Hadron matrix elements, lattice QCD and the Feynman–Hellmann approach

R. Horsley

- QCDSF-UKQCD-CSSM Collaboration -

Protvino, Russia, November 2021

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

In Collaboration with:

- Australia (Adelaide)
 - K. U. Can, A. Hannaford-Gunn, E. Sankey, R. D. Young, J. M. Zanotti
- Germany
 - H. Perlt (Leipzig)
 - G. Schierholz (DESY-Hamburg)
 - H. Stüben (Hamburg)
- Japan
 - Y. Nakamura (RIKEN, Kobe)
- UK
 - R. Horsley (Edinburgh)
 - P. E. L. Rakow (Liverpool)

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

Contents

- Deep Inelastic Scattering
 - Hadronic Tensor
 - Compton Amplitude
 - Physical/unphysical regions
- Feynman-Hellmann theorem (perturbation in parameter λ)
 - Mathematical derivation via Dyson series
 - $O(\lambda^2)$ term and relation to Compton Amplitude
- Lattice
 - $O(\lambda^2)$ terms
 - Compton Amplitude structure functions
 - Physical moments
 - $O(\lambda)$ terms
 - Energy degeneracies
 - Nucleon scattering form factors
- Conclusions and future perspectives

Papers:

- 'A Lattice Study of the Glue in the Nucleon' arXiv:1205.6410 (PLB)
- 'A Feynman-Hellmann approach to the spin structure of hadrons' arXiv:1405.3019 (PRD)
- 'A novel approach to nonperturbative renormalization of singlet and nonsinglet lattice operators' arXiv:1410.3078 (PLB)
- 'Disconnected contributions to the spin of the nucleon' arXiv:1508.06856 (PRD)
- 'Electromagnetic form factors at large momenta from lattice QCD' arXiv:1702.01513 (PRD)
- 'Nucleon structure functions from lattice operator product expansion' arXiv:1703.01153 (PRL)
- 'Lattice QCD evaluation of the Compton amplitude employing the Feynman-Hellmann theorem' arXiv:2007.01523 (PRD)
- 'Generalised parton distributions from the off-forward Compton amplitude in lattice QCD' arXiv:2110.11532
- + Various Lattice conferences, including Lattice 2021

DIS

Deep $(Q^2 \gg M_N^2)$ Inelastic $(M_X^2 > M_N^2)$ Scattering (DIS)

- *k*, *k*': incoming, outgoing lepton momenta
- *p*: 4-momentum of the incoming nucleon of mass *M_N*
- $M_X^2 = (p+q)^2$: invariant mass of the recoiling system X
- $Q^2 = -q^2$: photon virtuality, momentum transfered to nucleon
- $x = \frac{Q^2}{2p \cdot q}$: Bjorken scaling variable [x > 0]

$$\left[M_X^2 > M_N^2 \implies 0 < x < 1\right]$$

• $\omega = x^{-1}$: inverse Bjorken variable

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

DIS and the Hadronic Tensor

$$d\sigma \sim L_J^{\mu\nu} W_{\mu\nu}^J$$
 $J \sim \gamma, Z \text{ (neutral) or } W \text{ (charged)}$

$$\begin{split} W_{\mu\nu} &\equiv \frac{1}{4\pi} \int d^4 z \, e^{iq \cdot z} \rho_{ss' \, rel} \langle p, s' | [J_{\mu}(z), J_{\nu}(0)] | p, s \rangle_{rel} \\ &= \left(-\eta_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) F_1(x, Q^2) + \left(p_{\mu} - \frac{p \cdot q}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{p \cdot q}{q^2} q_{\nu} \right) \frac{F_2(x, Q^2)}{p \cdot q} \end{split}$$

 F_i are structure functions $\rho_{ss'} = \frac{1}{2} \delta_{ss'}$, unpolarised; $rel \langle p | p \rangle_{rel} = 2E_N(\vec{p})$

Scaling $F_i = F_i(x)$ only

Forward Compton Amplitude:

DIS

$$\begin{split} T_{\mu\nu}(p,q) &\equiv i \int d^4 z \, e^{iq \cdot z} \rho_{ss' \, \mathrm{rel}}(p,s' | T(J_{\mu}(z)J_{\nu}(0))| p, s\rangle_{\mathrm{rel}} \\ &= \left(-\eta_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right) \mathcal{F}_1(\omega,Q^2) + \left(p_{\mu} - \frac{p \cdot q}{q^2}q_{\mu}\right) \left(p_{\nu} - \frac{p \cdot q}{q^2}q_{\nu}\right) \frac{\mathcal{F}_2(\omega,Q^2)}{p \cdot q} \end{split}$$

Related via the Optical theorem:

DIS Cross Section ~ Hadronic Tensor

Forward Compton Amplitude ~ Compton Tensor Introduction DIS FH

Lattice – $O(\lambda^2)$

Lattice - O()

Conclusions

Nucleon Structure Functions I

- (Photon) crossing symmetry $N \rightarrow \overline{N}$: $T_{\mu\nu}(p,q) = T_{\nu\mu}(p,-q)$ gives $\mathcal{F}_1(-\omega, Q^2) = \mathcal{F}_1(\omega, Q^2)$ Schwarz reflection: $f^*(z) = f(z^*)$
- Optical theorem relates the Compton SF to DIS SF

. . .

