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§ Introduction

Quark confinement is well understood based on the dual superconductivity picture where condensation

of magnetic monopoles and antimonopoles occurs. For a review, see e.g., K.-I. Kondo, S. Kato, T.

Shinohara and A. Shibata, Phys. Rept 579, 1–226 (2015), arXiv:1409.1599 [hep-th]

However, gluon confinement is less understood. [For recent developments, see e.g. Hayashi’s talk in the

next session.] Even if the dual superconductor picture is true, however, it is not an easy task to apply

this picture to various composite particles composed of quarks and/or gluons.

In view of these, we recall the color confinement due to Kugo and Ojima (1979). If the Kugo and Ojima

(KO) criterion is satisfied, all colored objects cannot be observed. Then quark confinement and gluon

confinement immediately follow as special cases of color confinement.

However, the KO criterion was derived only in the Lorenz gauge ∂µAµ = 0, even if the issue on the

existence of the nilpotent BRST symmetry is put aside for a while.

The KO criterion is written in terms of a specific correlation function called the KO function which is

clearly gauge-dependent and is not directly applied to the other gauge fixing conditions.

From this point of view, the maximally Abelian (MA) gauge is the best gauge to be investigated because

the dual superconductor picture for quark confinement was intensively investigated in the MA gauge.

Nevertheless,

Suzuki and Shimada (1983) pointed out that the KO criterion cannot be applied to the MA gauge and

the KO criterion is violated in the model for which quark confinement is shown to occur by Polyakov

(1977) due to magnetic monopole and antimonopole condensation.
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Hata and Niigata (1993) claimed that the MA gauge is an exceptional case to which the KO color

confinement criterion cannot be applied.

We wonder how the color confinement criterion of the KO type is compatible with the dual superconductor

picture for quark confinement.

We reconsider the color confinement criterion of the KO type in the Lorenz gauge and give an explicit

form to be satisfied in the MA gauge within the same framework as the Lorenz gauge in the manifestly

Lorentz covariant operator formalism with the unbroken BRST symmetry.

For this purpose, we make use of the method of Hata (1982) saying that the KO criterion is equivalent

to the condition for the residual local gauge symmetry to be restored.

We show that singular topological gauge field configurations play the role of restoring the residual

local gauge symmetry violated in the MA gauge.

This result implies that color confinement phase is a disordered phase which is realized by non-

perturbative effect due to topological configurations.

What is the residual gauge symmetry in gauge theory?
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§ The residual gauge symmetry in Abelian gauge theory
Consider QED, or any local U(1) gauge-invariant system with the total Lagrangian density

L = Linv + LGF+FP. (1)

Here the gauge-invariant part Linv is invariant under the local gauge transformation:

Aµ(x) → A
ω
µ(x) := Aµ(x) + ∂µω(x). (2)

To fix this gauge degrees of freedom, we introduce the Lorenz gauge fixing condition:

∂µA
µ
(x) = 0. (3)

Then the GF+FP term is given by

LGF+FP = B∂µA
µ
+

1

2
αB

2 − i∂
µ
c̄∂µc. (4)

However, this gauge-fixing still leaves the invariance under the transformation ω(x) linear in xµ:

ω(x) = a+ ϵρx
ρ
, (5)

since this is a solution of the equation

∂
µ
∂µω(x) = 0 =⇒ ∂

µ
A
ω
µ(x) = ∂

µ
Aµ(x) + ∂

µ
∂µω(x) = 0. (6)

This symmetry is an example of the residual local gauge symmetry.
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There are two conserved charges, the usual charge Q and the vector charge Qµ, as generators of

the transformation:

δ
ω
Aµ(x) := A

ω
µ(x) − Aµ(x) = [i(aQ+ ϵρQ

ρ
), Aµ(x)] = ∂µω(x) = ϵµ. (7)

This relation must hold for arbitrary a and ϵµ, leading to the commutator relations:

[iQ,Aµ(x)] = 0, [iQ
ρ
, Aµ(x)] = δ

ρ
µ. (8)

The first eq.: the usual Q symmetry, i.e., global gauge symmetry is not spontaneously broken:

⟨0|[iQ,Aµ(x)]|0⟩ = 0, (9)

The second eq.: Qµ symmetry, i.e., the residual local gauge symmetry is always spontaneously broken:

⟨0|[iQρ
, Aµ(x)]|0⟩ = δ

ρ
µ. (10)

Ferrari and Picasso (1971) argued from this observation that photon is understood as the massless Nambu-

Goldstone (NG) vector boson associated with the spontaneous breaking of Qµ symmetry according to

the Nambu-Goldstone theorem...

