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1 – INTRODUCTION

• The deconfinement transition is a well defined concept in pure gauge theories,

where it is associated with the spontaneous breaking of center symmetry.

• In full QCD center symmetry is broken, and the dominant (slightly broken) sym-

metry is chiral, with a pseudo-critical restoration temperature Tc ≃ 155 MeV

• Around Tc, other thermodynamical observables (pressure, energy density, quark

number susceptibilities, ...) provide evidence for a sequential deconfinement.

The Polyakov loop, even if not an order param-

eter any more, starts rising around there.

Picture taken from P. Petreczky, arXiv:2011.01466
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• On the other hand, various mechanisms have been proposed, which tipically in-

terpret confinement in terms of the condensation of effective degrees of freedom

of topological nature (monopoles, vortices, ...)

• A univocal view about the mechanism is still lacking, however all descriptions lead

to a correct identification of the deconfinement transition for pure gauge theories.

• It is therefore of great interest to investigate such mechanisms in full QCD as well

• In this study we consider the dual superconductor model (’t Hooft, 1975, Mandelstam,

1976) and the associated condensation of Abelian magnetic monopoles



• The mechanism has been investigated on the lattice in various different ways,

like looking at the expectation value of magnetically charged operators or at the

effective monopole action

• The possible role played around and above Tc by thermal monopoles ”evaporat-

ing” from the zero T condensate attracted lot of attention in the last few years.

(Liao-Shuryak 2006, 2008; Chernodub-Zakharov, 2006; D’Alessandro, M. D. 2008; Chernodub, D’Alessandro,

Zakharov, 2009; Bornyakov, Braguta, 2011-2012; Bornyakov, Kononenko, 2012) Ratti-Shuryak, 2009).

They are identified as magnetic currents wrapping non-trivially around the thermal

direction, resembling path-integral contributions of thermal quasi-particles

(Chernodub, Zakharov, 2006; Bornaykov, Mitrjushkin, Mueller-Preussker, 2002; Ejiri, 2006).

• The distribution of wrapping trajectories shows that thermal monopoles indeed

condense at Tc both for SU(2) and SU(3) pure gauge theories

A. D’Alessandro, M.D., E. Shuryak, arXiv:1002.4161; C. Bonati, M.D., arXiv:1308.0302

The purpose of this study is to extend the analysis to full QCD



2 – Abelian projection and monopoles in SU(N) gauge theories (’t Hooft, ’74, ’81)

• in SU(N), one can identify N − 1 independent Abelian subgroups (U(1)(N−1))

by diagonalization of a traceless adjoint Higgs field X(x)

• Fix the gauge where X(x) = XD(x) = diag(X1(x), X2(x), . . . , XN(x)) with

Xj(x) ≥ Xj+1(x). That leaves a residualU(1)(N−1) gauge symmetry. An Abelian

e.m. ’t Hooft tensor F
(k)
µν is associated to each residual U(1) group, all tensors

are mutually neutral.

• Points where two eigenvalues ofX coincide define the location of magnetic monopoles.

The residual U(1) is enlarged to a full SU(2) subgroup.

• In a lattice setup, looking for points where two eigenvalues coincide is ill defined.

One then works in the diagonal gauge and looks for monopole fields via the De

Grand - Toussaint procedure.



3 – Abelian monopoles on the lattice

In compact U(1) lattice gauge theory, magnetic monopoles are identified via the De

Grand - Toussaint procedure. Let uµ(n) ≡ eiθµ(n) be the U(1) link variables on a

cubic 4D lattice, from which Abelian plaquettes are constructed θµν ≡ ∂̂µθν − ∂̂νθµ

Monopole currents are then constructed as

mµ =
1

2π
εµνρσ∂̂νθρσ ; θµν = θµν + 2πnµν

i.e. one measures the net magnetic flux going out of a

3D cube, modulo Dirac string contributions

Monopole currents form closed loops, since

∂̂µmµ = 0. In a thermal theory, currents which

wrap around the periodic time direction are identi-

fied with thermal monopoles.



