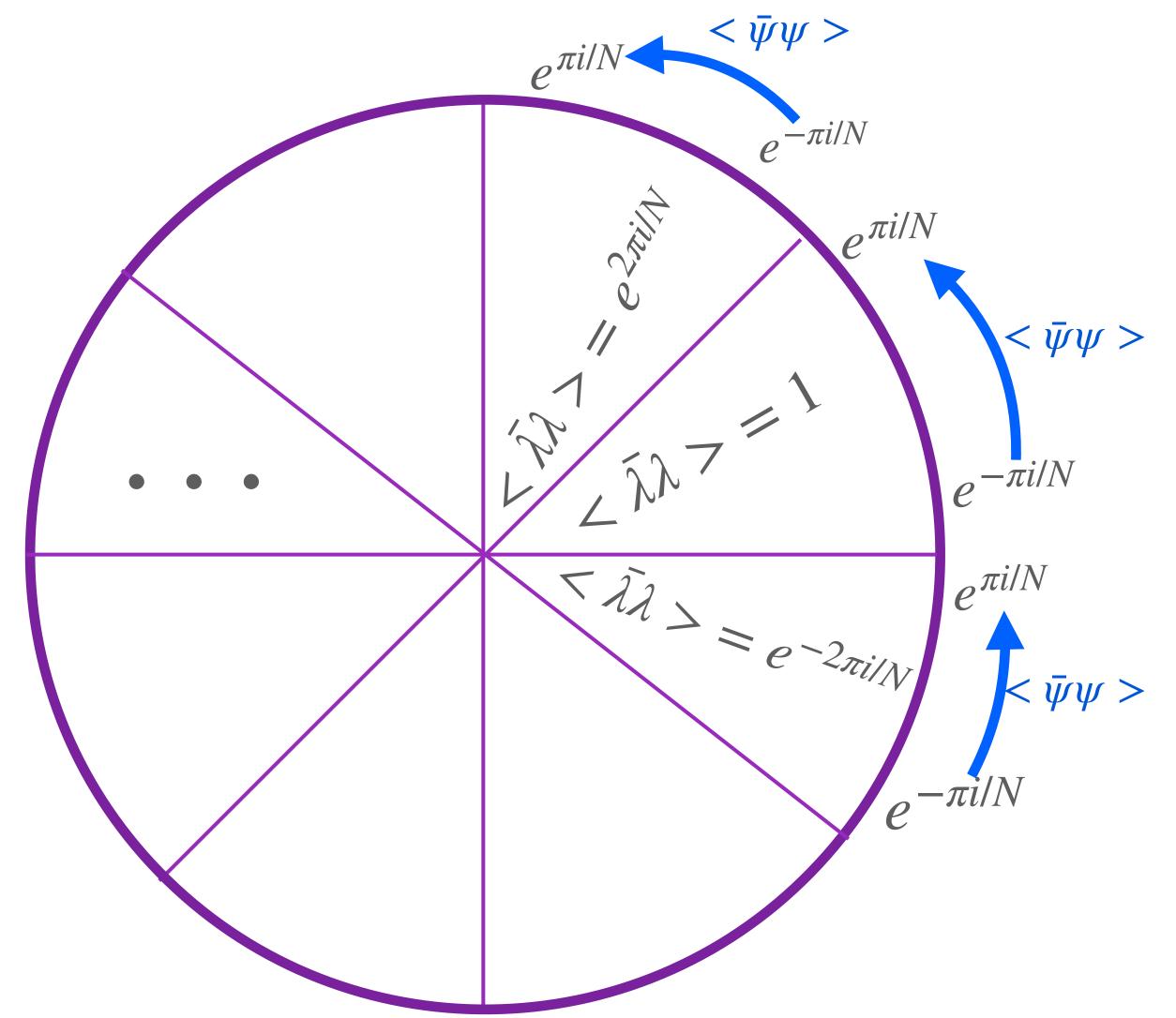
$N_f = 1$ baryons and the $(\mathbb{Z}_N)_L^2 \times U(1)_w / \mathbb{Z}_N$ anomaly

On the junction, $(\mathbb{Z}_N)_L$ is restored and enhanced to a U(1)