The restoration of the residual local gauge symmetry does not occur in the ordinary Abelian case.
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§ Color confinement and residual local gauge symmetry

Proposition 1: [Kugo-Ojima color confinement criterion(1979)] Choose the Lorenz gauge fixing ∂µAµ =

0. Suppose that the BRST symmetry exists. Let Vphys be the physical state space with ⟨phys|phys⟩ ≥
0 as a subspace of an indefinite metric state space V defined by the BRST charge operator QB as

Vphys = {|phys⟩ ∈ V;QB|phys⟩ = 0} ⊂ V. (1)

Introduce the function uAB(p2) called the Kugo-Ojima (KO) function defined by

u
AB

(p
2
)

(
gµν −

pµpν

p2

)
=

∫
d
D
x e

ip(x−y)⟨0|T[(DµC )
A
(x)g(Aµ × C̄ )

B
(y)|0⟩. (2)

If the condition called Kugo-Ojima (KO) color confinement criterion is satisfied in the Lorenz gauge

lim
p2→0

u
AB

(p
2
) = −δAB, (3)

then the color charge operator QA is well defined, namely, the color symmetry is not spontaneously

broken, and QA vanishes for any physical state Φ,Ψ ∈ Vphys,

⟨Φ|QA|Ψ⟩ = 0, Φ,Ψ ∈ Vphys, (4)

The BRST singlets as physical particles are all color singlets, while colored particles belong to the BRST

quartet representation. Therefore, all colored particles cannot be observed and only color singlet particles

can be observed.
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Proposition 2: [Hata (1982)] Consider the residual “local gauge symmetry” specified by ω(x) ∈ su(N)

linear in xµ:

ω(x) = TAω
A
(x), ω

A
(x) = ϵ

A
ρ x

ρ
, (5)

where ϵAρ is x-independent constant parameters. Then there exists the Noether current

J µ
ω (x) = gJ

µA
(x)x

ρ
ϵ
A
ρ + FµρA

(x)ϵ
A
ρ := J µA

ρ (x)ϵ
ρA
, (6)

which is conserved only in the physical subspace Vphys of the state vector space V :

⟨Φ|∂µJ µ
ω (x)|Ψ⟩ = 0, Φ,Ψ ∈ Vphys, (7)

where JµA(x) is the Noether current associated with the global gauge symmetry which is conserved in

V . Then the Ward-Takahashi (WT) relation holds for J µA
ρ (x) communicating to A B

σ (y):∫
d
D
x e

ip(x−y)
∂
x
µ⟨0|T[J µA

ρ (x)A
B
σ (y)]|0⟩ = i

(
gρσ −

pρpσ

p2

)
[δ
AB

+ u
AB

(p
2
)]. (8)

Thus, if the KO condition in the Lorenz gauge is satisfied

lim
p2→0

u
AB

(p
2
) = −δAB, (9)

then the massless pole between J µA
ρ and A B

σ contained in perturbation theory disappears.

The restoration condition coincides exactly with the Kugo and Ojima color confinement criterion! This

means that the residual local gauge symmetry is restored if the KO condition is satisfied.

– Typeset by FoilTEX – 7



§ Residual gauge symmetry in the Lorenz gauge
The total Lagrangian density is given by

L = Linv + LGF+FP. (1)

The first term Linv is the gauge-invariant part for the gauge field Aµ and the matter field φ given by

Linv = −
1

4
Fµν · Fµν

+ Lmatter(ψ,Dµψ), (2)

with Fµν := ∂µAν − ∂νAµ + gAµ × Aν = −Fνµ and Dµψ := ∂µψ − igAµψ.