 $\mathrm{Im}\mathcal{F}_1(\omega,Q^2) = 2\pi F_1(x,Q^2)$

• So we can write a (subtracted) dispersion relation:

$$\mathcal{F}_{1}(\omega, Q^{2}) = \frac{2\omega}{\pi} \int_{1}^{\infty} d\omega' \left[\frac{\operatorname{Im}\mathcal{F}_{1}(\omega', Q^{2})}{\omega'(\omega' - \omega - i\epsilon)} - \frac{\operatorname{Im}\mathcal{F}_{1}(\omega', Q^{2})}{\omega'(\omega' + \omega - i\epsilon)} \right] + \mathcal{F}_{1}(0, Q^{2})$$

$$= \underbrace{4\omega^{2} \int_{0}^{1} dx' \frac{x'F_{1}(x', Q^{2})}{1 - x'^{2}\omega^{2} - i\epsilon}}_{\overline{\mathcal{F}}_{1}(\omega, Q^{2})} + \underbrace{\mathcal{F}_{1}(0, Q^{2})}_{once \ subtracted: S_{1}(Q^{2})}$$

Introduction DIS FH Lattice – $O(\lambda^{-})$ Lattice – $O(\lambda)$ Conclusions

Nucleon Structure Functions II

• As long as we are in the unphysical region [ie below elastic threshold]

 $|\omega| < 1 \Longleftrightarrow M_X^2 < M_N^2$

- No singularity in previous integral
- Physically $|\omega| < 1$ means states propagating between currents cannot go on-shell:

Nucleon Structure Functions III

In unphysical region $|\omega|<$ 1, no need for $i\epsilon,$ Taylor expand denominator of

 $\omega = 2p \cdot q/Q^2$

$$\begin{aligned} \overline{\mathcal{F}}_{1}(\omega, Q^{2}) &= 4\omega^{2} \int_{0}^{1} dx' \frac{x' F_{1}(x', Q^{2})}{1 - x'^{2} \omega^{2}} \\ &= 2 \sum_{n=1}^{\infty} \omega^{2n} M_{2n}^{(1)}(Q^{2}) \end{aligned}$$

where Mellin moments of the nucleon structure function $F_1(x, Q^2)$ are

$$M_{2n}^{(1)}(Q^2) = 2 \int_0^1 dx' \, x'^{2n-1} F_1(x',Q^2)$$

Furthermore consider Compton amplitude with $\mu = \nu = 3$, $p_z = q_z = 0$

$$T_{33}(p,q) = \overline{\mathcal{F}}_1(\omega, Q^2) = \sum_{n=1}^{\infty} 2\omega^{2n} M_{2n}^{(1)}(Q^2)$$

So from Compton amplitude data we can extract the Mellin moments

Expected shape of the Compton Amplitude

$$T_{33}(p,q) = \overline{\mathcal{F}}_{1}(\omega, Q^{2}) = 2\sum_{n=1}^{\infty} \omega^{2n} M_{2n}^{(1)}(Q^{2})$$

- ω in unphysical region
- Cross section positivity $\Rightarrow F_1 > 0 \Rightarrow M_2^{(1)} \ge M_4^{(1)} \ge \ldots > M_{2n}^{(1)} \ge \ldots > 0$

Introduction

DIS

Lattice – $O(\lambda^2)$

attice – $O(\lambda$

Conclusions

Lattice: Just need to compute (Euclidean) Compton Amplitude – $T_{\mu\nu}$!?

- Picture from: Fukaya, Hashimoto, Keneko, Ohki, arXiv:2010.01253
- $J_{u}^{(i)} = \bar{u}\Gamma^{(i)}u, \ J_{d}^{(i)} = \bar{d}\Gamma^{(i)}d$
- Computationally complicated: Loads of diagrams
- [+ disconnected diagrams]

Alternative: Feynman-Hellmann approach

Feynman–Hellmann — some Mathematical Details

Consider the 2-point nucleon correlation function

$$C_{fo\lambda}(t;\vec{p},\vec{q}) = {}_{\lambda}\langle 0 | \underbrace{\hat{\tilde{B}}_{N_f}(0;\vec{p})}_{\text{Sink: mom Op}} \cdot \hat{S}(\vec{q})^t \underbrace{\hat{\tilde{B}}_{N_o}(0,\vec{0})}_{\text{Source: spatial}} |0\rangle_{\lambda}$$

where \hat{S} is the \vec{q} -dependent transfer matrix

 $\hat{S}(\vec{q}) = e^{-\hat{H}(\vec{q})}$

and in the presence of a perturbation

$$\hat{H}(\vec{q}) = \hat{H}_0 - \sum_{\alpha} \lambda_{\alpha} \hat{\tilde{O}}_{\alpha}(\vec{q})$$

where

$$\hat{\tilde{\mathcal{O}}}_{\alpha}(\vec{q}) = \int_{\vec{x}} \left(\hat{O}_{\alpha}(\vec{x}) e^{i\vec{q}\cdot\vec{x}} + \hat{O}_{\alpha}^{\dagger}(\vec{x}) e^{-i\vec{q}\cdot\vec{x}} \right)$$

[Can generalise $\lambda_{\alpha} \hat{O}_{\alpha}(\vec{x}) \rightarrow |\lambda_{\alpha}| \underbrace{e^{i\phi_{\alpha}} \hat{O}_{\alpha}(\vec{x})}_{\alpha}$]

Introduction DIS FH Lattice $-O(\lambda^2)$ Lattice $-O(\lambda)$ Conclusion

Now insert two complete sets of unperturbed states

$$\langle \rangle \rightarrow \frac{|X\rangle}{\sqrt{\langle X|X\rangle}} , \ |0\rangle \rightarrow |0\rangle$$

