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Motivations

Composite systems (molecules, atoms, nuclei, hadrons...) generally have a spectrum of excitations.
What about the charged “elementary” particles like quarks and leptons?

By Gauss’s Law, a charged particle is accompanied by a surrounding gauge (and possibly other) fields. If
these surrounding fields interact with themselves, could they not also exhibit a spectrum of excitations?
This would look like a mass spectrum of the isolated elementary particle.

glueΨV =

         confined phase

known spectrum of excitations

This doesn’t happen in pure QED. Any energy eigenstate containing a static ± charge pair is just the
Coulomb field plus some number of photons. Gauge Higgs theories could be different.

Motivation: superconductivity, electroweak sector.
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Are all physical states gauge invariant?

No, not quite. The Gauss law constraint only requires invariance under infinitesimal gauge transformations.
In QED, in an infinite volume, a physical state containing a single static charge transforms under a global
subgroup of the gauge group.

The ground state of pure QED containing a single static electric charge at point x is the Dirac state

|Ψx〉 = ψ
+

(x)ρC(x; A)|Ψ0〉
where

ρC(x; A) = exp

[
−i

e
4π

∫
d3z Ai(z)

∂

∂zi

1
|x− z|

]

It is easy to check that |Ψx〉 satisfies the Gauss Law. However, let g(x) = eiθ(x) be an arbitrary U(1) gauge
transformation, and we separate out the zero mode θ(x) = θ0 + θ̃(x). Then

ψ(x)→ eiθ(x)ψ(x)

but
ρC(x; A)→ eiθ̃(x)ρC(x; A)
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Pseudomatter fields

It follows that
|Ψx〉 → e−iθ0 |Ψx〉

Local symmetries cannot break spontaneously, of course (Elitzur). But global symmetries can.

The operator

ρC(x; A) = exp

[
−i

e
4π

∫
d3z Ai(z)

∂

∂zi

1
|x− z|

]
is a first example of a pseudomatter field.

Definition

A pseudomatter field ρ(x; A) is a non-local functional of the gauge field
which transforms like a matter field in the fundamental representation of
the gauge group, except under the global center subgroup of the gauge
group.

We combine the scalar field and pseudomatter fields with the static charge operator to create physical states
in gauge Higgs theories.
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more examples of pseudomatter fields

1 Any SU(N) gauge transformation gF(x; A) to a physical gauge F(A) = 0 can be decomposed
into N pseudomatter fields {ρn}, and vice-versa:

ρa
n(x; A) = g†an

F (x; A)

In particular, the operator ρ∗C(x; A) defined earlier is precisely the gauge transformation to Coulomb
gauge in an abelian theory. This operator dresses a static charge with a surrounding Coulomb field:
ψ(x)ρC(x; A)Ψ0.

2 In an SU(N) lattice gauge theory, any eigenstate ξn(x; U) of the covariant Laplacian operator,

−D2ξn = κnξn

where

(−D2)ab
xy =

3∑
k=1

[
2δabδxy − Uab

k (x)δy,x+k̂ − U†ab
k (x− k̂)δy,x−k̂

]
is a pseudomatter field

ρa(x; U) = ξa
n(x; U)

(This is the idea behind the Laplacian gauges of Vink and Wiese.)
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Excitations of elementary fermions in gauge Higgs theories

For static quarks in a pure gauge theory there is a tower of metastable states

Ψn(R) = q(x)Vn(x, y; U)q(y)Ψ0

corresponding to string excitations. This has been observed in computer simulations.
Juge, Kuti, and Morningstar, (2003), Brandt and Meineri (2016)

For light quarks, the excited states lie on Regge trajectories. A spectrum of excitations exists in
the confinement region of a gauge Higgs theory.