The second term LGF+FP is the sum of the the gauge-fixing (GF) term and the Faddeev-Popov (FP) ghost

term where the GF term includes the Nakanishi-Lautrup field B(x) which is the Lagrange multiplier

field to incorporate the gauge fixing condition and the FP ghost term includes the ghost field C and the

antighost field C̄ .

For the gauge field and the matter field, we consider the local gauge transformation with the Lie

algebra-valued transformation function ω(x) = ωA(x)TA

δ
ωAµ(x) = Dµω(x) := ∂µω(x) − igAµ × ω(x),

δ
ω
φ(x) = igω(x)φ(x),

δ
ωB(x) = gB(x) × ω(x),

δ
ωC (x) = gC (x) × ω(x),

δ
ωC̄ (x) = gC̄ (x) × ω(x). (3)
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Now we proceed to write down the Ward-Takahashi relation to examine the appearance or disappearance

of the massless pole. We consider the condition for the restoration of the residual local gauge symmetry

for a general ω. We focus on the WT relation∫
d
D
xe

ip(x−y)
∂
x
µ ⟨TJ µ

ω (x)A
B
λ (y)⟩

=i ⟨δωA B
λ (y)⟩ +

∫
d
D
x e

ip(x−y) ⟨T∂µJ µ
ω (x)A

B
λ (y)⟩

=i ⟨∂λωB(y) + g(Aλ × ω)
B
(y)⟩ +

∫
d
D
xe

ip(x−y) ⟨TδωLGF+FP(x)A
B
λ (y)⟩

=i∂λω
B
(y) +

∫
d
D
xe

ip(x−y) ⟨TδωLGF+FP(x)A
B
λ (y)⟩ , (4)

where we have used ⟨0|Aλ(x)|0⟩ = 0 in the final step. Note that this relation is valid for any choice

of the gauge fixing condition.

For the Lorenz gauge ∂µA
µ = 0, the GF+FP term is given by

LGF+FP = B · ∂µA µ
+

1

2
αB · B − i∂

µC̄ · DµC = −iδB

[
C̄ ·

(
∂
µAµ +

α

2
B

)]
, (5)

where α is the gauge-fixing parameter. The change under the generalized local gauge transformation is

given by α-independent expression:

δ
ωLGF+FP(x) = iδBδ̄BAµ(x) · ∂µω(x) = iδB(DµC̄ (x))

A
∂
µ
ω
A
(x). (6)
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In the Lorenz gauge, the above WT relation (4) reduces to

∫
d
D
xe

ip(x−y)
∂
x
µ ⟨TJ µ

ω
A

ν (x)∂
ν
ω
A
(x)A B

λ (y)⟩

=i∂λω
B
(y) +

∫
d
D
xe

ip(x−y)
∂
µ
ω
A
(x) ⟨TiδB(DµC̄ (x))

AA B
λ (y)⟩ . (7)

The second term of (7) is rewritten using δB(DµC̄ ) = δB(∂µC̄+g(Aµ×C̄ )) = −∂µB+gδB(Aµ×C̄ )

as

∫
d
D
xe

ip(x−y)
∂
µ
ω
A
(x) ⟨TiδB(DµC̄ (x))

AA B
λ (y)⟩

= −
∫
d
D
xe

ip(x−y)
∂
µ
ω
A
(x)∂

x
µi
∂xλ
∂2
x

δ
D
(x− y)δ

AB

+ i

∫
d
D
xe

ip(x−y)
∂
µ
ω
A
(x)

(
gµλ −

∂xµ∂
x
λ

∂2
x

)
u
AB

(x− y) (8)

where we have used ⟨δBF ⟩ = 0 for any functional F due to the physical state condition, the exact

form of the propagator in the Lorenz gauge

⟨0|TA A
µ (x)BB

(y)|0⟩ = ⟨0|T∗
(DµC )

