Chiral symmetry restoration with three chiral partners

Juan Torres-Rincon (Goethe University Frankfurt)

XXXIII International (ONLINE) Workshop on High Energy Physics Logunov Institute for High Energy Physics (Protvino, Russia) Nov. 12, 2021

- Introduction: Thermal restoration of chiral symmetry
- **Two chiral partners:** Nambu–Jona-Lasinio model
 - Three chiral companions: Covariant chiral EFT
- Conclusions

Introduction

Hohler, Rapp, PLB 731 (2014) 103

~ ~ ~

Nambu-Jona-Lasinio model

Effective Lagrangian

$$\begin{split} \mathcal{L}_{NJL} &= \sum_{l=u,d} \bar{\psi}_l (i \not\!\!D - m_{0l}) \psi_l \\ &+ \mathcal{G} \sum_a \sum_{ijkl} \left[(\bar{\psi}_i \ i \gamma_5 \tau^a_{ij} \psi_j) \ (\bar{\psi}_k \ i \gamma_5 \tau^a_{kl} \psi_l) + (\bar{\psi}_i \mathbb{I} \tau^a_{ij} \psi_j) \ (\bar{\psi}_k \mathbb{I} \tau^a_{kl} \psi_l) \right] \end{split}$$

- Incorporates spontaneous chiral symmetry breaking and thermal restoration
- Local interaction with coupling \mathcal{G}
- Vertices in the scalar (I) and pseudoscalar ($i\gamma_5$) channels
- No mesons as fundamental degrees of freedom!

$\bar{q}q$ scattering

G is used in a Bethe-Salpeter approach

$\mathcal{T}(\boldsymbol{\rho}) = \mathcal{G} + \mathcal{G} \, \Pi(\boldsymbol{\rho}) \, \mathcal{T}(\boldsymbol{\rho})$

Scattering amplitude

$$\mathcal{T}(p) = \frac{\mathcal{G}}{1 - \mathcal{G} \Pi(p)}$$

Polarization function at finite temperature T

Generated mesons

Parameter set: Blaschke et al. Annals Phys. 348 (2014) 228

- Usual extraction of meson masses based on quasiparticle approximation, or neglecting imaginary part of resonance
- However...no pole in 1st Riemann Surface above Mott temperature!

Generated mesons

Parameter set: Blaschke et al. Annals Phys. 348 (2014) 228

Analytic continuation above Mott temperature $\Pi^{\prime\prime}(z,\mathbf{p},T) = \Pi^{\prime}(z,\mathbf{p},T) - 2i \operatorname{Im}\Pi^{\prime}(z,\mathbf{p};T) \qquad \operatorname{Re} z > 2m_q(T)$

Chiral partners and symmetry restoration

Another example: SU_f(3) Polyakov–NJL model \rightarrow JT-R, Symmetry 2021, 13(8), 1400

 \leftarrow Masses and decay widths become degenerate at $T > T_c$

Different models formulated with chiral partners of different nature: (JT-R, Symmetry 2021, 13(8), 1400)

$J^{\pi} = 0^+$	Fundamental d.o.f.	Dynamical d.o.f.
Fundamental d.o.f.	Linear σ model	
	-Coleman, Jackiw, Politzer, PRD (1974), 10, 2491	Chiral perturbation theory
	-Bochkarev, Kapusta, PRD (1996), 54, 4066	-Schenk, PRD (1993), 47, 5138
	-Dobado, Llanes-Estrada, JT-R,	-Toublan, PRD (1997) 56, 5629
	PRD (2009), 80, 114015	-Dobado et al., PRC (2002), 66, 055201
	Quark-meson model	-Gomez-Nicola et al.
	-Jungnickel, Wetterich, PRD (1996) 53, 5142	AIP Conf. Proc. 2003, 660, 156
	-Scavenius et al., PRC (2001) 64,045202	
	-Tripolt et al., PRD (2014) 89, 034010	
Dynamical d.o.f.		(Polyakov-)NJL model
		-Vogl, Weise,
		Prog. Part. Nucl. Phys. (1991) 27, 195
	-	-Klevansky, Rev. Mod. Phys. (1992) 64, 649
		-Ratti, Thaler, Weise, PRD (2006), 73, 014019
		-JT-R, Sintes, Aichelin, PRC (2015) 91, 065206

