

Evgeny Epelbaum, RUB

XXXIII International Workshop on High Energy Physics Online, November 8-12, 2021

Precision nuclear physics with chiral EFT

Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests

- Determination of the πN coupling constants: ~1% accuracy
 <u>Reinert</u>, Krebs, EE, Phys. Rev. Lett. 126 (2021) 9, 092501
- Calculation of the ²H structure radius: ~1‰ accuracy
 Filin, Baru, EE, Krebs, Möller, Reinert, Phys. Rev. Lett. 124 (2020) 082501, Phys. Rev. C 103 (2021) 024313

Precision determination of pion-nucleon coupling constants

Patrick Reinert, Hermann Krebs, EE, Phys. Rev. Lett. 126 (2021) 9, 092501

- Fundamental observables that control the strength of the nuclear forces due to π -exchange
- Insights into isospin breaking at the hadronic/nuclear levels
- Gold-plated benchmarks for lattice-QCD + QED [talk by Constantia Alexandrou]

πN coupling constants & nucleon FFs

• Interaction of the nucleon with the isovector weak current $A_i^{\mu}(0)$ in the isospin limit:

$$\langle \mathbf{N}(p') | A_i^{\mu}(0) | \mathbf{N}(p) \rangle = \bar{u}(p') \begin{bmatrix} \gamma^{\mu} G_A(q^2) + \frac{q^{\mu}}{2m_N} G_P(q^2) \end{bmatrix} \gamma_5 \frac{\tau_i}{2} u(p)$$

$$\uparrow \qquad \text{axial form factor} \qquad \text{induced pseudoscalar form factor}$$

- axial FF: a smooth function near $q^2 = 0$; axial charge: $g_A \equiv G_A(0) = 1.2756(13)$
- induced pseudoscalar FF: $G_P(q^2) = 4m_N \frac{g_{\pi NN} F_{\pi}}{(M_{\pi}^2 q^2)} + \text{non-pole terms}$
- Goldberger-Treiman relation: $F_{\pi}g_{\pi \mathrm{NN}} = g_A m_{\mathrm{N}}(1 + \Delta_{\mathrm{GT}})$
- equivalently, the pseudovector coupling constant: $f_{\pi
 m NN} = M_{\pi^\pm} \, g_{\pi
 m NN} / (2 \sqrt{4 \pi} m_{
 m N})$
- Away from the isospin limit, one has to introduce 3 coupling constants:

→ fundamental observables that control the strength of nuclear forces

πN coupling constants: Some earlier determinations

Navarro Perez et al., PRC 95 (2017) 6, 064001

Anatomy of the calculation

The goal: *Bayesian* determination of f_c^2 , f_p^2 and f_0^2 by performing a full-fledged PWA of NN data up to pion-production threshold in the framework of chiral EFT

1. Experimental data:

- About 8000 published np and pp scattering data below $E_{lab} = 350$ MeV. Not all data are mutually compatible...
- Selections of mutually compatible data: Nijmegen 1993, Granada 2013, 2017
- Performed own selection of compatible data (found some differences to Granada...)

2. Interaction model (chiral EFT):

- Long-range EM interactions (included in all PWA...)
- Semi-local chiral NN interaction at N⁴LO⁺ from P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

The treatment of isospin-breaking (IB) contributions was incomplete (limited to that of Nijmegen/Granada PWA)

We now include all charge-independence & charge-symmetry-breaking terms to N⁴LO.