4 – Maximal Abelian Gauge (MAG) Projection in SU(2) and extension to SU(N)

No natural Higgs field exist in QCD, so Abelian projection requires a choice, implying

some arbitrariness

For SU(2), MAG is the gauge where the following functional has a maximum

FMAG =
∑

µ,n

tr
(
Uµ(n)σ3U

†
µ(n) σ3

)
=

∑

µ,n

2
(
|Uµ(n)11|

2 + |Uµ(n)22|
2 − 1

)

On stationary points of FMAG, the diagonal Hermitean, traceless Higgs field is

XMAG(n) =
∑

µ

[
Uµ(n)σ3U

†
µ(n) + U †

µ(n− µ)σ3Uµ(n− µ)
]
,

Part of the popuparity of the MAG projection is due to the fact that abelian projected

fields retain most of the original dynamics (Abelian Dominance).

The properties of magnetic monopoles defined after MAG projection also show a nice

scaling to the continuum limit.



Extension to SU(N)

A standard extension adopted for SU(N) still considers maximization of diagonal

elements (A. S. Kronfeld, G. Schierholz and U. J. Wiese, 1987) but has some problems:

• No diagonal Higgs field is naturally associated to it

• On extremal points, the residual symmetry includes global permutations of group indexes, so that

Abelian charges are not well defined.

Possible alternative: generalized MAG ( J. D. Stack, W. W. Tucker 2002; C. Bonati, M.D., arXiv:1308.0302)

F̃MAG =
∑

µ,n

tr

(

Uµ(n)λ̃U
†
µ(n) λ̃

)

; λ̃ = diag(λ̃1, λ̃2, . . . λ̃N) ,

where λ̃ is a generic element of the Cartan subalgebra. Some properties:

• A diagonal Higgs field exists, provided λ̃ has no pair of coinciding eigenvalues

X̃(n) =
∑

µ

[

Uµ(n)λ̃U
†
µ(n) + U †

µ(n− µ)λ̃Uµ(n− µ)
]

.



Summary for SU(3)

• Gauge is fixed by maximization of the functional

F̃MAG =
∑

µ,n

tr

(

Uµ(n)λ̃U
†
µ(n) λ̃

)

; λ̃ =
1

3
diag(1, 0, −1) ,

That treats all monopole species symmetrically. A standard local over-relaxed algorithm is adopted,

working over SU(2) subgroups.

• On the gauge fixed configuration, the diagonal of gauge links is extracted,

UD
µ (n) = diag(eiφ

1

µ
(n), eiφ

2

µ
(n), eiφ

3

µ
(n))

where UD
µ (n) is the diagonal SU(3) matrix maximizing Re(tr(UD

µ (n)U †
µ(n)))

• The two Abelian phases are then extracted according to

θ1µ(n) = φ1
µ(n) θ2µ(n) = φ1

µ(n) + φ2
µ(n) = −φ3

µ(n)

the monopole currents m1
µ and m2

µ are then determined following the De Grand-Toussaint method.



For each configuration, we locate monopole cur-

rents with non-trivial winding number in time, and

their position at a given reference time slice. After

that, we can investigate various quantities.

Density of thermal monopoles

ρ =
∑

k

kρk ; ρk ≡
Nwrap,k

Vs

where Vs = a3L3 is the spatial volume and Nwrap,k is the number of currents wrap-

ping k times.



Distribution of trajectories with multiple wrappings
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Like for a path-integral of bosonic particles, monopole trajectories with multiple wind-

ings in the time direction can be associated with two-(or multiple)-particle exchange.

Their T -dependence can be used to investigate thermal monopole condensation.