A
(x)iC̄B

(y)|0⟩ =i
∂xµ

∂2
x

δ
D
(x− y)δ

AB
, (9)
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and the definition of the Kugo-Ojima (KO) function uAB in the configuration space

⟨0|T(DµC )
A
(x)(gAν × C̄ )

B
(y)|0⟩ =

(
gµν −

∂xµ∂
x
ν

∂2
x

)
u
AB

(x− y). (10)

Thus, we arrive at the desired general condition in the Lorenz gauge written in the Euclidean form:

lim
p→ 0

∫
d
D
xe

ip(x−y)
∂µω

A
(x)

(
δµλ −

∂xµ∂
x
λ

∂2
x

)[
δ
D
(x− y)δ

AB
+ u

AB
(x− y)

]
= 0 , (11)

This confinement criterion can be applied to the Abelian and non-Abelian gauge theory as well irrespective

of the compact or non-compact formulation, and is able to understand confinement in all the cases.

In the non-compact gauge theory formulated in terms of the Lie-algebra valued gauge field, the

choice of ωA(x) = const. + ϵAµxµ linear in x is allowed. Indeed, for this choice, the criterion (11) is

reduced to

ϵ
A
µ lim
p→ 0

(
δµλ −

pµpλ

p2

)[
δ
AB

+ ũ
AB

(p)
]
= 0. (12)

This reproduces the KO condition ũAB(0) = −δAB as first shown by Hata.

For the Abelian gauge theory, the KO function is identically zero uAB(x − y) ≡ 0, i.e., u(0) = 0.

Therefore, the KO condition is not satisfied, which means no confinement in the Abelian gauge theory.

In the compact gauge theory, however, confinement does occur even in the Abelian gauge theory, as is

well known in the lattice gauge theory. This case is also understood by using the above criterion.
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§ Restoration of residual local symmetry in MA gauge

We decompose the Lie-algebra valued quantity to the diagonal Cartan part and the remainig off-diagonal

part, e.g., the gauge field Aµ = A A
µ TA with the generators TA (A = 1, . . . , N2 − 1) of the Lie

algebra su(N) has the decomposition:

Aµ(x) = A A
µ (x)TA = a

j
µ(x)Hj + A

a
µ(x)Ta, (1)

where Hj are the Cartan generators and Ta are the remaining generators of the Lie algebra su(N). In

what follows, j, k, ℓ, . . . label the diagonal components and the index a, b, c, . . . labels the off-diagonal

components. The maximal Abelian (MA) gauge is given by

(Dµ
[a]Aµ(x))

a
:= ∂

µ
A
a
µ(x) + gf

ajb
a
µj
(x)A

b
µ(x) = 0, (2)

The MA gauge is a partial gauge which fix the off-diagonal components, but does not fix the diagonal

components. Therefore, we further impose the Lorenz gauge for the diagonal components

∂
µ
a
j
µ(x) = 0. (3)

The GF+FP term for the gauge-fixing condition (2) and (3) is given using the BRST transformation as

LGF+FP = − iδB

{
C̄
a

(
Dµ

[a]Aµ +
α

2
B

)a}
− iδB

{
c̄
j

(
∂
µ
aµ +

β

2
b

)j
}
, (4)
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LGF+FP = − (Dµ
[a]

ba
B
a
)A

b
µ +

α

2
B
a
B
a − i(Dµ

[a]
ba
C̄
a
)Dµ[a]

bc
C
c

− ig(Dµ
[a]

ba
C̄
a
)f

bcd
A
c
µC

d − ig(Dµ
[a]

ba
C̄
a
)f

bcj
A
c
µc
j

+ igC̄
a
f
ajb
∂µc

j
A
µb

+ ig
2
C̄
a
f
ajb
f
jcd
A
c
µC

d
A
µb

− ∂
µ
b
j
a
j
µ +

β

2
b
j
b
j − i∂

µ
c̄
j
∂µc

j − ig∂
µ
c̄
j
f
jab
A
a
µC

b
. (5)