D

$$|N(\vec{p})\rangle\langle N(\vec{p})| + \oint_{E_X(\vec{p}_X) > E_N(\vec{p})} |X(\vec{p})_X)\rangle\langle X(\vec{p}_X)| = 1$$

where

- $\hat{H}_0|X(\vec{p}_X)\rangle = E_X(\vec{p}_X)|X(\vec{p}_X)\rangle$
- Lowest state $|N(\vec{p})\rangle$ well separated from other states

before and after \hat{S}^t to give

 $C_{f_{o}\lambda}(t;\vec{p},\vec{q}) = \oint_{Y(\vec{p}_{Y})} {}_{\lambda}\langle 0|\hat{\tilde{B}}_{N_{f}}(\vec{p})|N(\vec{p}) \underbrace{\langle N(\vec{p})|\hat{S}(\vec{q})^{t}|Y(\vec{p}_{Y})\rangle}_{\text{need to evaluate}} \langle Y(\vec{p}_{Y})|\hat{\tilde{B}}_{N_{o}}(\vec{0})|0\rangle_{\lambda}$

Time dependent perturbation theory via the Dyson Series for

 $\exp\left\{-(\hat{H}_0-\sum_lpha\lambda_lpha\hat{ ilde{\mathcal{O}}}_lpha(ec{q}))t
ight\}$

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$ Conclusions Result – factorisation

 $C_{f_{o\,\lambda}}(t;\vec{p},\vec{q}) = {}_{\lambda}\langle 0|\hat{\tilde{B}}_{N_{f}}(\vec{p})|N(\vec{p})\rangle \times {}_{\lambda}\langle N(\vec{p})|\hat{\tilde{B}}_{N_{o}}(\vec{0})|0\rangle_{\lambda} \times e^{-E_{N\lambda}(\vec{p},\vec{q})t}$

where we have defined $_\lambda \langle N(\vec{p})|$ as

$$\lambda \langle N(\vec{p})| = \langle N(\vec{p})| + \lambda_{\alpha} \oint_{E_{Y}(\vec{p}_{Y}) > E_{N}(\vec{p})} \frac{\langle N(\vec{p})|\hat{\tilde{\mathcal{O}}}_{\alpha}(\vec{q})|Y(\vec{p}_{Y})\rangle}{E_{Y}(\vec{p}_{Y}) - E_{N}(\vec{p})} \langle Y(\vec{p}_{Y})| \Big|_{E_{Y} > E_{N}}$$

The modified energy is given by

$$\begin{split} E_{N\lambda}(\vec{p},\vec{q}) &= E_{N}(\vec{p}) - \lambda_{\alpha} \langle N(\vec{p}) | \hat{\tilde{\mathcal{O}}}_{\alpha}(\vec{1}) | \mathcal{N}(\vec{1}) \rangle \\ &- \lambda_{\alpha} \lambda_{\beta} \oint_{E_{X}(\vec{p}_{X}) > E_{N}(\vec{p})} \frac{\langle X(\vec{p}_{X}) | \hat{\tilde{\mathcal{O}}}_{\alpha}(\vec{q}) | N(\vec{p}) \rangle^{*} \langle X(\vec{p}_{X}) | \hat{\tilde{\mathcal{O}}}_{\beta}(\vec{q}) | N(\vec{p}) \rangle}{E_{X}(\vec{p}_{X}) - E_{N}(\vec{p})} \\ &+ O(\lambda^{3}) \end{split}$$

Introduction DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

The $O(\lambda^2)$ terms

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$ Conclusions Comments I For the matrix elements we have $[\hat{O}(\vec{x}) = e^{-i\hat{P}\cdot\vec{x}} \hat{O}(\vec{0}) e^{i\hat{P}\cdot\vec{x}}]$

 $\begin{aligned} \langle X(\vec{p}_X) | \hat{\tilde{\mathcal{O}}}_{\alpha}(\vec{q}) | N(\vec{p}) \rangle \\ &= \langle X(\vec{p}_X) | \hat{\mathcal{O}}_{\alpha}(\vec{0}) | N(\vec{p}) \rangle \, \delta_{\vec{p}_X, \vec{p}+\vec{q}} + \langle X(\vec{p}_X) | \hat{\mathcal{O}}_{\alpha}^{\dagger}(\vec{0}) | N(\vec{p}) \rangle \, \delta_{\vec{p}_X, \vec{p}-\vec{q}} \end{aligned}$

so matrix elements step up or down in \vec{q}

- Also valid for $X = N(\vec{p})$ so $O(\lambda)$ term vanishes $(\vec{q} \neq \vec{0})$
- Generalise: each λ inserts another Ô into the matrix element, so need an even number of λs ie odd powers of λ vanish
 At O(λ²ⁿ) need E_X(p ± nq) > E_N(p)

which gives

 $E_{N\lambda}(\vec{p},\vec{q})$

$$= E_{N}(\vec{p}) - \sum_{X: E_{X}(\vec{p}\pm\vec{q})>E_{N}(\vec{p})} \left[\frac{|\langle X(\vec{p}+\vec{q})|\lambda_{\alpha}\hat{O}_{\alpha}(\vec{0})|N(\vec{p})\rangle|^{2}}{E_{X}(\vec{p}+\vec{q}) - E_{N}(\vec{p})} + \frac{|\langle X(\vec{p}-\vec{q})|(\lambda_{\alpha}\hat{O}_{\alpha}(\vec{0}))^{\dagger}|N(\vec{p})\rangle|^{2}}{E_{X}(\vec{p}-\vec{q}) - E_{N}(\vec{p})} \right]$$

Comments II

• Need $E_N(\vec{p} \pm \vec{q}) > E_N(\vec{p})$ [X = N worst case] giving

$$-1 < \omega < 1 \qquad \qquad \omega = \frac{2\vec{p} \cdot \vec{q}}{\vec{q}^2}$$

- usual definition of ω (with $q_0 = 0$)
- ω in unphysical region safe

What has all this to do with the Compton Amplitude?