In the Higgs phase, is there a similar tower of metastable states of the form

Ψn(R) = qa(x)

[∑
m

c(n)
m ρa

m(x)ρ†bm (y)

]
qb(y)Ψ0

where the {ρm(x)} are pseudo-matter fields?
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The Models

We investigate:

1 SU(3) gauge Higgs theory. The Higgs scalar is in the fundamental representation.
J.Greensite, PRD 102 (2020) 5, 054504 , arXiv: 2007.11616 [hep-lat]

2 The q = 2 abelian Higgs model. The Higgs scalar has charge q = 2.
K.M., PRD 103 (2021) 7, 074508 , arXiv: 2012.13991 [hep-lat]

3 Landau-Ginzburg effective action for superconductivity.
K.M. and J.Greensite, in progress

4 Chiral U(1) gauge Higgs theory (Smit-Swift formulation). The Higgs scalar has charge q = 1.
J.Greensite, arXiv: 2104.12237 [hep-lat]

In each of these models we impose a unimodular constraint |φ| = 1 for simplicity.

In the study of static fermion excitations, we find that each model has its own special features which must
be taken into account.
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Notation

A reminder: In a lattice Euclidean time field theory, with periodic boundary conditions and time
extent Nt, there is an operator τ whose matrix elements in Schrodinger representation are
known as the transfer matrix

Z = Tr τNt , τ = e−Ha

But when computing a Euclidean-time correllator of operators A(t),B(0), the relevant operator
is actually the rescaled transfer matrix T

〈A(t)B(0)〉 = 〈Ψ0|AT tB|Ψ0〉

where
T = e−(H−E0)a

and Ψ0, E0 are the vacuum state and vacuum energy respectively.

With a slight abuse of language, I will refer to T , rather than τ , as the transfer matrix.
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How to find excitation enregy

If |Ψ(R)〉 is some arbitrary physical state containing a static fermion-antifermion pair with
separation R, and E1(R) is the lowest energy of such states above the vacuum energy E0, then on
general grounds

〈Ψ(R)|T T |Ψ(R)〉 =
∑

n

cne−En(R)T → c1e−E1(R)T as T →∞

Drawback: We get the ground state, not easy to find excited states.

Alternatively, let {|Φα(R)〉} span a subspace of the full Hilbert space with the two static
charges. Then one could get an approximate spectrum by diagonalizing T in this subspace.
This approach is followed in some lattice QCD spectrum calculations.

Drawback: This requires a pretty big set ∼ hundreds of states. Not practical for our purposes,
where it is expensive to generate the |Φα(R)〉.
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general idea

Generate a small set of states {|Φα(R)〉}, and diagonalize either T or T p in the small subspace
spanned by these states. The hope is that one or more of the eigenstates |Ψn〉 in the subspace
will be orthogonal (nearly) to the true ground state. If |Ψ〉 is such a state, then

〈Ψ|T T |Ψ〉 =
∑

n

cne−En(R)T

→ cexe−Eex(R)T at large T

There are no guarantees, it just has to be tried.
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SU(3) gauge Higgs theory

Let ξn denote the eigenstates of the lattice Laplacian operator (no time derivatives)

−D2ξn = κnξn

Consider at each quark separation R = |x− y|, the 4-dimensional subspace spanned by three
quark-pseudomatter states, and one quark-scalar state

Φn(R) = [qa(x)ξa
n(x)] × [ξ†bn (y)qb(y)] Ψ0 (n = 1, 2, 3)

Φ4(R) = [qa(x)φa(x)] × [φ†b(y)qb(y)] Ψ0

We calculate numerically the matrix elements and overlaps in the non-orthogonal basis

[T ]αβ(R) = 〈Φα|T |Φβ〉
[O]αβ (R) = 〈Φα|Φβ〉
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The eigenvalues of T in the subspace are obtained by solving the generalized eigenvalue
problem

[T ]~υn = λn[O]~υ(n)

and we have eigenstates of T in the subspace

|Ψn(R)〉 =
4∑

i=1

υ
(n)
i |Φi(R)〉

Matsuyama and Greensite (SFSU) Excitations of isolated fermions Gauge/Holography 12 / 33



Then we consider evolving states for Euclidean time T , and compute

T T
nn(R) = 〈Ψn|T T |Ψn〉

= υ
(n)∗
i 〈Φi|T T |Φj〉υ(n)

j

En(R, T) = − log

[
T T

nn(R)

T T−1
nn (R)

]

The second equation is the lattice version of a logarithmic time derivative.

En(R, T) can be understood as the energy expectation value of the state

Ψ
(

R,
1
2

(T − 1)
)

= T (T−1)/2Ψ(R)

which is obtained by evolving Ψ(R) by 1
2 (T − 1) units of Euclidean time.
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Integrating out the massive (i.e. static) fermion fields generates a pair of Wilson lines.

