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(g − 2) of the muon: current status

Current 4.2σ tension between the direct measurement (BNL + FNAL) and
Standard Model prediction:

Standard Model prediction: White Paper 2006.04822 (Phys.Rept).

Figure from Muon (g-2) collaboration, 2104.03281 (PRL).



Outline

Reducing the hadronic uncertainties using lattice QCD:

I the hadronic vacuum polarisation (O(α2), 0.2% precision desirable)

I the ‘hadronic light-by-light’ contribution
(O(α3), 10% precision desirable)

Useful resources:

I online workshop “Muon g-2 theory initiative workshop in memoriam Simon
Eidelman”, KEK, Japan, 28 June - 3 July 2021.

I (online) Lattice conference 2021, MIT, July 26-30, 2021.

I (online) TAU2021 conference, Indiana University, Sep. 27 to Oct. 1, 2021.



Computing ahvp
µ from lattice-QCD current-current correlators G(t)

G(t) ≡
∫
d3x〈j3(t, ~x) j†3(0)〉 =

∫ ∞
0

dω ω2Re+e−→hadrons(ω
2)

12π2
e−ωt.

a = 0.064fm : mπ = 200 MeV mπ = 130 MeV Mainz/CLS 1904.03120.
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ahvpµ =
(α
π

)2 ∫ ∞
0

dt K̃(t)G(t), where K̃(t) ∼


π2

9
m2
µt

4 t� m−1
µ

2π2t2 t� m−1
µ .

I The tail of the integrand is affected by statistical fluctuations, by finite-size
effects and depends strongly on the pion mass due to the ππ channel.



Leading hadronic contribution to (g − 2)µ from lattice QCD

Summary plot from White Paper 2006.04822 (Phys.Rept).

Lattice average: aHVP,LO
µ = (711.6± 18.4)× 10−10

To be compared with ahvp,phenoµ = (693.1± 4.0)× 10−10.



The Budapest-Marseille-Wuppertal lattice calculation

BMW result: ahvp,BMW
µ = 707.5(2.3)stat(5.0)syst(5.5)tot × 10−10.

[BMW, 2002.12347 (Nature vol 593, 51 (2021))].

Figure from HM, Thrill of the Magnetic Moment, Nature Vol 593, 44 (2021).



Aspects of the dispersive approach: aµ = (
αmµ
3π )2

∫∞
0

ds
s2
K̂(s)R(s)

Selected exclusive channels contributing to ahvpµ : From White Paper 2006.04822

Tension in π+π− channel data: Fig from BES III, 2009.05011 (PLB).



BMW calculation: continuum extrapolation of light-quark
(connected) contribution

In this calculation using stout-smeared staggered fermions, pion taste-splittings
are the source of the dominant cutoff effects:

Error estimated from the distribution of results obtained in the continuum,
applying different a2 correction schemes to the data.

[BMW, 2002.12347 (Nature vol 593, 51 (2021))].



Recent progress on understanding cutoff effects from short distances

At short distances in massless lattice QCD:

G(t, a) = Gcont(t)(1 + O((a/t)2))

Therefore, since Gcont(t) ∼ 1/t3,∫ t

0

dt′ t′4G(t′, a) =

∫ t

0

dt′ t′4Gcont(t
′) + const× a2

∫ t

a

dt′ t′4
1

t′5
+ O(a2)

one obtains a logarithmically enhanced cutoff effect from short distances.

In leading order of Wilson lattice perturbation theory, one finds∫ t

0

dt′ t′4G(t′, a) =

∫ t

0

dt′ t′4Gcont(t
′) +

7Nc
∑
f Q

2
f

60π2
a2 log(1/a) + O(a2).

Cè, Harris, HM, Toniato, Török [2106.15293].

See Husung, Marquard, Sommer 1912.08498 (EPJC) for recent results on
logarithmic effects to be expect in on-shell quantities.



Possible strategies to improve control over the long-distance tail

1. Auxiliary calculation of the (discrete, finite-volume) spectrum of ππ states
and their coupling to the e.m. current.
The low-lying states saturate the correlator at long distances.
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See also RBC/UKQCD

2019;

Fermilab-HPQCD-MILC

2021.

2. ‘all-to-all’ propagators using the low eigenmodes of the Dirac operator
RBC collaboration 1801.07224 (PRL); BMW collaboration 2002.12347 (Nature).

3. approximate factorization of the QCD path integral with bias correction.
Dalla Brida et al., 2007.02973.



Other aspects of lattice calculations of ahvp
µ

Beyond controlling the lattice-spacing dependence and the statistical precision
of the tail, there are many aspects to the calculation:

I “scale setting”: the lattice spacing must be calibrated to a precision of a
few permille

I finite-size effects

I disconnected diagrams

I strange and charm contributions (contribute about 54 and 15 ×10−10)

I isospin-breaking effects: expanding around mπ = mphys

π0 , appear to be very
small due to large cancellations between different contributions (BMW,
2002.12347). Several formalisms are available to handle QED in lattice
QCD.



Contribution of an intermediate window of Euclidean time

I A full lattice calculation of ahvpµ at the subpercent level requires control
over a vast number of contributions and effects.

I ⇒ community strategy: perform comparisons of particularly precisely
determined subcontributions or closely related quantities.

aWµ =
(α
π

)2 ∫ ∞
0

dt K̃(t) ·window[t0,t1](t) ·G(t), t0 = 0.4 fm, t1 = 1.0 fm.

Expect updates in coming few months.

Figure from BMW, 2002.12347 (Nature).