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$	Conc
--	------

Interpretation of results – Compton Amplitude Compton Amplitude

 $T_{\mu\nu}^{(\mathcal{M})}(p,q) = i \int d^4 x \, e^{iq \cdot x} \, \rho_{ss' \, rel} \langle N(\vec{p}), s'| \, T \, \hat{O}^{\dagger}_{\mu}(x) \hat{O}_{\nu}(0) \, |N(\vec{p}), s\rangle_{rel}$

Insert complete set of states

$$T_{\mu\nu}^{(\mathcal{M})}(p,q) = i \oint_{X(\vec{p}_X)} \int d^3x \, e^{-i\vec{q}\cdot\vec{x}} \\ \times \left[\int_0^\infty dx^0 e^{iq^0x^0} \langle N(\vec{p}) | \hat{O}^{\dagger}_{\mu}(x) | X(\vec{p}_X) \rangle \langle X(\vec{p}_X) | \hat{O}_{\nu}(0) | N(\vec{p}) \rangle \right. \\ \left. + \int_{-\infty}^0 dx^0 e^{iq^0x^0} \langle N(\vec{p}) | \hat{O}_{\nu}(0) | X(\vec{p}_X) \rangle \langle X(\vec{p}_X) | \hat{O}^{\dagger}_{\mu}(x) | N(\vec{p}) \right]$$

giving

$$\begin{split} T^{(\mathcal{M})}_{\mu\nu}(p,q) \\ &= \sum_{X} \left[\frac{\langle X(\vec{p}+\vec{q}) | \hat{O}_{\mu}(\vec{0}) | N(\vec{p}) \rangle^{*} \langle X(\vec{p}+\vec{q}) | \hat{O}_{\nu}(\vec{0}) | N(\vec{p}) \rangle}{E_{X}(\vec{p}+\vec{q}) - E_{N}(\vec{p}) - q^{0} - i\epsilon} \\ &+ \frac{\langle X(\vec{p}-\vec{q}) | \hat{O}_{\nu}^{\dagger}(\vec{0}) | N(\vec{p}) \rangle^{*} \langle X(\vec{p}-\vec{q}) | \hat{O}_{\mu}^{\dagger}(\vec{0}) | N(\vec{p}) \rangle}{E_{X}(\vec{p}-\vec{q}) - E_{N}(\vec{p}) + q^{0} - i\epsilon} \right] \end{split}$$

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions
--------------	-----	----	--------------------------	------------------------	-------------

Comparing with previous result

- $q^0 = 0$
- Choose \vec{p}, \vec{q} geometry so that $E_X(\vec{p} \pm \vec{q}) > E_N(\vec{p})$, ie $-1 < \omega < 1$ so can also drop $i\epsilon$
- Gives:

$$E_{N\lambda}(\vec{p},\vec{q}) = E_N(\vec{p}) - \frac{\lambda_{\alpha}^* \lambda_{\beta}}{\mathrm{rel} \langle N(\vec{p}) | N(\vec{p} \rangle_{\mathrm{rel}}} T^{(\mathcal{M})}_{\alpha\beta}((E_N(\vec{p}),\vec{p}),(0,\vec{q})) + O(\lambda^4)$$

For the DIS case considered here set $\mu = \nu = 3$; $p_z = q_z = 0$, giving $T_{33}(p,q) = \mathcal{F}_1(\omega, Q^2)$. So with $O_{\alpha} \rightarrow J_3$ and $\lambda_3 \rightarrow \lambda$ we have

$$\begin{split} \Delta E_{N\lambda}(\vec{p},\vec{q}) &\equiv E_{N\lambda}(\vec{p},\vec{q}) - E_N(\vec{p}) \\ &= -\frac{\lambda^2}{2E_N(\vec{p})} \mathcal{F}_1(\omega,Q^2) + O(\lambda^4) \end{split}$$

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

Some Lattice Details

 $\mathcal{L} = \mathcal{L}_0 + 2\lambda \cos(\vec{q} \cdot \vec{x}) J_3(x)$

- Valence u/d quarks in $S(\lambda)$ only
 - no disconnected terms
 - would require dedicated configs
- Vector current $J_{\mu} = Z_V \bar{q} \gamma_{\mu} q$ Z_V previously determined ~ 0.86
- 4 field strengths $\lambda = (\pm 0.0125, \pm 0.025)$
- 5 different current momenta in range $3 \le Q^2 \le 7 \text{ GeV}^2$
- O(10⁴) measurements for each Q², λ pair Inversion for each q, λ, varying p
 relatively cheap
- Jacobi smeared sources and sinks, rms $\sim 0.5\,\text{fm}$
- errors from 200 bootstrap samples

