Spin-momentum correlation in QCD matter

I. Intro.
2. Spin-momentum correlation in hot and dense QCD matter

- Shear-induced polarization (SIP).
- Spin Hall effect by μ_{B} gradient (at BESII and forward rapidity).

3. Summary and outlook.

$$
\text { Yi Yin } Y_{i}^{\prime}
$$

Institute of Modern Physics (IMP), Lanzhou, Chinese academy of sciences

Ref: Shuai Liu, YY, 2006. I 242 I,PRD; 2103.09200, JHEP 21.

Baochi Fu, Shuai Liu, Longgang Pang, Huichao Song, YY, 2 I 03. I 0403, PRL 2 I;
Hard Problems of Hadron Physics: Non-
Perturbative QCD \& Related
Quests, Logunov Institute for High Energy
Physics, Nov. 12 th, 2021

Shuai Liu, BaochiFu, postdoc@IMP

postdoc@Peking U.

Background

- Polarization/spin alignment measurement in HIC: new arena to explore QCD matter.

Review: Becattini, Lisa, 2020

- Probing spin and phase structure of QCD matter.

STAR, Nature 17 '. \# of spin carrier

I

Spin polarization generation

- Rotation (independent of the direction of \vec{p}):

$$
\Delta \epsilon=-\vec{s} \cdot \vec{\Omega} \rightarrow \vec{s} \| \vec{\Omega}
$$

- At macroscopic scale: vorticity-induced polarization.
- Vorticity effects in heavy-ion collisions:
- describe the trends of global (phase-space averaged) \wedge polarization.

Xin-Nian Wang, Zuo-Tang Liang, PRL 05'; Becattini et al, Annals Phys I3'

- predict qualitatively different behavior in differential measurements (sign "puzzle").

But rotation is just one mechanism for spin polarization generation.

Baochi Fu et. al, PRC2 I'

Spin Hall effect

$$
\vec{s} \propto \vec{v} \times \vec{E}
$$

Fig. from Meyer et al,
Nature material 17 ,

- Ubiquitous phenomenon: spin-momentum correlation. (c.f.TMD in nucleon structure.)

In global polarization, such a correlation has been largely washed out after momentum average.

Differential measurement probes the spin-momentum correlation (NB: differential spin polarization \neq local vorticity).

Spin Hall effect and Berry curvature

- Berry curvature modifies effective velocity \Rightarrow SHE

$$
\dot{\vec{x}}=\vec{v} \underset{\text { Shiffed velocity } \vec{v}_{b}}{+\lambda \vec{F} \times \vec{b}_{k}(\hat{p})} \vec{b}=\frac{\hat{p}}{2 p^{2}} \quad \text { Bericity curvature }
$$

- Effective force \vec{F} can be:
- electric field \vec{E} and chemical potential gradient $T \nabla(\mu / T)$ (spin Hall effect).
- T-gradient (spin Nernst effect);
- and more
- A class of spin phenomena generated by Berry curvature effects.

Macroscopically, the gradient of hydro. field (e.g. flow and energy/charge density) leads to spin-momentum correlation.

Theory

- Chiral kinetic theory and its generalization, e.g., axial kinetic theory incorporate Berry curvature effects and can describe spin-momentum correlation.
- Another systematic approach is response theory:
- expansion in gradient.
- relating expansion coefficients to correlators $\left\langle O(x) T^{\mu \nu}\left(x^{\prime}\right)\right\rangle$.
- Consider axial Wigner function:

$$
\mathscr{A}^{\mu}(t, \vec{x}, \vec{p})=\int d^{3} \vec{y} e^{-i \vec{y} \cdot \vec{p}}\left\langle\bar{\psi}\left(t, \vec{x}-\frac{1}{2} \vec{y}\right) \gamma^{\mu} \gamma^{5} \psi\left(t, \vec{x}+\frac{1}{2} \vec{y}\right)\right\rangle
$$

- The most general expression for axial Wigner function \mathscr{A}^{μ} consistent with symmetries (for a neutral fluid):

$$
\begin{aligned}
& u \cdot \mathscr{A}=\tilde{c}_{\omega} p \cdot \omega, \\
& \mathscr{A}_{\perp}^{\mu}=c_{\omega} \omega^{\mu}-c_{T} \epsilon^{\mu \nu \alpha \lambda} u_{\nu} p_{\alpha} \partial_{\lambda} \log T+g_{\sigma} \epsilon^{\mu \nu \alpha \lambda} u_{\nu} Q_{\alpha \rho} \sigma^{\rho}+g_{\omega} Q^{\mu \nu} \omega_{\nu} \\
& \text { vorticity effects spin Nernst effect shear-induced polarization (SIP) } \\
& \vec{s} \propto \hat{p} \times \nabla \log T \\
& \begin{array}{ll}
\omega^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} u_{\nu} \partial_{\alpha} u_{\beta} & \text { Spin-momentum correlation } \\
\sigma_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu} \partial_{\nu} u_{\nu}+\partial_{\mu} u_{\nu}-\text { trace }\right) & Q^{\mu \nu}=-\frac{p_{\perp}^{\mu} p_{\perp}^{\nu}}{p_{\perp}^{2}}-\frac{1}{3} \Delta^{\mu \nu}, \ldots
\end{array} \\
& \text { shear }
\end{aligned}
$$

- Flow gradient and momentum quadrupole coupling have long been overlooked.
- All those effects are arguably non-dissipative (based on T-parity).
- The expansion coefficients can be computed systematically from microscopic theories.

