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Objective

QCD allows for a CP-violating term, Sp = 260Q), in the action. Thus, there is the possibility of new
sources of CP violation, which might shed light on the baryon asymmetry of the Universe. A nonvanishing
value of 8 would result in an electric dipole moment, d,,, of the neutron

The current experimental upper limit is |d,| < 1.8 X 10~ 3¢ fm, which suggests that 6 is anomalously
small. This feature is referred to as the strong CP problem

The assumption here is that QCD is in a single (confinement) phase for 0 < |6| < 7. The popular
Peccei-Quinn solution, e.g., is realized by the shift symmetry & — 6 + 9§, trading the 0 term for the
hitherto undetected axion [> 90, 000 publications on axions !]

It is known from the massive Schwinger model that a 6 term may change the phase of the system. Callan,
Dashen and Gross claimed that a similar phenomenon occurs in QCD, in which the color fields produced
by quarks and gluons are screened by instantons for |@] > 0. 't Hooft has shown that due to the joint
presence of gluons and monopoles a rich phase structure may emerge as a function of 6

In this talk | will show that CP is naturally conserved in the confining phase of QCD, consequently
d,, = 0, while the axion extension of the Standard Model is inconsistent with confinement



QCD at Long Distances

To reveal the nonperturbative properties of the theory, we are faced with a multi-scale problem, involving the
passage from the short-distance perturbative regime to the long-distance confining regime. The gradient flow
provides a powerful framework for scale setting, and as such is a particular realization of the coarse-graining
step of momentum space RG transformations Liischer, Suzuki et al.

The gradient flow describes the evolution of fields as a function of flow time t. The flow of SU(3) gauge
fields is defined by

8¢ B,(t,z) = D,Guw(t,2), Gu =, B, —, B, + [B,, B)]

where B, (t = 0,x) = A, (x) is the original gauge field of QCD. The renormalization scale p is set by
the flow time, u = 1/+/8t for t > 0.
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The expectation value of the energy density E(t,x) = %Gu
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coupling
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at flow time ¢ in the gradient flow scheme Liischer



For a start we may restrict our investigations to the Yang-Mills theory. If the strong CP problem is resolved
in the Yang-Mills theory, then it is expected to be resolved in QCD as well. We use the plaquette action to
generate representative ensembles of fundamental gauge fields on three different volumes
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At long distances the theory freezes practically to tree diagrams of quarks and gluons, which gives the strong

coupling constant avg a special meaning

The gradient flow running coupling
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To make contact with phenomenology, it is desirable to transform the gradient flow coupling agr to a

common scheme. A preferred scheme in the Yang-Mills theory is the V' scheme
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The linear growth of ay (u) with 1/u” is commonly dubbed
The static quark-antiquark potential can be

infrared slavery.

described by the exchange of a single dressed gluon
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It is interesting to compare the nonperturbative gradient flow beta function with the perturbative beta function
known up to twenty loops
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As was to be expected, the perturbative beta function gradually approaches the nonperturbative beta function
with increasing order



Phase Structure

With increasing flow time the initial gauge field ensemble splits into effectively disconnected topological sectors
of charge (Q, at ever smaller flow time as (3 is increased Lefschetz thimble

V(E(Q,t))/87% = Sg ~ |Q], while the

ensemble average vanishes like 1/t
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% 100 One is tempted to conclude that the vacuum
< is a dilute gas of instantons. However, this is
E/ not the case. We find a negative value for the
10| ‘kurtosis’, K = (Q%*)./(Q?)?2, on all lattice
R volumes, while K > 0 for a dilute instanton
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Observables consistently show a clear dependence on Q. This is the reason for a nontrivial 6 dependence
when Fourier transformed to the 8 vacuum



Running coupling acys

If the general expectation is correct and the color fields are screened for |@| > 0, we should, in the first
place, find that the running coupling constant is screened in the infrared

From (E(Q,t)) we obtain ay (Q, ) in the individual topological sectors |Q| from bottom to top
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Interestingly, vy (Q, p) vanishes in the infrared for Q@ = 0, while the ensemble average ay () is

represented by |Q| ~ 1/2(Q?)/x




The transformation of ay (Q, ) from @ to the @ vacuum is achieved by the discrete Fourier transform
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The color charge is totally screened for |@| = O in the infrared, while it becomes  Precision test by com-
gradually independent of 0 as we approach the perturbative regime paring different volumes