Isospin-breaking NN forces

3. Bayesian determination of the π N coupling constants $f^2 \equiv \{f_c^2, f_p^2, f_0^2\}$:

Determination of the πN constants

Determination of the πN constants

Our $g_{\pi NN}$ value corresponding to f_c^2 reads: $g_{\pi NN} = 13.23 \pm 0.04$

Pionic hydrogen exp. at PSI (GMO sum rule) [Hirtl et al., Eur. Phys. J. A57 (2021) 2, 70]

 $\epsilon_{1s}^{\pi H} + \epsilon_{1s}^{\pi D}$: $g_{\pi NN} = 13.10 \pm 0.10$ $\Gamma_{1s}^{\pi H}$: $g_{\pi NN} = 13.24 \pm 0.10$

Summary of the first part:

- extracted πN couplings from NN data in χEFT
- employed a Bayesian approach to account for statistical and systematic uncertainties
- achieved a statistically perfect description of NN data (χ^2 /dat = 1.005 for ~ 5000 data in the energy range of $E_{lab} = 0 - 280$ MeV)

Our result:

$$f_0^2 = 0.0779(9)(1.3)$$

$$f_p^2 = 0.0770(5)(0.8)$$

$$f_c^2 = 0.0769(5)(0.9)$$
statistical and systematic
errors due to the EFT trun-
cation, choice of E_{max} and
data selection

Our f_c^2 value is consistent with the extractions from the πN system

Contrary to the Granada group, we see no evidence for charge dependence of the πN coupling constants

Using the PDG-2020 value for the axial charge $g_A = 1.2756(13)$, the GT discrepancy amounts to (f_c):

 $\Delta_{\rm GT} \sim 1.7\%$

High-accuracy calculation of the deuteron charge and quadrupole FFs

<u>Arseniy Filin</u>, <u>Vadim Baru</u>, EE, Hermann Krebs, Daniel Möller, Patrick Reinert, Phys. Rev. Lett. 124 (2020) 082501; Phys. Rev. C103 (2021) 024313

- provides a nontrivial test the new chiral NN interactions
- can shed new light on the long-standing issue with underpredicted radii of medium-mass and heavy nuclei
- opens a way to extract the neutron radius from few-N data

How big is a neutron?

Famous proton radius puzzle: pre-2010 electron-based experiments give the radius $> 7\sigma$ larger than muon-based experiments.

CODATA-2018 recommended value: $r_p = 0.8414 \pm 0.0019$ fm

What do we know about the neutron radius?

- no neutron targets; extrapolations of $G_{\rm C}^n(Q^2)$ extracted from ²H not reliable...
- the only information comes from (old) n-scattering experiments on Pb, Bi, ...

 \rightarrow PDG recommended value: $r_n^2 = -0.1161 \pm 0.0022 \text{ fm}^2$

$$r_{\rm str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{3}{4m_p^2}$$

along with ¹H-²H isotope shifts data

 $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ Jentschura et al., PRA 83 (2011)

can be used to extract r_n^2 !

Outline of the calculation

Calculation of the deuteron charge radius:

The deuteron charge radius is defined in terms of the charge form factor G_C

$$r_C^2 = (-6) \frac{\partial G_C(Q^2)}{\partial Q^2} \bigg|_{Q^2 = 0}$$

which can be computed as (in the Breit frame):

$$G_{\rm C}(Q^2) = \frac{1}{3e} \frac{1}{2P_0} \sum_{\lambda} \langle P', \lambda | J_B^0 | P, \lambda \rangle$$

The matrix element is given by:

$$\frac{1}{2P_{0}}\langle P', \lambda' | J_{B}^{\mu} | P, \lambda \rangle = \int \frac{d^{3}l_{1}}{(2\pi)^{3}} \frac{d^{3}b_{2}}{(2\pi)^{3}} \frac{\partial (p)}{\partial x_{1}} \frac{\partial (p)}{\partial x_{2}} \frac{\partial (p$$

Precision calculation of the deuteron charge radius in chiral

- accurate, high-precision two-nucleon interactions
- consistent charge density operator $\overline{\nu}$
- careful error analysis

Nuclear electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, Meißner, FBS 60 (2019) 31

Deuteron charge and quadrupole FFs

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

The extracted structure radius and quadrupole moment:

 $r_{\rm str} = 1.9729^{+0.0015}_{-0.0012} \, {\rm fm}$

 $Q_{\rm d} = 0.2854^{+0.0038}_{-0.0017}~{\rm fm}^2$

statistical and systematic errors due to the EFT truncation, choice of fitting range and πN LECs

IB effects are significant for Q_d : using the 2018 N⁴LO⁺ potential would lead to $Q_d = 0.2803 \text{ fm}^2$ The value of Q_d is to be compared with $Q_d^{exp} = 0.285\,699(15)(18) \text{ fm}^2$ Puchalski et al., PRL 125 (2020)

Combining our result for $r_{str}^2 = r_d^2 - r_p^2 - r_n^2 - \frac{3}{4m_p^2}$ with the ¹H-²H isotope shift datum $r_d^2 - r_p^2 = 3.82007(65)$ fm² leads to the prediction for the neutron radius:

 $r_n^2 = -0.105^{+0.005}_{-0.006} \, \mathrm{fm}^2$

Preliminary results for the charge radius of A = 3,4 nuclei

Arseniy Filin, Vadim Baru, EE, Christopher Körber, Hermann Krebs, Daniel Möller, Patrick Reinert, in preparation

- precision test of the theory for ⁴He
- theoretical prediction for the isoscalar ³H-³He charge radius 10 times more accurate than the current exp value — to be tested by CREMA soon!
- consistent regularization of isovector currents (π -loops) is still in progress \Rightarrow limit ourselves to T = 0 nucleus (⁴He) + isoscalar ³H-³He combination

Charge radii of light nuclei

Filin, Baru, EE, Körber, Krebs, Möller, Reinert, in preparation

Charge radii of light nuclei

Filin, Baru, EE, Körber, Krebs, Möller, Reinert, in preparation

With all LECs being fixed, we can predict the isoscalar 3N charge radius

$$\sqrt{\frac{1}{3}r_C^2({}^{3}\mathrm{H}) + \frac{2}{3}r_C^2({}^{3}\mathrm{He})}$$

$$r_C(3N_{\rm isoscalar}) = (1.9065 \pm 0.0026) \,\rm{fm}$$

preliminary, using CODATA-2018 r_{p} and own determination of r_{n}

On the experimental side:

- the ³H radius poorly known (5%) from e⁻ scattering exp.: $r_C^{^{3}H} = (1.755 \pm 0.086) fm$

- more (and more precise) measurements for ³He

- e⁻ scattering experiments: $r_C^{^{3}\text{He}} = (1.959 \pm 0.030) fm$ Amroun et al. '94 (world average) $r_C^{^{3}\text{He}} = (1.973 \pm 0.016) fm$ Sick '15 (world average)

- muonic ³He (preliminary): $r_C^{^{3}\text{He}} = (1.9687 \pm 0.0013) fm$ Pohl ²20

 \Rightarrow the current exp. value for the isoscalar radius:

$$r_C^{\exp}(3N_{\text{isoscalar}}) = (1.903 \pm 0.029) \text{ fm}$$

The ongoing T-REX experiment in Mainz [Pohl et al.] aims at measuring $r_C^{^{3}H}$ with $\pm 0.0002 fm$, which would determine the isoscalar radius with $\pm 0.0009 fm \Rightarrow$ precision tests of nuclear chiral EFT!

Summary of the second part

- Calculated the charge and quadrupole FFs of light nuclei at N⁴LO in chiral EFT
- Deuteron:
 - determined $r_{\rm str}$ (0.1% accuracy) and Q_d (1.4% accuracy)
 - combined with isotope-shift data, extracted the neutron charge radius (2 σ tension with PDG...)
- ⁴He: the extracted r_C (0.2% accuracy) agrees with the new μ^4 He measurement
- ³H-³He: predicted the isoscalar r_C (0.1% accuracy) in agreement with the current exp. value (10 times bigger errors). The ongoing T-REX (μ³H) exp. in Mainz will allow for a precision test of nuclear chiral EFT