 $\tilde{\psi}_{2d}$

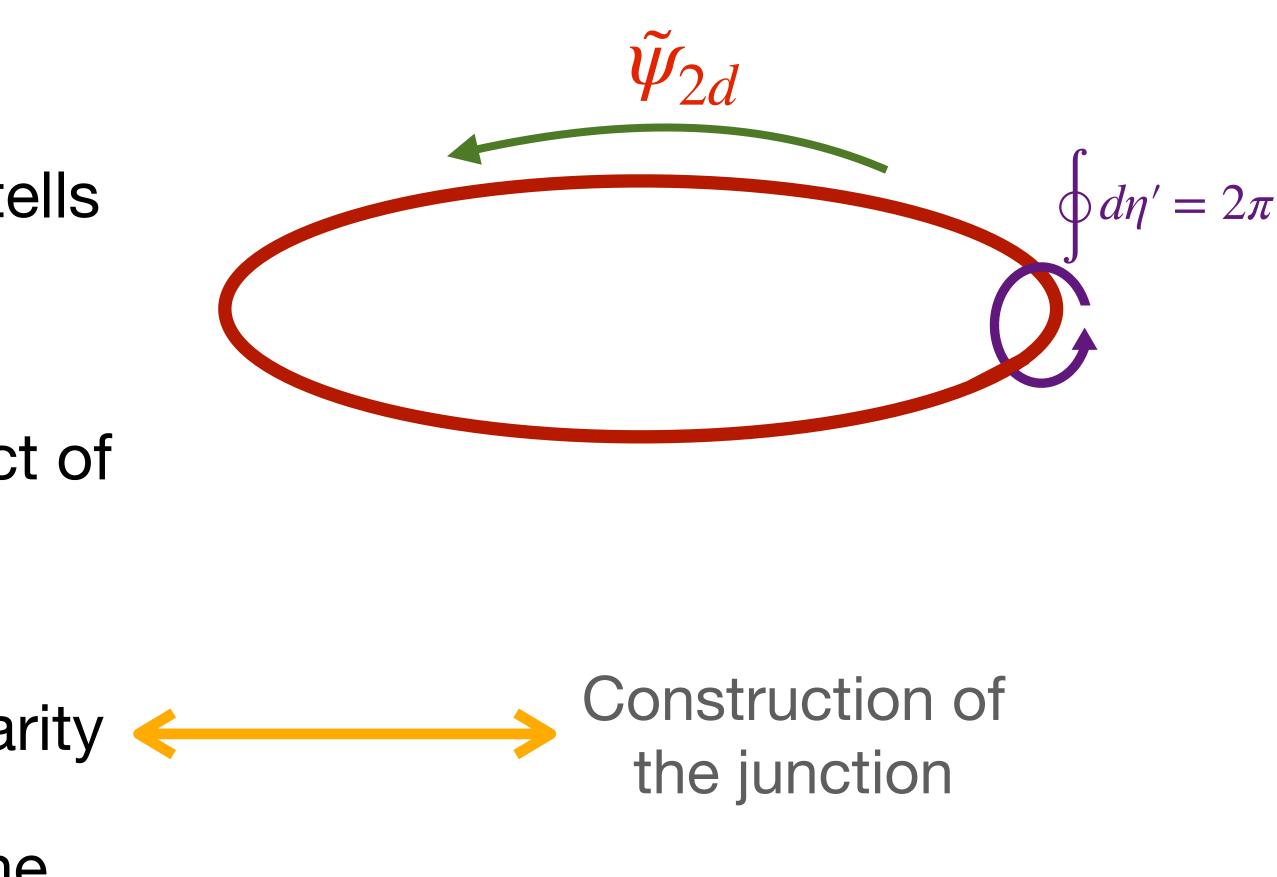
The 2d theory on the junction should carry the $(\mathbb{Z}_N)_L \times U(1)_w / \mathbb{Z}_N$