The local gauge transformation of the Lagrangian has the following form

δ
ωL = δ

ωLGF+FP = ∂µJ
µ
ω = g∂µJ

µ · ω + [∂νF
µν

+ gJ µ
] · ∂µω

= g∂
µ
J
j
µω

j
+

[
∂
ν
f
j
µν + gJ

j
µ

]
∂µω

j
+ g∂

µ
J
a
µω

a
+

[
∂
ν
F
a
µν + gJ

a
µ

]
∂µω

a

= iδB∂µc̄
j
∂
µ
ω
j
+ iδB∂

µ
(Dµ[A ]C̄ )

a
ω
a
+ iδB(Dµ[A ]C̄ )

a
∂
µ
ω
a
. (6)

This is BRST exact, showing that the local gauge current J µ
ω is conserved in the physical state space.

The WT relation in the MA gauge can be calculated in the similar way to the Lorenz gauge by using

(6) as follows. We focus on the diagonal gauge field akλ. Consequently, we obtain the condition for the

restoration of the residual local gauge symmetry for the diagonal gauge field

lim
p→ 0

∫
d
D
x e

ip(x−y)
∂
x
µ ⟨TJ µ

ω (x)a
k
λ(y)⟩

= lim
p→ 0

i

∫
d
D
x e

ip(x−y)
∂
µ
ω
k
(x)(δµλ□D − ∂µ∂λ)□−1

D (x, y) = 0 , (7)
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where □−1
D (x, y) denotes the Green function of the Laplacian □D = ∂µ∂µ in the D-dimensional

Euclidean space.

If we choose ωj(x) = ϵjνx
ν, this indeed reproduces non-vanishing divergent result.

However, this choice must be excluded in the MA gauge, since the maximal torus subgroup U(1)N−1 for

the diagonal components is a compact subgroup of the compact SU(N) group. In some sense, ωj(x)

must be angle variables reflecting the compactness of the gauge group.

For concreteness, we consider the SU(2) case with singular configurations coming from the angle

variables. In what follows, we work in the Euclidean space and use subscripts instead of the Lorentz

indices. As the residual gauge transformation, we take the following examples which satisfy both the

Lorenz gauge condition ∂µA
A
µ = 0 and the MA gauge condition (Dµ[a]Aµ)

a = 0 (and ∂µajµ = 0).

• For D = 2, a collection of vortices of Abrikosov-Nielsen-Olesen type (1979)

∂µω
j
(x) =

n∑
s=1

Csεjµν
(x− as)ν

|x− as|2
(j = 3, µ, ν = 1, 2) (x, as ∈ R2

), (8)

where Cs (s = 1, . . . , n) are arbitrary constants. This type of ω(x) is indeed an angle variable θ going

around a point a = (a1, a2) ∈ R2, because

ω(x) = θ(x) =: arctan
x2 − a2

x1 − a1
=⇒ ∂µω(x) = −εµν

xν − aν

(x1 − a1)2 + (x2 − a2)2
(µ = 1, 2).

(9)

This is a topological configuration which is classified by the winding number of the map from the circle

in the space to the circle in the target space: S1 → U(1) ∼= S1, i.e., by the first Homotopy group

π1(S
1) = Z.

– Typeset by FoilTEX – 14



• For D = 3, a collection of magnetic monopoles of the Wu-Yang type (1975) which corresponds to

the zero size limit of the ‘t Hooft-Polyakov magnetic monopole (1974)

∂µω
j
(x) =

n∑
s=1

Csεjµν
(x− as)ν

|x− as|2
(j = 3, µ, ν = 1, 2, 3) (x, as ∈ R3

). (10)

A magnetic monopole is a topological configuration which is classified by the winding number of the

map from the sphere in the space to the sphere in the target space: S2 → SU(2)/U(1) ∼= S2, i.e.,

by the second Homotopy group π2(S
2) = Z.