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

Kinematic coverage

• For example consider fixed

$$\vec{q} = \frac{2\pi}{32} (3, 5, 0)$$
 $L = 32$

• Can access different ω by varying nucleon momenta $\vec{p} = (2\pi/32)\vec{n}$

$$\omega=\frac{2\vec{p}\cdot\vec{q}}{\vec{q}^2}=\frac{2}{34}(3n_x+5n_y)$$

Blue dots: different nucleon Fourier momenta

Lat

Lattice – $O(\lambda^2)$

Lattice - O()

Conclusions

Extract Energy Shifts: $\Delta E_{N\lambda}$ for each λ

• Effective energy plot for $\Delta E_{N\lambda}$:

• Find the
$$O(\lambda^2)$$
 term:

• Ratio of perturbed to unperturbed 2-pt correlation functions

$$R_{\lambda} = \frac{C_{+\lambda}(t)C_{-\lambda}(t)}{C_{0}(t)^{2}}$$

Slope of curve

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$ Conc
--

Structure Function(s) of the Compton amplitude

- eg fixed $\vec{q} = 2\pi/32(4, 1, 0)$, ie $Q^2 = 4.7 \,\text{GeV}^2$
- Varying \vec{p} gives range of $\omega = 2\vec{p} \cdot \vec{q}/\vec{q}^2$ values:

• Now determine moments

$$\overline{\mathcal{F}}_1(\omega, Q^2) = 2\omega^2 (M_2^{(1)}(Q^2) + \omega^2 M_4^{(1)}(Q^2) + \dots)$$

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$ Concl	lusions
---	---------

$\mathsf{Fits} \Longrightarrow \mathsf{Moments}$

- Constraints: $M_2^{(1)} \ge M_4^{(1)} \ge \ldots \ge M_{2n}^{(1)} \ge \ldots > 0$ for u, d separately
- Bayesian implementation (likelihood + priors as constraints)
 → previous curves on *F*₁ versus ω plot

- Fall-off of the moments as expected
- · Second moment does not decrease as rapidly as expected from DIS

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$ Conclusions

Scaling – Power corrections

- Now have ability to study the Q² dependence of the moments. Not restricted to OPE and large Q²
- eg naive model constant + power corrections

• Need $Q^2 \gtrsim 10 \,{\rm GeV}^2$ to reliably extract moments to determine a value at μ = 2 GeV

Reconstruction of the Form Factor / pdf

$$T_{33}(\omega, Q^{2}) = \overline{\mathcal{F}}_{1}(\omega, Q^{2})$$

= $4\omega^{2} \int_{0}^{1} dx' \frac{x'F_{1}(x', Q^{2})}{1 - x'^{2}\omega^{2}}$
= $\int_{0}^{1} dx' K(x', \omega) F_{1}(x', Q^{2})$

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

The $O(\lambda)$ term

Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$

The $O(\lambda)$ terms – Scattering and Form Factors – General Discussion

- We previously showed that the $O(\lambda)$ terms vanish
- Can escape if there is an energy degeneracy
- Replace state $|N(\vec{p})\rangle$ with energy $E(\vec{p})$ by

 $|N(\vec{p}_r)\rangle$, $r = 1, \dots, d_S$ degenerate energy states, with energy $\bar{E}(\vec{p}, \vec{q})$

• As $\langle N(\vec{p}) | \hat{O}(\vec{q}) | N(\vec{p}) \rangle$ now becomes a $d_S \times d_S$ Hermitian matrix

 $M_{rs} = \langle N(\vec{p}_r) | \hat{\tilde{O}}(\vec{q}) | N(\vec{p}_s) \rangle$

then can diagonalise, to give

 $E_{AI}^{(i)}(\vec{p},\vec{q}) = \bar{E}_{N}(\vec{p},\vec{q}) - \lambda \mu^{(i)}(\vec{p},\vec{q}) + O(\lambda^{2}), \quad i = 1, \dots, d_{5}$

 $\begin{bmatrix} u^{(i)}, i = 1, \dots, d_S \text{ eigenvalues} \end{bmatrix}$

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

Specific discussion I

• *d*_S = 2:

 $|N(\vec{p}_1)\rangle = |N(\vec{p})\rangle, \qquad |N(\vec{p}_2\rangle = |N(\vec{p} + \vec{q})\rangle$

with

$$E_N(\vec{p}) = E_N(\vec{p} + \vec{q}) \Rightarrow 2\vec{p} \cdot \vec{q} = -\vec{q}^2$$

• eg 1-dimensional sketch, $p = -\frac{1}{2}q$:

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

Specific discussion II

• Remember matrix elements step up or down in \vec{q} :

 $[\hat{O}(\vec{x})=e^{-i\hat{\vec{p}}\cdot\vec{x}}\,\hat{O}(\vec{0})\,e^{i\hat{\vec{p}}\cdot\vec{x}}]$

 $\begin{aligned} \langle N(\vec{p}_r) | \hat{\vec{\mathcal{O}}}(\vec{q}) | N(\vec{p}_s) \rangle \\ &= \langle N(\vec{p}_r) | \hat{O}(\vec{0}) | N(\vec{p}_s) \rangle \delta_{\vec{p}_r, \vec{p}_s + \vec{q}} + \langle N(\vec{p}_r) | \hat{O}^{\dagger}(\vec{0}) | N(\vec{p}_s) \rangle \delta_{\vec{p}_r, \vec{p}_s - \vec{q}} \end{aligned}$