$$
\int_{\vec{y}} e^{i \vec{y} \cdot \vec{p}}\left\langle\bar{\psi}\left(t, \vec{x}-\frac{1}{2} \vec{y}\right) \gamma^{\mu} \gamma^{5} \psi\left(t, \vec{x}+\frac{1}{2} \vec{y}\right) T^{\alpha \beta}(0,0)\right\rangle
$$

- For general fermion mass at one-loop:

$$
\mathscr{A}_{\perp}^{\mu}=\left(-n_{F D}^{\prime}\right)\left[\omega_{\text {vorticity effects }}^{\left.\left[\omega^{\mu}+\epsilon^{\mu \nu \alpha \lambda} u_{\nu} p_{\alpha} \partial_{\lambda} \log \beta+\frac{-p_{\perp}^{2}}{(p \cdot u)} \epsilon^{\mu \nu \alpha \lambda} u_{\nu} Q_{\alpha \rho} \sigma_{\lambda}^{\rho}\right]_{\text {SIP }}\right]_{\alpha(g-2)}^{\# \times} Q^{\mu \nu} \omega_{\nu} .}\right.
$$

- Chiral kinetic theory analysis is consistent with one loop calculations.

SIP has been derived almost simultaneously by Becattini et al, 2103.10917, PLB 21 via a different method

Shear-induced polarization (SIP)

Spin polarization (of a neutral fluid)
=[Vorticity]+[T-gradient]+[Shear]

Illustration

A standard shear flow profile:
$\omega^{z} \neq 0, \sigma^{x y} \neq 0$

Spin polarization along z-direction in phase space from SIP.

$$
\mathscr{A l}_{S I P}^{i} \propto e^{i k j} Q_{j i} \sigma_{k}^{l}, \quad Q_{i j}=\hat{p}_{i} \hat{p}_{j}-\frac{1}{3} \delta_{i j}
$$

Shear-induced polarization (SIP): imaging anisotropy in a fluid into anisotropy in spin space.

Observation?

strain-induced polarization in n-type GaAs, Crooker and Smith, PRL, 04’

strain-induced polarization in BaFe2As2, Kissikov et al, Nature communication, I8’

- The cousin effect, strain-induced polarization has been observed in crystals and liquid crystals.
- Shear-induced polarization (SIP): generic in fluids.
- Can we/did we see SIP in heavy-ion collisions?
- What can we learn ?

- Hydro. profile from AMPT (initial condition)+MUSIC.
- Two benchmark scenarios:
- "Lambda equilibrium": \wedge is born in equilibrium.
- "Strange memory": \wedge inherits the polarization of s-quarks

NB: spin-dependent d.o.f. might not be in equilibrium even if spin-independent ones are.

Differential longitudinal polarization (similar story for P_{\Downarrow})

Baochi Fu, Shuai Liu, Longgang Pang, Huichao Song and YY, PRL 2 I

vs transverse azimuthal angle ϕ_{p} Spin polarization=[Vorticity] $+[$ T-gradient $]+[$ Shear $]$

- SIP gives a "right sign" while T-gradient leads to a "wrong sign". see also Becattini et al, 2103.14621 ; Cong Yi et al, 2106.00283.
- "Strange memory" scenario: SIP determines the qualitative feature of differential polarization in
- Macroscopic manifestation of Berry phase effects?

- Tantalizing yet inconclusive evidence for SIP.
- The observation of SIP in QGP might be its first detection among all kinds of fluid!

Spin Hall effect induced by μ_{B} gradient

- SHE (induced by baryon density gradient) separates Lambda and anti-Lambda.

$$
\vec{P}_{ \pm} \propto \pm \hat{p} \times \nabla \mu_{B}
$$

Theory: Son, Yamamoto, PRD I 2; Di-Lung Yang, Hattori, Yoshimasa, PRD 19'... ; First phenomenological study: Liu-YY, 2006.I242I, PRD2 I.

Shen et al, 2 I 06.08 I 25 on its effect on global spin polarization (splitting).

- Since its first detection in 2004, all known SHE materials (semiconductors, metals, insulators) are not exceeding room temperature and are microscopically described by QED.
- Observation of SHE in HIC where QCD matter at trillion degrees is created with spin carriers interacting through strong interaction?
- Looking for SHE at difference in $\Lambda, \bar{\Lambda}$ differential polarization at lower beam energy (e.g. BESII) and forward rapidity; prediction is coming!

Baochi Fu, Longgang Pang, Huichao Song, YY,

Summary and outlook

Summary

- Differential spin polarization: probes the spin-momentum correlation of QCD matter and is related to Berry curvature of spin carriers.
- Response theory analyses the effects of hydro. gradient on spin polarization systematically.
- Shear-induced polarization (SIP): possible signature@RHIC and LHC.
- Spin Hall effect via gradient : new probe of baryon-rich QCD matter.
- Not covered: Berry curvature and topology in color superconducting phase.

Back-up

Can Λ spin flipping rate be small?

Quark model+vector meson dominance \Rightarrow nucleon (N)-hyperon interaction is mediated by ω meson which only couples with constituent u and d quark.

Jennings, PLBI990; Cohen-Weber PRC 199I
However, spin of Λ is carried by s quark. So
(spin-dependent) $\mathrm{N}-\wedge$ interaction<<(spin-dependent) $\mathrm{N}-\mathrm{N}$ interaction.
This picture explains the puzzling experimental results

$$
\mathrm{N}-\Lambda \approx \frac{1}{40} \mathrm{~N}-\mathrm{N}
$$

Under this picture, Λ spin flip rate could be (much) smaller than its equilibration rate => worthy checking in future.