(M. Cristoforetti and E. Shuryak, arXiv:0906.2019) (A. D’Alessandro, M.D., E. Shuryak, arXiv:1002.4161)

For a system of free bosons, if µ = −T µ̂ is the chemical potential,

ρk ∝ e−µ̂k/k5/2
(1)

µ → 0 signals Bose-Einstein condensation (BEC)



Numerical Results for pure gauge SU(2)
A. D’Alessandro, M.D., E. Shuryak, arXiv:1002.4161
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• The density of trajectories winding k-times, ρk, is negligible, for k > 1, at high T .

It becomes significant only as one approaches Tc from above.

• If we assume the simple ansatz in Eq. (1) for the monopole ensemble, we can

extract µ̂.

Then a fit µ̂ = A (T−TBEC)
ν′ returns TBEC ≃ Tc within errors and ν ′ ≃ 0.6−0.7,

where TBEC is the Bose-Einstein condensation temperature.



Numerical Results for pure gauge SU(3)
C. Bonati, M.D., arXiv:1308.0302
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• Similar results are found for SU(3)

• notwithstanding the ambiguities related to the Abelian projection procedure, there

is no doubt that for pure gauge theories thermal monopoles catch many non-

perturbative properties related to confinement/deconfinement.



5 – Results for Nf = 2 + 1 QCD

LATTICE SETUP

Z(T ) =

∫

DU e−SYM

∏

f=u, d, s

det (Df
st)

1/4 .

- pure gauge: Symanzik tree level improved gauge action

- fermion sector: 2-level stout improved rooted staggered fermions

- bare parameters tuned to stay on a line of constant physics at the physical point

Y. Aoki et al, arXiv:0903.4155, S. Borsanyi et al, arXiv:1007.2580

- different lattice sizes explored to check finite cut-off and finite size effects :

243 × 6, 323 × 8, 483 × 6, T = 1/(Nta).



0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
k

1e-05

1e-04

1e-03

1e-02

〈ρ
k/ρ

1〉

T = 350 MeV
T = 318 MeV
T = 300 MeV
T = 284 MeV
T = 251 MeV
T = 217 MeV

µ = 0

µ = 0

Results for ρk/ρ1 from simulations on

the 483 × 6 lattice. The dashed lines

correspond to best fits to Eq. (1), re-

spectively fixing α = 5/2 (for T >

280 MeV) or µ̂ = 0

• a striking aspect of our results emerges already looking at the ratio ρk/ρ1 for var-

ious T

• for T & 280 MeV the exponential decay is clearly visible, leading to a non-zero µ̂.

• for lower temperatures the dependence on k is much flatter and compatible with

µ̂ = 0.



Results for µ̂ at T > 280 MeV.

The dashed lines represent best fits of the 483 × 6

data to a critical behavior

µ̂(T ) = a(T − TBEC)
ν′

returning TBEC = 272(2) (ν′ ∼ 0.9) and 278(6)

(ν′ ∼ 1) respectively for α = 0 and α = 5/2.
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• as for pure gauge, the outcome is independent of the assumption on α: in both

cases µ̂ approaches zero at TBEC ∼ 275 MeV.

• the dependence on the lattice spacing is also negligible

• TBEC is almost twice the well established pseudocritical temperature of QCD,

Tc ≃ 155 MeV!

• Can that be confirmed by alternative methods to look for monopole condensation?
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A popular method in the past has been to

look for the formation of a percolating clus-

ter of monopole clusters

ratio rc of the current length of the biggest connected

cluster to the total length of monopole currents.

〈rc〉 → 0 in the thermodynamical limit if no dominat-

ing cluster forms.

• full QCD results and pure gauge SU(3) results show a quite similar behavior

• the thermodynamical limit of 〈rc〉 is non-zero in both cases for T . 300 MeV

• the behavior is just a bit sharper for pure gauge SU(3), where a weak first order

transition is at work



Similarities between full QCD and pure

gauge also looking at the total thermal

monopole density ρ normalized by T 3
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• At high T , ρ/T 3 in full QCD is about twice than the quenched value, but similar

behavior, consistent with perturbative predictions

(Giovannangeli, Korthals Altes, hep-ph/0102022; Liao, Shuryak, hep-ph/0611131)

ρ/T 3 ∝ (log(T/Λeff ))
−3

with Λeff = 47(5) MeV (48(1) MeV for pure gauge).