• So here the 2 × 2 matrix is anti-diagonal

$$M_{rs} = \begin{pmatrix} 0 & a^* \\ a & 0 \end{pmatrix}_{rs} \quad \text{with } a = \langle N(\vec{p} + \vec{q}) | \hat{O}(\vec{0}) | N(\vec{p}) \rangle$$

and diagonalisation gives $E_{\lambda N}^{(\pm)}$: their difference is

$$\begin{split} \Delta E_{\lambda N}(\vec{p}, \vec{q}) &= E_{\lambda N}^{(-)}(\vec{p}, \vec{q}) - E_{\lambda N}^{(+)}(\vec{p}, \vec{q}) \\ &= 2\lambda \left| \langle N(\vec{p} + \vec{q}) | \hat{O}(\vec{0}) | N(\vec{p}) \rangle \right| + O(\lambda^2) \end{split}$$

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$	Conclusions
---	-------------

Elastic nucleon scattering

$$p' = p + q$$

$\langle N(\vec{p}') | J^{\mu}(\vec{q}) | N(\vec{p}) \rangle =$ $\overline{u}(\vec{p}') \left[\gamma^{\mu} F_1(Q^2) + i\sigma^{\mu\nu} \frac{q_{\nu}}{2M_N} F_2(Q^2) \right] u(\vec{p})$

Sachs form factors

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{(2M_N)^2}F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

• Feynman–Hellmann:

- $O = J_4, J_3$
- Breit frame geometry [electron bounces from nucleon, $\vec{p}' = -\vec{p}$ is a trivial solution of $E_N(\vec{p}') = E_N(\vec{p})$]

$$\Delta E_{\lambda N} = \begin{cases} \lambda \frac{M_N}{E_N} G_E \\ \lambda \frac{(\vec{e} \times \vec{q})_3}{E_N} G_M \end{cases}$$

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

Results

- LH: G_E, G_M also compared to variational 3-point (on same configs)
- RH: As for LH together with JLAB experimental results

Possible future perspectives

• Off-forward Compton Amplitude (OFCA) and GPDs

Hannaford-Gunn, Can et al., (CSSM-QCDSF-UKQCD)

arXiv:2110.11532

- Spin dependent Structure functions / Form factors
- Including quark-line-disconnected matrix elements
 - Expensive: Need purpose generated configurations with determinant also containing the λ term
 - (H)MC problem: for probability definition need real determinant so fermion matrix must be γ_5 -Hermitian

 $\implies \lambda^{V}, \, \lambda^{A} \text{ imaginary} \qquad [\lambda^{S}, \, \lambda^{P}, \, \lambda^{T} \text{ real}]$

so E_{λ} develops an imaginary part for $O \sim V, A$

[Not a problem for the valence sector, as just inversion of a matrix]

Lattice - O()

Conclusions

Generalisation to transition matrix elements

eg $s \rightarrow u$ ie $\Sigma(sdd) \rightarrow N(udd)$ decay

 $O \sim \bar{u}\gamma s$

At $O(\lambda)$: 'quasi-degenerate' states

 $\Delta E_{\lambda \Sigma N}(\vec{p}, \vec{q}) = \sqrt{\left(E_N(\vec{p} + \vec{q}) - E_{\Sigma}(\vec{p})\right)^2 + 4\lambda^2 \left|\left\langle N(\vec{p} + \vec{q}) | \hat{O}(\vec{0}) | \Sigma(\vec{p}) \right\rangle\right|^2}$

[Also holds when $E_N(\vec{p}) \approx E_N(\vec{p} + \vec{q})$]

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions
--------------	-----	----	--------------------------	------------------------	-------------

Further applications of the Compton amplitude

• Electromagnetic correction to proton - neutron mass splitting

[eg Walker-Lourd arXiv:1203.0254, ...]

$$M_p - M_n = \delta M^{\gamma} + \delta M^{m_d - m_u}$$

• Mixed currents: Neutrino-nucleon charged weak current:

$$W^{\mu\nu} \equiv \frac{1}{4\pi} \int d^4 z \, e^{iq \cdot z} \rho_{ss' \, rel}(p, s' | [J^{\mu}_{em}(z), J^{\nu}_{W,A}(0)] | p, s \rangle_{rel}$$
$$= -i \epsilon^{\mu\nu\alpha\beta} \frac{q_{\alpha} p_{\beta}}{2p \cdot q} F_3(x, Q^2)$$

 $[J^{\nu}_{W,A} = \bar{u}\gamma_{\nu}\gamma_{5}d$ axial part of weak charged current]

[eg Seng arXiv:1903.07969, Feng arXiv:2003.09798, ...]

Conclusions

- A new versatile approach
- Only involves computation of 2-point correlation functions [rather than 3-pt or 4-pt]
- Particularly for $\langle N|JJ|N \rangle$:
 - Longer source-sink separations possible less excited states contamination,
 - Overcomes fierce operator mixing / renormalisation issues
 - Able to compute Compton Amplitudes and structure function moments

Introduction	DIS	FH	Lattice – $O(\lambda^2)$	Lattice – $O(\lambda)$	Conclusions

Backup

Dyson Series I

Regarding \hat{B} as 'small', then have operator expansion

$$e^{t(\hat{A}+\hat{B})} = e^{t\hat{A}} + \int_{0}^{t} dt' \, e^{(t-t')\hat{A}} \, \hat{B} \, e^{t'\hat{A}} + \int_{0}^{t} dt' \, \int_{0}^{t'} dt'' \, e^{(t-t')\hat{A}} \, \hat{B} \, e^{(t'-t'')\hat{A}} \, \hat{B} e^{t''\hat{A}} + O(\hat{B}^{3})$$