Polyakov loop

The Polyakov loop P describes the propagation of a single static quark travelling around the periodic lattice
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From @ = 0 (top) to 6 (bottom)

(P) = 0 in each sector. That implies center symmetry throughout. P rapidly populates the entire
theoretically allowed region for small values of |@Q|, while it stays small for larger values of | Q|



The transformation of the Polyakov loop expectation values to the € vacuum is again achieved by the discrete
Fourier transform
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The Polyakov loop gets totally screened for |#| = 0. The renormalized Polyakov loop susceptibility is
independent of flow time ¢ (even for 8 # 0!)




Mass gap
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Kurtosis

The key to understanding the transition to nonvanishing @ lies in the topological structure of the vacuum.

Our global analysis limits us to the investigation of moments of topological charge (). A quantity of particular
interest is the kurtosis K. In the 6 vacuum
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Errors

Source of errors
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e Convergence of the (discrete) Fourier series > 5 exp{i0Q} P(Q) - - -

e Statistics

e Topological charge generally limited to |Q| < |Q|max, |Q|max <X V'V

——————
discrete fourier

fit

Z(0),ay(0),xp(0),- - are positive functions of 8

After the quantities | showed have dropped to ‘zero’
at |8 = 0, they start to oscillate around zero with
frequency v & |Q|max due to the truncated Fourier
series

Various techniques to filter unphysical high-frequency
modes are discussed in the literature. We fit the tail
of the distributions to a smooth function. Alternatively,
one can employ a low-pass filter, which practically gives
the same result



Electric Dipole Moment

According to Vafa-Witten the theory is analytic at & = 0. Hence,
we may continue 6 to imaginary 6 = —¢ 6. This leads to the
action

1_ _
Sy = gemZ(fa%u + dysd + 5755)

which is amenable to numerical simulations. At the end of the
calculation the results are rotated back to real 6
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o 9 Py—o(Q) = Pyp(Q), which is reassuring

e The unique feature is that the calculation is done
on a non-trivial topological background

e How can one find a nucleon in the screened
phase? If the hadron radius is significantly smaller
than the screening length



We expect the electric dipole moment of the neutron to be largest for heavy quarks, as it will vanish trivially
in the chiral limit, d,, o< m,mgq/ (M, + my)

At the SU(3) flavor symmetric point, m, = mx = 410 MeV arXiv:1102.5200

(M, = mqg = my)
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AXxion

In the Peccei—Quinn theory the CP violating action Sy = 20(Q) is augmented by the axion interaction

S0 = o+ Sawin = [ ' [g(auqsa(x))z L (e _ ¢‘;ff)) q<x>} - [ =q

with
Upq(1) |0) — 0+ 6)

It is then expected that QCD induces an effective potential U (0 — ¢o/ fo), having a stationary point at
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CP violating CP conserving
thus effectively eliminating CP violation in the strong interaction However, QCD vacuum

unstable under Upq(1)




Conclusions

% The numerical work is characterized by high statistics on three different volumes. A key point is that the
path integral splits into disconnected topological sectors for ¢ = 0, which is expected to occur at ever smaller
flow times with decreasing lattice spacing. Comparing results on different volumes enabled us to control the
accuracy of the calculation

% The gradient flow proved a powerful tool for tracing the gauge field over successive length scales and
showed its potential for extracting low-energy quantities. The novel result is that color charges are screened
for |8 > 0 by nonperturbative effects, limiting the vacuum angle to & = 0 at macroscopic distances, which
rules out any strong CP violation at the hadronic level

% The electric dipole moment of the neutron was found to be zero within the errorbars, as expected. In
absence of a nonvanishing dipole moment no upper limit of 8 can be drawn from the experimental bound

% The nontrivial phase structure of QCD has far-reaching consequences for anomalous chiral transformations.
In particular, the confining QCD vacuum will be unstable under the Peccei-Quinn chiral Upg(1)
transformation, realized by the shift symmetry 8 — 6 + J§, which thwarts the axion conjecture