• the drop around TBEC can be interpreted as disappearance of part of the thermal

component due to the condensation.



Check of stability under (minimal) changes in the Abelian projection

λ̃ = bkφk
0, φk

0 =
1

N
diag (N−k, . . . N−k

︸ ︷︷ ︸

k

,−k, . . .−k
︸ ︷︷ ︸

N−k

)

our choice for N = 3: b1 = b2 = 1 =⇒ λ̃ = diag(1, 0, −1)

What if we choose a different λ̃?
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How should we interpret TBEC ≃ 275 MeV > Tc ≃ 155 MeV?

• an interpretation in terms of a new confined, chiral symmetry restored phase of

QCD is not obvious or straightforward

• nevertheless, pure gauge theories show that magnetic monopoles correctly catch

many interesting aspects of non-perturbative physics related to confinement

• are there any hints of an intermediate phase above Tc, dominated by non-perturbative

effects, from other different observables?

• Generally speaking, the non-perturbative region above Tc is quite large. Quark

number susceptibilities and thermodynamical quantities reach values compatible

with those of a non-interacting Quark-Gluon Plasma only for T & 300 MeV

• At the same time, color screening properties show that in-medium quark-antiquark

systems behave consistenty with a weak-coupling picture only for T & 300 MeV

for a review, see Bazavov, Weber, arXiv:2010.01873

• Confirmation from extended chiral critical scaling window above Tc

A. Y. Kotov, M. P. Lombardo and A. Trunin, arXiv:2105.09842 and talk by Andrey Kotov yesterday



Hints from θ-dependence
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• In pure gauge, θ-dependence compatible with instanton gas (DIGA) soon after Tc

• this is visible especially from the kurtosis coefficient b2, compatible with DIGA,

b2 = −1/12, already for T & 1.1 Tc Left figure, Bonati, MD, Panagopoulos, Vicari, arXiv:1301.7640

• in full QCD, instead, b2 approaches the DIGA value quite slowly, showing appre-

ciable deviations still for T ∼ 2 Tc Right figure, Bonati et al, arXiv:1512.06746

• this has been interpreted in terms of the existence of an intermediate phase dom-

inated by an instanton-dyon ensemble

E.Shuryak, arXiv:1701.08089; DeMartini, Shuryak arXiv:2102.11321



A few other non-trivial phenomena observed above Tc

• Recently, an emergent enhanced symmetry observed in spatial meson correla-

tors (C. Rohrhofer et al, arXiv:1902.03191) has been interpreted in terms of a possible new

phase.

The candidate new phase would be chiral symmetric but still confined, a so-called

stringy fluid phase

L. Glozman, arXiv:1907.01820

• Possible evidence for an intermediate phase has been reported also based on the

properties of the lowest-lying part of the Dirac spectrum

A. Alexandru and I. Horváth, arXiv:1906.08047, arXiv:2103.05607



6 – Conclusions and Perspectives

• there is plenty of evidence that the phase right above the crossover temperature

Tc is dominated by non-perturbative effects

• the analysis of thermal monopoles may permit a precise identification of the tem-

perature TBEC ≃ 275 MeV where such non-perturbative effects disappear

• Whether TBEC corresponds to some real (percolation-like?) transition or not

should be investigated by a careful finite size scaling analysis

• Other Abelian projections, other order parameters for dual superconductivity or

other confinement mechanisms should be investigated to see if they return a sim-

ilar temperature

• why TBEC so close to the pure gauge critical temperature? Investigations away

from the physical point (more or less chiral), or with a different number of flavours,

should clarify if this is just accidental