Different models formulated with chiral partners of different nature: (JT-R, Symmetry 2021, 13(8), 1400)

$J^{\pi} = 0^+$	Fundamental d.o.f.	Dynamical d.o.f.
Fundamental d.o.f.	Linear σ model	
	-Coleman, Jackiw, Politzer, PRD (1974), 10, 2491	Chiral perturbation theory
	-Bochkarev, Kapusta, PRD (1996), 54, 4066	-Schenk, PRD (1993), 47, 5138
	-Dobado, Llanes-Estrada, JT-R,	-Toublan, PRD (1997) 56, 5629
	PRD (2009), 80, 114015	-Dobado et al., PRC (2002), 66, 055201
	Quark-meson model	-Gomez-Nicola et al.
	-Jungnickel, Wetterich, PRD (1996) 53, 5142	AIP Conf. Proc. 2003, 660, 156
	-Scavenius et al., PRC (2001) 64,045202	
	-Tripolt et al., PRD (2014) 89, 034010	
Dynamical d.o.f.		(Polyakov-)NJL model
		-Vogl, Weise,
		Prog. Part. Nucl. Phys. (1991) 27, 195
	-	-Klevansky, Rev. Mod. Phys. (1992) 64, 649
		-Ratti, Thaler, Weise, PRD (2006), 73, 014019
		-JT-R, Sintes, Aichelin, PRC (2015) 91, 065206

More possibilities?

D-meson spectrum

Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Chiral partners

 $D \leftrightarrow D_0^*(2300)$ $D_s \leftrightarrow D_{s0}^*(2317)$

(Bardeen, Eichten, Hill, PRD 68 (2003) 054024)

- Heavy-quark spin symmetry between $J = 0 \leftrightarrow J = 1$
- Heavy-quark flavor symmetry between $D \leftrightarrow \overline{B}$

Temperature dependence?

Effective Lagrangian based on chiral and heavy-quark spin-flavor symmetries
 Effective Lagrangian

Chiral expansion to NLO

: broken due to light-meson masses $(\pi, K, \overline{K}, \eta)$.

Heavy-quark mass expansion to LO

: broken by heavy meson masses (D, D_s, D^*, D_s^*) .

Kolomeitsev, Lutz, PLB582 (2004) 39 Hofmann, Lutz, Nucl.Phys. A733 (2004) 142 Guo *et al.*, PLB641 (2006) 278 Lutz, Soyeur, Nucl.Phys. A813 (2008) 14 Guo, Hanhart, Krewald, Meißner, PLB666 (2008) 251 Guo, Hanhart, Meißner, EPJA40 (2009) 171 Geng, Kaiser, Martin-Camalich, Weise PRD82 (2010) 05422 Abreu, Cabrera, Llanes-Estrada, JT-R, Annals Phys. 326 (2011) 2737

Perturbative potential

Tree-level amplitudes at LO

Perturbative amplitudes • full tree level

$$V(k, k_3, k_1, k_2) = \frac{C_0}{4f_\pi^2} [(k+k_3)^2 - (k-k_2)^2]$$

 f_{π} : pion decay constant C_0 : isospin coefficients

All elastic and inelastic channels calculated: $D\pi$, DK, $D\bar{K}$, $D\eta$ $D_s\pi$, D_sK , $D_s\bar{K}$, $D_s\eta$