Apply to

$$\langle N(\vec{p})|e^{-(\hat{H}_0-\lambda_{\alpha}\hat{\tilde{O}}_{\alpha})t}|Y(\vec{p}_Y)\rangle$$

with $\hat{A} \rightarrow -\hat{H}_0$ and $\hat{B} \rightarrow \lambda_{\alpha} \hat{\tilde{O}}_{\alpha}$

Procedure

- $\hat{H}_0|X(\vec{p}_X)\rangle = E_X(\vec{p}_X)|X(\vec{p}_X)\rangle$
- Insert additional complete set of states (X) in $O(\lambda^2)$ term
- Use integrals

$$\int_0^t dt' e^{-\alpha t'} = \frac{1}{\alpha} \left(1 - e^{-\alpha t} \right)$$
$$\int_0^t dt' \int_0^{t'} dt'' e^{-\alpha t' - \beta t''} = \frac{1}{\beta - \alpha} \left[\frac{1}{\alpha} \left(1 - e^{-\alpha t} \right) - \frac{1}{\beta} \left(1 - e^{-\beta t} \right) \right]$$

 $\alpha,\ \beta$ are both differences in energy states: E_X – $E_N,\ E_Y$ – $E_N,\ E_Y$ – E_X

Introduction DIS FH Lattice –
$$O(\lambda^2)$$
 Lattice – $O(\lambda)$ Conclusions
Dyson Series II
 $(M(z\lambda)) = (\hat{H}_0 - \lambda - \hat{\hat{O}}_0) f(M(z-\lambda))$

$$\begin{split} &N(\vec{p})|\hat{e}^{-(\chi_{0}^{-},\chi_{\alpha}^{-}\chi_{\alpha}^{-})}|Y(\vec{p}_{Y})\rangle \\ &= -e^{-E_{N}(\vec{p})t} \\ &\times \left[\delta_{YN} + t\,\lambda_{\alpha}\langle N(\vec{p})|\hat{\tilde{O}}_{\alpha}(\vec{q})|N(\vec{p})\rangle\delta_{YN} + \lambda_{\alpha} \left. \frac{\langle N(\vec{p})|\hat{\tilde{O}}_{\alpha}(\vec{q})|Y(\vec{p}_{Y})\rangle}{E_{Y}(\vec{p}_{Y}) - E_{N}(\vec{p})} \right|_{E_{Y} > E_{N}} \\ &+ \frac{1}{2!}t^{2}\,\lambda_{\alpha}\lambda_{\beta}\,\langle N(\vec{p})|\hat{\tilde{O}}_{\alpha}(\vec{q})|N(\vec{p})\rangle\langle N(\vec{p})|\hat{\tilde{O}}_{\beta}(\vec{q})|N(\vec{p})\rangle \\ &+ t\,\lambda_{\alpha}\lambda_{\beta} \left. \frac{\langle N(\vec{p})|\hat{\tilde{O}}_{\alpha}(\vec{q})|N(\vec{p})\rangle\langle N(\vec{p})|\hat{\tilde{O}}_{\beta}(\vec{q})|Y(\vec{p}_{Y})\rangle}{E_{Y}(\vec{p}_{Y}) - E_{N}(\vec{p})} \right|_{E_{Y} > E_{N}} \\ &+ t\,\lambda_{\alpha}\lambda_{\beta} \left. \frac{\oint_{E_{X}(\vec{p}_{X}) > E_{N}(\vec{p})}{\langle N(\vec{p})|\hat{\tilde{O}}_{\alpha}(\vec{q})|X(\vec{p}_{X})\rangle\langle X(\vec{p}_{X})|\hat{\tilde{O}}_{\beta}(\vec{q})|N(\vec{p})\rangle}{E_{X}(\vec{p}_{X}) - E_{N}(\vec{p})} + O(\lambda^{3}) \right] + ... \end{split}$$

Comments

- Dropped more damped terms then $e^{-E_N t}$
- Linear and quadratic terms in t arise due to cases when α or $\beta \to 0$ or $\beta \to \alpha$

Comment on Moments - Compare to Conventional Approach I

• Operator Product Expansion

[Expand OO in Compton Amplitude as sum of Ops]

$$M_{2n}^{(1)}(Q^2) = \sum_{\text{NS}} \underbrace{C_{q2n}^{(1)\overline{\text{MS}}}(Q^2/\mu^2, \alpha_s^{\overline{\text{MS}}})}_{\text{Wil coeff}} \underbrace{v_{2n}^{(q)\overline{\text{MS}}}(\mu)}_{\text{Had ME}} + O(1/Q^2)$$

- Wilson coefficient perturbatively computable: $Q_q^2(1 + O(\alpha_s^{MS}))$
- Matrix element given by

$$\langle N(\vec{p}) | \left[\mathcal{O}_q^{\{\mu_1 \cdots \mu_n\}} - \mathrm{Tr} \right] | N(\vec{p}) \rangle^{\overline{\mathrm{MS}}} \equiv 2 v_n^{(q) \overline{\mathrm{MS}}} [p^{\mu_1} \cdots p^{\mu_n} - \mathrm{Tr}]$$

and

$$\mathcal{O}_q^{\gamma\,\mu_1\cdots\mu_n}=i^{n-1}\overline{q}\gamma^{\mu_1}\stackrel{\leftrightarrow}{D^{\mu_2}}\cdots\stackrel{\leftrightarrow}{D^{\mu_n}}q,\qquad q=u,d$$

• Just need to compute these matrix elements !?