Hadronic light-by-light contribution to (g − 2)µ from lattice QCD



Direct lattice calculation of HLbL in (g − 2)µ

At first, this was thought of as a QED+QCD calculation
[pioneered in Hayakawa et al., hep-lat/0509016].

Today’s viewpoint: the calculation is considered a QCD four-point Green’s
function, to be integrated over with a weighting kernel which contains all the
QED parts.

RBC-UKQCD: calculation of aHLbL
µ using coordinate-space method in muon

rest-frame; photon+muon propagators:

I either on the L× L× L torus (QEDL) (1510.07100–present)

I or in infinite volume (QED∞) (1705.01067–present).

Mainz:

I manifestly covariant QED∞ coordinate-space approach, averaging over
muon momentum using the Gegenbauer polynomial technique
(1510.08384–present).



Coordinate-space approach to aHLbL
µ , Mainz version

QED kernel L̄[ρ,σ];µνλ(x, y)

⇒

aHLbL
µ =

me6

3

∫
d4y︸ ︷︷ ︸

=2π2|y|3d|y|

[ ∫
d4x L̄[ρ,σ];µνλ(x, y)︸ ︷︷ ︸

QED

iΠ̂ρ;µνλσ(x, y)︸ ︷︷ ︸
=QCD blob

]
.

iΠ̂ρ;µνλσ(x, y) = −
∫
d4z zρ

〈
jµ(x) jν(y) jσ(z) jλ(0)

〉
.

I L̄[ρ,σ];µνλ(x, y) computed in the continuum & infinite-volume

I no power-law finite-volume effects & only a 1d integral to sample the integrand
in |y|.

[Asmussen, Gérardin, Green, HM, Nyffeler 1510.08384, 1609.08454]



Tests of the framework and adjustments to the kernel

0 1 2 3 4 5 6

|y| / mµ

-1e-09

0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

7e-09

8e-09

9e-09

1e-08

1.1e-08

1.2e-08

f(
|y

|)
 m

µ

Λ = 0.0
Λ = 0.4
Λ = 0.8
Λ = 1.0
Λ = ∞

Integrands (Lepton loop, method 2)

0 1 2 3 4 5 6

|y|
max

 / mµ

0

5e-10

1e-09

1.5e-09

2e-09

2.5e-09

3e-09

3.5e-09

4e-09

4.5e-09

5e-09

5.5e-09

a µL
ep

.  (
 |y

| m
ax

 ) Λ = 0.0
Λ = 0.4
Λ = 0.8
Λ = 1.0
Λ = ∞
Exact Result

Correspondings integrals

I The QED kernel L̄[ρ,σ];µνλ(x, y) is parametrized by six ‘weight’ functions
of the variables (x2, x · y, y2).

I
L̄(Λ)

[ρ,σ];µνλ
(x, y) =L̄[ρ,σ];µνλ(x, y)− ∂

(x)
µ (xαe

−Λm2
µx

2/2
)L̄[ρ,σ];ανλ(0, y)

− ∂
(y)
ν (yαe

−Λm2
µy

2/2
)L̄[ρ,σ];µαλ(x, 0),

I Using this kernel, we have reproduced (at the 1% level) known results for
a range of masses for:

1. the lepton loop (spinor QED, shown in the two plots);
2. the charged pion loop (scalar QED);
3. the π0 exchange with a VMD-parametrized transition form factor.



Wick-contraction topologies in HLbL amplitude 〈0|T{jµx jνy jλz jσ0 }|0〉

(4) (2,2) (3,1) (2,1,1) (1,1,1,1)

First two classes of diagrams turn out to be dominant, with a cancellation
between them.

Example: Π = 〈(ju − jd)(ju − jd)(ju − jd)(ju − jd)〉 does not contain the π0

pole (π0 only couples to one isovector, one isoscalar current).

Write out the Wick contractions: Π = 2 ·Π(4) + 4 ·Π(2,2)

In kinematic regime where π0 dominates: |Π| � Π(4) ⇒ Π(2,2) ≈ − 1
2
Π(4).

Including charge factors:
[
(Q2

u +Q2
d)

2Π(2,2)
]

= − 25
34

[
(Q4

u +Q4
d)Π

(4)
]
.

Large-Nc argument by J. Bijnens, 1608.01454; see also 1712.00421.



The connected and leading disconnected contribution

Cumulated aHLbL
µ =

∫ |y|max

0
d|y| f(|y|)

Connected Leading disconnected
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Chiral, continuum, volume extrapolation

Connected contribution disconnected contribution
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Contribution Value×1011

Light-quark fully-connected and (2 + 2) 107.4(11.3)(9.2)(6.0)
Strange-quark fully-connected and (2 + 2) −0.6(2.0)

(3 + 1) 0.0(0.6)
(2 + 1 + 1) 0.0(0.3)

(1 + 1 + 1 + 1) 0.0(0.1)
Total 106.8(15.9)

[Chao et al, 2104.02632 (EPJC)]



RBC/UKQCD (QEDL): cumulative contributions to aHLbL
µ

Connected −→

Disconnected −→

[Blum et al. 1911.08123 (PRL)]



Compilation of aHLbL
µ determinations
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Good consistency of different determinations.
Fig from Chao et al, 2104.02632 (EPJC).



Conclusion

I (g − 2)µ remains a hot topic in precision tests of the SM!

I HVP: consistency checks expected soon between different
lattice collaborations

I the HLbL contribution shows good agreement between the
dispersive approach and two independent lattice calculations.