Unitarization

Impose exact unitarity, lost upon truncation of the EFT

Bethe-Salpeter equation

$$\mathcal{T}(s) = V(s) + \int V G_2 \mathcal{T} (s)$$

On-shell factorization method

Oller, Oset, NPA620 (1997) 438; Roca, Oset, Singh, PRD72 (2005) 014002

Unitarized scattering amplitude

$$\mathcal{T}(s) = \frac{V(s)}{1 - G_2(s)V(s)}$$

Resonances and bound states

Poles Resonances and Bound states: poles in the complex energy plane $m_B = \operatorname{Re} z_B$, $\Gamma_B = 2 \operatorname{Im} z_B$ $(z = \sqrt{s} \in \mathbb{C})$ 3.0×10^{5} $1.0 \cdot 10^{6}$ 2.0×10^{5} 2.5×10^{5} 1.5×10^5 $8.0 \cdot 10^{5}$ 2.0×10^{5} 1.5×10^{5} $\stackrel{\bowtie}{\underbrace{\textcircled{\baselineskip}{\baselineskip}}} 6.0\cdot10^5 \\ \underbrace{\textcircled{\baselineskip}{\baselineskip}} 4.0\cdot10^5$ 1.0×10^{5} -1.0×10^{5} 5.0×10^{4} 5.0×10^{4} 0.0×10^0 0.0×10^{0} $2.0 \cdot 10^{5}$ $0.0 \cdot 10^{0}$ $2450\ 2500\ 2550\ 2600$ 20002100220023002400 0 21002200230024002500 0 50 Im z (MeV) Im z (MeV)Im z (MeV)Re z (MeV)Re z (MeV)Re z (MeV) $D_0^*(2300)$ $D_{s0}^{*}(2317)$

Double pole structure of $D_0^*(2300)$

Albadalejo et al. PLB 767 (2017) 465, Guo et al. EPJC79 (2019)13,

Meißner, Symmetry 12 (2020) 6, 981

Finite temperature

At $T \neq 0$ we apply **Imaginary Time Formalism**

Self-consistency is required at $T \neq 0$

Montaña, Ramos, Tolos, JT-R, PLB 806 (2020) 135464 Montaña, Ramos, Tolos, JT-R, PRD102 (2020) 096020

Thermal masses

Tiny variation of masses with temperature: no signatures of mass degeneracy

Negligible contribution of K, \bar{K} to *D*-meson self energy

Chiral condensate and f_{π}

Model doesn't know about chiral transition \rightarrow

Light sector drives the system towards chirally-restored phase

Gell-Mann–Okubo–Renner relation

$$2m_q \langle \bar{\psi}\psi \rangle_I = -f_\pi^2 m_\pi^2$$

Thermal ChPT at LO (also in $L\sigma M$)

$$\frac{f_{\pi}(T)}{f_{\pi}(0)} = 1 - \frac{T^2}{12f_{\pi}^2(0)}$$

Gasser, Leutwyler, PLB (1987) 184, 83 Toublan, PRD (1997) 56, 5629 Pisarski, Tytgat, PRD (1996) 54, R2989

Gasser, Leutwyler, PLB (1987) 184, 83 Bochkarev, Kapusta, PRD (1996) 54, 4066 Weise, Nucl. Phys. A (2001) 690, 98

Poles evolution

- Simplified approach(!): T = 0 calculation with vacuum masses for ground states
 - f_{π} decreased by hand up to 60% vacuum value (to mimic transition)

Poles evolution

- Simplified approach(!): T = 0 calculation with vacuum masses for ground states
 - f_{π} decreased by hand up to 60% vacuum value (to mimic transition)

- → + thermal decrease of ground states $\rightarrow \Delta M \sim -100$ MeV
- Sequential Restoration favored: Lower pole first degenerate with ground state, then higher pole

Conclusions

- 1. Different EFTs realize chiral symmetry with chiral partners of different nature: **fundamental** vs **dynamically generated states**
- D/D₀^{*}(2300) system encompass three states whose masses change with temperature
- Preliminary computation including reduction of *f*_π(*T*) favors a sequential degeneracy pattern

 Experimental verification? Reconstruction of D^{*}₀(2300) in different decay channels

```
D_0^*(2300)[\text{lower pole}] \to D\pi
```

```
D_0^*(2300)[\text{higher pole}] \to D_s \bar{K}
```

at RHICs (if partial chiral restoration is achieved at freeze-out temperature).