The numerical computation of 〈Φi|T T |Φj〉 involves expectation values of products of Wilson
lines, terminated by matter or pseudomatter fields:

〈Φi|T T|Φj〉 =

ξ ξ

ξ  ξ  

i i

jj

+

+

R
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Three possibilities:

1 Ψn(R) is an eigenstate in the full Hilbert space. Then En(R) = E(R, T) is time
independent.

2 Ψn(R) evolves to the ground state. Then En(R, T) drops steadily to the lowest energy with
increasing T .

3 Ψn(R) evolves in Euclidean time to a stable or metastable excited state. Then En(R, T)
converges to a value which is almost constant, over some range of Euclidean time.
Analogous to string excitations in the confining phase.

We have computed En(R, T) for SU(3) gauge theory with a unimodular Higgs field on a
143 × 32 lattice volume, at β = 5.5 with γ = 0.5 and γ = 3.5, in the confinement and Higgs
phases respectively. The action is

S = −β
3

∑
plaq

ReTr[Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)]

−γ
∑
x,µ

Re[φ†(x)Uµ(x)φ(x + µ̂)]
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confinement vs Higgs phase

Consider in particular

Φ1(R) = [qa(x)ξa
1(x)] × [ξ†b1 (y)qb(y)] Ψ0

Φ4(R) = [qa(x)φa(x)] × [φ†b(y)qb(y)] Ψ0

Φ4 is just a pair of color neutral objects, which can be separated to R→∞ with a finite cost in
energy.

Φ1 is different. The distinction between the Higgs and confinement phase is that in the
confinement phase the energy of every pseudomatter state (such as Φ1) diverges as R→∞, no
matter which pseudomatter field is used.

That is the definition of separation-of-charge (Sc) confinement, which is associated with
metastable flux tubes and Regge trajectories. Sc confinement disappears in the Higgs phase,
where the global center subgroup of the gauge group is spontaneously broken.

This can be proven, but we can also check it numerically.
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confinement vs Higgs phase

Energy expectation values & overlaps for the Higgs Φ4(R) and pseudomatter Φ1(R) states at β = 5.5 in the
confinement phase (γ = 0.5) and Higgs phase (γ = 3.5) respectively.
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Excitation spectrums in SU(3) gauge Higgs theory

Now we show En(R, T) and the overlap for Ψ1(R),Ψ2(R) and T = 4− 12.
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(b) Overlap

There seems to be clear evidence of an stable excited state in the spectrum, orthogonal to the
ground state.

The energy gap is far smaller than the threshold for vector boson creation.
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Excitations in q=2 Abelian Gauge-Higgs theory

q=2 Abelian Gauge-Higgs theory,

S = −β
∑
plaq

Re[Uµ(x)Uν(x + µ̂)U∗µ(x + ν̂)U∗ν(x)]− γ
∑
x,µ

Re[φ∗(x)U2
µ(x)φ(x + µ̂)] .

the scalar field has charge q = 2 (as do Cooper pairs)

impose a unimodular constraint φ∗(x)φ(x) = 1 (for simplicity)

a relativistic generalization of the Landau-Ginzburg effective model of superconductivity
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Four lowest-lying Laplacian eigenstates + Higgs field

In our calculation we make use of the four lowest-lying Laplacian eigenstates and the Higgs field to
construct the Φα,

the four lowest lying Laplacian eigenstates,

ζi(x) =
{
ξi(x) i = 1, 2, 3, 4
φ(x) i = 5

In general the five states Φα(R) are non-orthogonal at finite R. Of course φ(x) is a q = 2 matter field,
rather than pseudomatter field. We express the operator Qα in terms of a non-local operator Vα(x, y; U)

Qα(R) = ψ(x)Vα(x, y; U)ψ(y)

Vα(x, y; U) = ζα(x; U)ζ∗α(y; U) ,

and define the Euclidean time evolution operator of the lattice abelian Higgs model, T = e−(H−E0), which
is the transfer matrix multiplied by a constant eE0 where E0 is the vacuum energy, evolving states for one
unit of discretized time.