Introduction DIS FH Lattice – $O(\lambda^2)$ Lattice – $O(\lambda)$ Conclusions

Moments – Conventional approach II

 The problem is that on the lattice, reduced H(4) symmetry means much more mixing, practically only v₂, v₄ possible [QCDSF: hep-ph/0410187]

$$\mathcal{O}_{v_4} = \mathcal{O}_{\{1144\}}^{\gamma} + \mathcal{O}_{\{2233\}}^{\gamma} - \frac{1}{2} \left(\mathcal{O}_{\{1133\}}^{\gamma} + \mathcal{O}_{\{1122\}}^{\gamma} + \mathcal{O}_{\{2244\}}^{\gamma} + \mathcal{O}_{\{3344\}}^{\gamma} \right)$$

Additional operators mixing with O_{v4}:

$$\begin{split} \mathcal{O}_{v_4}^{m_1} &= -\mathcal{O}_{1144}^{\gamma} - \mathcal{O}_{1441}^{\gamma} - \mathcal{O}_{4411}^{\gamma} + 2\mathcal{O}_{1414}^{\gamma} + 2\mathcal{O}_{1414}^{\gamma} + 2\mathcal{O}_{3232}^{\gamma} \\ &\quad -\mathcal{O}_{2233}^{\gamma} - \mathcal{O}_{3223}^{\gamma} - \mathcal{O}_{3322}^{\gamma} + 2\mathcal{O}_{3322}^{\gamma} + 2\mathcal{O}_{3233}^{\gamma} + 2\mathcal{O}_{3232}^{\gamma} \\ &\quad + \frac{1}{2} \left(+\mathcal{O}_{1133}^{\gamma} + \mathcal{O}_{1131}^{\gamma} + \mathcal{O}_{1331}^{\gamma} + \mathcal{O}_{3311}^{\gamma} - 2\mathcal{O}_{1313}^{\gamma} - 2\mathcal{O}_{2121}^{\gamma} \\ &\quad + \mathcal{O}_{1212}^{\gamma} + \mathcal{O}_{2112}^{\gamma} + \mathcal{O}_{2121}^{\gamma} + \mathcal{O}_{2121}^{\gamma} - 2\mathcal{O}_{2121}^{\gamma} - 2\mathcal{O}_{2121}^{\gamma} \\ &\quad + \mathcal{O}_{2244}^{\gamma} + \mathcal{O}_{4224}^{\gamma} + \mathcal{O}_{2442}^{\gamma} + \mathcal{O}_{4422}^{\gamma} - 2\mathcal{O}_{2424}^{\gamma} - 2\mathcal{O}_{4242}^{\gamma} \\ &\quad + \mathcal{O}_{3344}^{\gamma} + \mathcal{O}_{3214}^{\gamma} + \mathcal{O}_{3412}^{\gamma} + \mathcal{O}_{2413}^{\gamma} - \mathcal{O}_{3133}^{\gamma} - \mathcal{O}_{4333}^{\gamma} \right) , \\ \mathcal{O}_{v_4}^{m_2} &= \frac{1}{2} \left(+\mathcal{O}_{1234}^{\gamma\gamma5} - \mathcal{O}_{2314}^{\gamma\gamma5} + \mathcal{O}_{1423}^{\gamma\gamma5} - \mathcal{O}_{2413}^{\gamma\gamma5} - \mathcal{O}_{3142}^{\gamma\gamma5} - \mathcal{O}_{3142}^{\gamma\gamma5} - \mathcal{O}_{3142}^{\gamma\gamma5} + \mathcal{O}_{3241}^{\gamma\gamma5} - \mathcal{O}_{4231}^{\gamma\gamma5} \right) \\ &\quad + \mathcal{O}_{1234}^{\gamma\gamma5} - \mathcal{O}_{2431}^{\gamma\gamma5} - \mathcal{O}_{1342}^{\gamma\gamma5} + \mathcal{O}_{3142}^{\gamma\gamma5} - \mathcal{O}_{3142}^{\gamma\gamma5} - \mathcal{O}_{3142}^{\gamma\gamma5} - \mathcal{O}_{2431}^{\gamma\gamma5} - \mathcal{O}_{2431}^{\gamma\gamma5} + \mathcal{O}_{3241}^{\gamma\gamma5} - \mathcal{O}_{2431}^{\gamma\gamma5} + \mathcal{O}_{3241}^{\gamma\gamma5} - \mathcal{O}_{2431}^{\gamma\gamma5} + \mathcal{O}_{3241}^{\gamma\gamma5} - \mathcal{O}_{2431}^{\gamma\gamma5} + \mathcal{O}_{3421}^{\gamma\gamma5} - \mathcal{O}_{2341}^{\gamma\gamma5} - \mathcal{O}_{2341}^{\gamma5} -$$

- Feasible !?
- Note: we compute here 'physical' moments everything included, not just ME of local operators

In particle physics, need computation of physical quantities of mesons/baryons such as masses and matrix elements:

decay constants, form factors, (moments of) structure functions, ...

directly from the underlying theory of QCD

Need computation of non-perturbative quantities:

 $\langle H'|\widehat{\mathcal{O}}|H\rangle$

 $[m_H]$

General structure

- $H \sim \overline{\psi}\psi$ (meson) or $H \sim \psi\psi\psi$ (baryon)
- $\mathcal{O} \sim \overline{\psi}\psi \sim J$ or $\mathcal{O} \sim FF$ or even more complicated $\mathcal{O} \sim JJ$

This talk:

Describes determination of matrix elements using the Feynman-Hellmann theorem, with application to the Compton Amplitude and scattering