anomaly



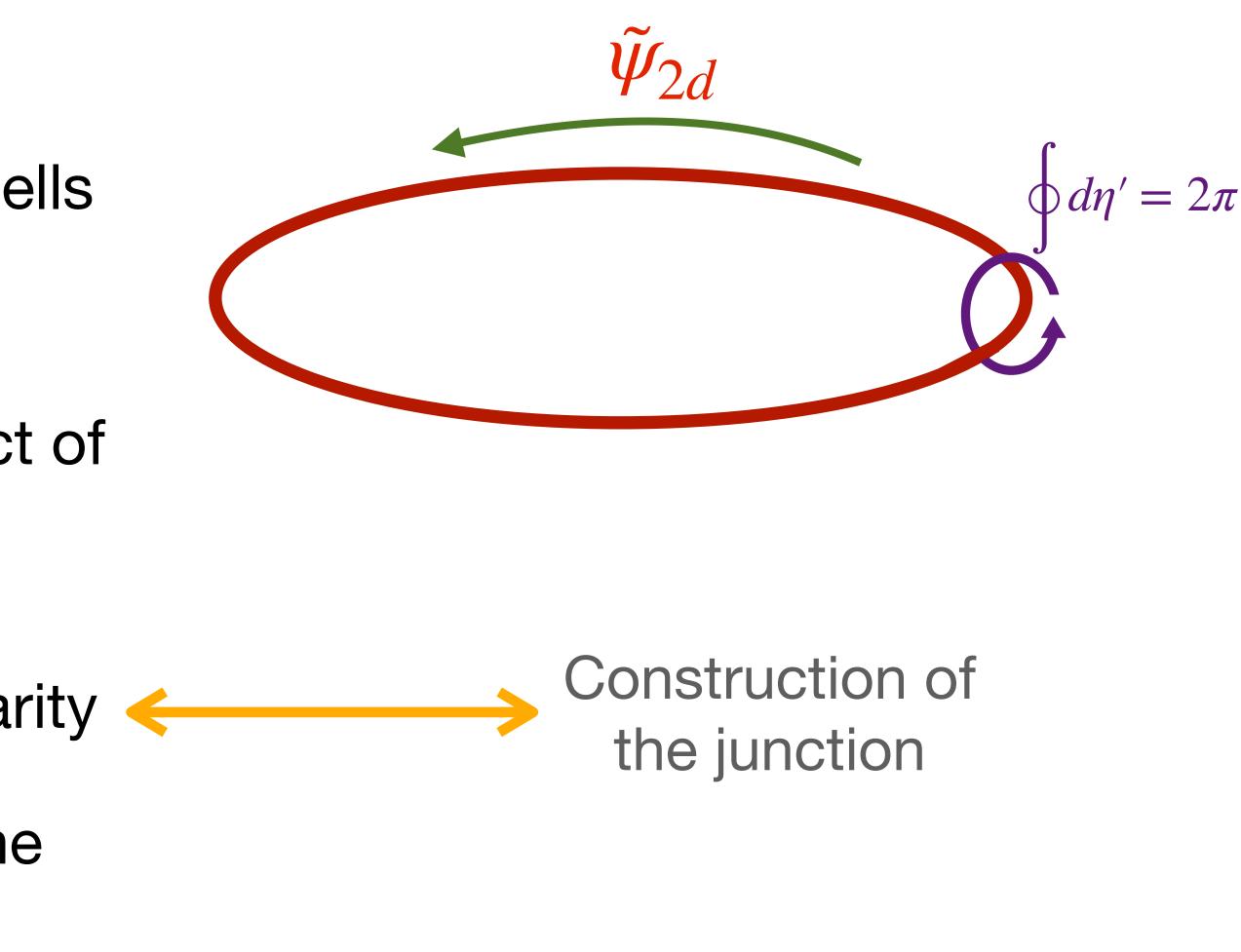
The $N_f = 1$ baryon

- Similar to $N_f > 1$ QCD, the anomaly tells you how to construct a baryon.
- $\frac{1}{8\pi^2} \left| A_L \wedge dA_L = 1 \text{ requires the product of} \right|$ two orthogonal windings:
- 1. The winding of η' around the singularity \leq
- 2. The winding of the 2d mode along the singularity



The $N_f = 1$ baryon

- Similar to $N_f > 1$ QCD, the anomaly tells you how to construct a baryon.
- $\frac{1}{8\pi^2} \left| A_L \wedge dA_L = 1 \text{ requires the product of} \right|$ two orthogonal windings:
- The winding of η' around the singularity \leq
- 2. The winding of the 2d mode along the singularity



This is equivalent to the proposal for baryons made by Komargodski!

Summary

- Many known/conjectured results about $N_f = 1$ QCD can be made rigorous and get a kinematic explanation.
- The same method can be used to many other theories.
- Can be used to predict IR phases
- "X-ray" embedding for other non-symmetry transformations? Other space time dimensions?
- Thank you very much!