Matsuyama and Greensite (SFSU) Excitations of isolated fermions Gauge/Holography 20 / 33



Calculations of the Transfer Matrix

[T ] is the matrix element in the five non-orthogonal states Φα, with the matrix of overlaps, [O],
of such states.

[T ]αβ = 〈Φα|e−(H−E0)|Φβ〉 = 〈Q†α(R, 1)Qβ(R, 0)〉
[O]αβ = 〈Φα|Φβ〉 = 〈Q†α(R, 0)Qβ(R, 0)〉

We obtain the five orthogonal eigenstates of [T ]αβ in the subspace of Hilbert space spanned by
the Φα by solving the generalized eigenvalue problem.

[T]αβυ
(n)
β = λn[O]αβυ

(n)
β ,

with eigenstates,

Ψn(R) =
5∑

α=1

υ(n)
α Φα(R)

and ordered such that λn decreases with n.
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Euclidean time evolution

Consider evolving the states Ψn in Euclidean time,

Tnn(R, T) = 〈Ψn|e−(H−E0)T |Ψn〉
= υ∗(n)

α 〈Φα|e−(H−E0)T |Φβ〉υ(n)
β

= υ∗(n)
α 〈Q†α(R, T)Qβ(R, 0)〉υ(n)

β ,

where Latin indices indicate matrix elements with respect to the Ψn rather than the Φα, and
there is a sum over repeated Greek indices.

To calculate this expression, we define timelike q = 2 Wilson lines of length T,

P(x, t, T) = U2
0(x, t)U2

0(x, t + 1)...U2
0(x, t + T − 1) .

After integrating out the massive fermions, whose worldlines lie along timelike Wilson lines,
we have

〈Q†α(R, T)Qβ(R, 0)〉 = 〈Tr[V†α(x, y; U(t + T))P†(x, t, T)Vβ(x, y; U(t))P(y, t, T)]〉 .
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Transfer matrix, a sum of exponentials

On general grounds, Tnn(R, T) is a sum of exponentials

Tnn(R, T) = 〈Ψn(R)|e−(H−E0)T |Ψn(R)〉

=
∑

j

|c(n)
j (R)|2e−Ej(R)T ,

where c(n)
j (R) is the overlap of state Ψn(R) with the j-th energy eigenstate of the abelian Higgs

theory containing a static fermion-antifermion pair at separation R, and Ej(R) is the
corresponding energy eigenvalue minus the vacuum energy.

Numerics
I work in the Higgs region at β=3 and γ=0.5, the photon mass is determined from the
plaquette-plaquette correlator to be 1.57 in lattice units.
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The energies En(R) for n = 1, 2

The energies En(R) for n = 1, 2 are also obtained by fitting the data for Tnn(R, T) vs. T ,
at each R, to an exponential falloff.
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thermalization, with data taken every 100 sweeps,
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Second stable excited state

...see if there is any indication of a second stable excited state
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T33(R, T) vs. T at fixed R = 6.93. The fit shown is to the sum of exponentials

T33(R, T) ≈ a1(R)e−E1T + a2(R)e−E2T + a3(R)e−E3T ,

where E1 = 0.29,E2 = 1.02 are taken from the previous fits. A sample fit, again at R = 6.93, is shown.
Obviously one cannot be very impressed by a four parameter fit through a handful of data points. A sample
fit, again at R = 6.93 is shown.
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Excitation spectrums

the values of E1,E2,E3, together with the one photon threshold
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The one photon threshold is simply E1 + mphoton = 0.29 + 1.57(1) = 1.86(1) in lattice units. The
important observation is that E2(R) lies well below this threshold, which implies that the first excited state
of the static fermion-antifermion pair is stable. The second point to note is that E3(R) seems to lie above or
near the one photon threshold. The indications are that there is no second stable excited state. States above
the first excited state most likely lie above the threshold, and are probably combinations of the ground state
plus a massive photon.
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Excitations in Effective Landau-Ginzburg model

This is work in progress (K.M. and J. Greensite.)