Chiral symmetry restoration with three chiral partners

Juan Torres-Rincon (Goethe University Frankfurt)

XXXIII International (ONLINE) Workshop on High Energy Physics Logunov Institute for High Energy Physics (Protvino, Russia) Nov. 12, 2021

Effective Lagrangian at NLO

back

L.S. Geng, N. Kaiser, J. Martin-Camalich and W. Weise Phys. Rev. D82, 05422 (2010)

$$\mathcal{L}_{LO} = Tr[\nabla^{\mu}D\nabla_{\mu}D^{\dagger}] - m_{D}^{2}Tr[DD^{\dagger}] - Tr[\nabla^{\mu}D^{*\nu}\nabla_{\mu}D_{\nu}^{*\dagger}] + m_{D^{*}}^{2}Tr[D^{*\mu}D_{\mu}^{*\dagger}]$$

$$+igTr\left[\left(D^{*\mu}u_{\mu}D^{\dagger} - Du^{\mu}D_{\mu}^{*\dagger}\right)\right] + \frac{g}{2m_{D}}Tr\left[\left(D_{\mu}^{*}u_{\alpha}\nabla_{\beta}D_{\nu}^{*\dagger} - \nabla_{\beta}D_{\mu}^{*}u_{\alpha}D_{\nu}^{*\dagger}\right)e^{\mu\nu\alpha\beta}\right]$$

$$\mathcal{L}_{NLO} = -h_{0}Tr[DD^{\dagger}]Tr[\chi_{+}] + h_{1}Tr[D\chi_{+}D^{\dagger}] + h_{2}Tr[DD^{\dagger}]Tr[u^{\mu}u_{\mu}] + h_{3}Tr[Du^{\mu}u_{\mu}D^{\dagger}]$$

$$+h_{4}Tr[\nabla_{\mu}D\nabla_{\nu}D^{\dagger}]Tr[u^{\mu}u^{\nu}] + h_{5}Tr[\nabla_{\mu}D\{u^{\mu},u^{\nu}\}\nabla_{\nu}D^{\dagger}] + \{D \rightarrow D^{\mu}\}$$

$$\nabla^{\mu} = \partial^{\mu} - \frac{1}{2}(u^{\dagger}\partial^{\mu}u + u\partial^{\mu}u^{\dagger})$$

$$u^{\mu} = i(u^{\dagger}\partial^{\mu}u - u\partial^{\mu}u^{\dagger})$$

$$u^{\mu} = i(u^{\dagger}\partial^{\mu}u - u\partial^{\mu}u^{\dagger})$$

$$u^{\mu} = i(u^{\dagger}\partial^{\mu}u - u\partial^{\mu}u^{\dagger})$$

 K^-

 $\frac{2\eta}{\sqrt{6}}$

Heavy meson—light meson interaction

Tree-level amplitudes to lowest-order in m_D^{-1} expansion

Perturbative amplitude

$$V(s, t, u) = \frac{C_0}{4f_{\pi}^2}(s-u) + \frac{2C_1}{f_{\pi}^2}h_1 + \frac{2C_2}{f_{\pi}^2}h_3(k_2 \cdot k_3) \\ + \frac{2C_3}{f_{\pi}^2}h_5[(k \cdot k_3)(k_1 \cdot k_2) + (k \cdot k_2)(k_1 \cdot k_3)]$$

 f_{π} : pion decay constant Isospin coefficients: fixed by symmetry Low-energy constants: fixed by experiment or by underlying theory

Z.-H. Guo et al. Eur. Phys. J.C79, 1, 13 (2019)

Amplitude accounts for elastic scatterings: $D\pi$, DK, $D\bar{K}$, $D\eta$ $D_s\pi$, D_sK , $D_s\bar{K}$, $D_s\eta$ and their inelastic channels

Finite temperature

Spectral functions

G. Montaña et al., Phys.Lett.B 806 (2020) 135464, Phys.Rev.D 102 (2020) 9, 096020

Ground and bound states reduce their mass and acquire a width. Resonant states remain stable with temperature.

back

Thermal masses and widths

Chiral parity partners

G. Montaña et al., Phys.Lett.B 806 (2020) 135464, Phys.Rev.D 102 (2020) 9, 096020

No evidence of chiral partner degeneracy due to chiral symmetry restoration