• For D = 4, a collection of merons of Alfaro-Fubini-Furlan (1976) instantons of the Belavin-Polyakov-

Shwarts-Tyupkin (BPST) type (1975) in the non-singular gauge with zero size,

∂µω
j
(x) =

n∑
s=1

Csη
j
µν

(x− as)ν

|x− as|2
(j = 3, µ, ν = 1, 2, 3, 4) (x, as ∈ R4

). (11)

Meron and instanton are topological configuration which are classified by the winding number of the

map from the 3-dimensional sphere in the space to the sphere in the target space: S3 → SU(2) ∼= S3,

i.e., by the third Homotopy group π3(S
3) = Z.

By taking into account εjµν = −εjνµ, η
j
µν = −ηjνµ, it is easy to show that all these configurations

satisfy the Laplace equation □ωj(x) = 0 almost everywhere except for the locations as ∈ RDof the
singularities: □ωj(x) =

∑n
s=1Csδ

D(x − as). These configurations are examples of the classical

solutions of the Yang-Mills field equation with non-trivial topology.
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We can show that the restoration condition is satisfied for these singular configurations:

lim
p→0

∫
d
D
x e

ip(x−y)(x− as)ν

|x− as|2
(δµλ□D − ∂µ∂λ)

Γ
(
D
2 −1

)
4πD/2

(|x− y|2)
D−2
2

= 0 . (12)

where we have used the expression of the Green function □−1
D (x, y) of the Laplacian □D = ∂µ∂µ in

the D-dimensional Euclidean space given by

□−1
D (x, y) =

∫
dDp

(2π)D
e
ip(x−y) 1

−p2
= −

Γ
(
D
2 − 1

)
4πD/2

1

|x− y|D−2
, (13)

where Γ is the gamma function with the integral representation given by

Γ(z) =

∫ ∞

0

dt t
z−1
e
−t

(z > 0). (14)

For any D ≥ 2, this integral goes to zero linearly in p in the limit p → 0. Therefore, the restoration of

the residual local gauge symmetry occurs.
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§ Conclusion and discussion

▷ Conclusions

• We have reexamined the restoration of the residual local gauge symmetry left even
after imposing the gauge fixing condition in quantum gauge field theories. This leads
to a generalization of the color confinement criterion.

• We have found an important lesson to understand color confinement in quantum
gauge theories that the compactness and non-compactness must be discriminated for
the gauge transformation of the gauge field.

• The Kugo-Ojima color confinement criterion can be applied only to the non-compact
gauge theory. This is a reason why the Kugo-Ojima criterion obtained in the Lorenz
gauge cannot be applied to the Maximal Abelian gauge (maximal torus group is a
compact group).

• In the Maximal Abelian gauge we have shown that the restoration of the residual
local gauge symmety indeed occurs for the SU(N) Yang-Mills theory in two-, three-
and four-dimensional Euclidan spacetime once the singular topological configurations
of gauge fields are taken into account.

• This result indicates that the color confinement phase is a disordered phase caused
by non-trivial topological configurations irrespective of the gauge choice.
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• As a byproduct, we find that the compact U(1) gauge theory can have the disordered
confinement phase, while the non-compact U(1) gauge theory has the deconfined
Coulomb phase.

▷ Future perspectives

• Gribov copies, existence of BRST symmetry,

• Higgs phase, Brount-Englert-Higgs (BEH) mechanism,

• Finite temperatures,
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Thank you very much
for your attention.
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Figure 1: JNR two-instanton and the associated circular loop of the magnetic-monopole current kx,µ.

The JNR two-instanton is defined by fixing three scales ρ0 = ρ1 = ρ2 = 3ϵ and three pole positions

bµ0 , b
µ
1 , b

µ
2 which are arranged to be three vertices of an equilateral triangle specified by r: (a) r = 5ϵ,

(b) r = 10ϵ, (c) r = 15ϵ and (d) r = 20ϵ. The grid shows an instanton charge density Dx on x1-x2

(x3 = x4 = 0) plane. The associated circular loop of the magnetic-monopole current is located on the

same plane as that specified by three poles. The black line on the base shows the magnetic monopole

loop projected on the x1-x2 plane and the arrow indicates the direction of the magnetic-monopole

current, while colored lines on the base show the contour plot for the equi-Dx lines. Figures are drawn

in units of the lattice spacing ϵ.
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