The effective Landau-Ginzburg model for ordinary superconductivity is a non-relativistic q = 2 abelian
Higgs model of this form:

S = −β
∑
plaq

Re[UUU∗U∗]− γ
∑

x

∑
k=13

φ∗(x)U2
k (x)φ(x + k̂)

−
γ

υ2

∑
x

φ∗(x)U2
0(x)φ(x + t̂)

where υ ∼ 10−2 in natural units, is on the order of the Fermi velocity in a metal, and β = 1/e2 = 10.9 for
ordinary electrodynamics. Go to unitary gauge, so that U0(x) ≈ ±1. We then compute the excitations
around a pair of static q = ±1 (e) charges, having electrons and holes in mind.

γ, β determine the photon mass (inverse to the penetration depth) in lattice units, so for a given γ the
penetration depth fixes the lattice spacing in physical units.

But this time things are not so simple, and diagonalizing T in a small subspace doesn’t work. Eigenstates in
the subspace flow in Euclidean time to the ground state.
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Landau-Ginzburg I

Let us instead (at each separation R) diagonalize T 2t0 in the basis Φα, so that

〈Ψm|T 2t0 |Ψn〉 = λn(t0)δmn

and define
Ψn(t) = T tΨn

Suppose, after evolving Ψ1 by t0 units of Euclidean time, that Ψ1(t0) is approximately the true ground state
in the full Hilbert space. It follows that Ψn>1(t0) is orthogonal to the ground state, because

〈Ψm(t0)|Ψn(t0)〉 ∝ δmn

and therefore, at large T > 2t0

T22(R, T) = 〈Ψ2|T T |Ψ2〉
= 〈Ψ2(t0)|T T−2t0 |Ψ2(t0)〉
→ const× e−EexT where Eex > E1

So we try that.
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Landau-Ginzburg II

At R = 5.385, γ = 0.25
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Choose 2t0 = 9. We fit T11 to
f1(T) = a1 exp(−b1T) + c1

The fact that c1 6= 0 means that the ground state energy E1 ≈ 0.
b1 gives an excited state energy.

Then we fit T22 in the range T > 6 to a single exponential

f2(T) = a2 exp(−b2T)

The coefficient b2 < b1 gives another excitation energy.

Matsuyama and Greensite (SFSU) Excitations of isolated fermions Gauge/Holography 29 / 33



Excitation spectrums in effective Landau-Ginzburg theory

The data at R < 4.0 are rather
noisy, with large χ2. Here are
the results for R ≥ 4.0.

At these couplings, E1(R) ≈ 0.
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Once again, the first excited state is stable. The next excited state, which is right on the threshold, is
presumably the ground state plus a massive photon.

Can such excitations be detected experimentally? E.g. by ARPES (angle-resolved photoemission
spectroscopy) data? We don’t yet know...
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Excitations in chiral gauge theories

No known lattice formulation of chiral non-abelian gauge theories with a continuum limit. There is a
formulation for U(1) gauge theories due to Lüscher, involving overlap fermions. Difficult to implement
numerically.

In this exploratory work, Jeff Greensite chose a simpler option.

For static fermions, work instead with a quenched version, at fixed lattice spacing, of the Smit-Swift lattice
action, U(1) gauge group, with oppositely charged right and left-handed fermions.

There are doublers, even with quenched fermions. The idea was to use a Wilson-style non-local mass term
to take the mass of the doublers to infinity in the continuum.

The continuum limit doesn’t work...Smit-Swift is not a true chiral gauge theory. Moreover, the positivity of
the transfer matrix is unproven. But at least the non-local mass term breaks the mass degeneracy with the
doublers. We can try it.
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Excitation Spectrums
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Energies E1,E2,E3 vs. R at β = 3, γ = 1, shown together with the one photon threshold.
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Conclusions

The gauge+Higgs fields surrounding a charged static fermion have a spectrum of localized
excitations, which cannot be interpreted as simply the ground state plus some massive
bosons.

This means that charged “elementary” particles can have a mass spectrum in gauge Higgs
theories.

This conclusion seems robust. We see it in SU(3), q=2 Abelian Higgs, Landau-Ginzburg,
and chiral U(1) models.

Observable? Maybe in ARPES studies of conventional superconductors? Core electron
spectra above and below the transition temperature?

Electroweak theory? Excitations of quarks and leptons?? W and Z bosons?? (we’ll see...)
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