Conclusions

Double- J/ψ system in the spotlight of recent LHCb data

Alexey Nefediev

Lebedev Physical Institute of RAS, Moscow

Based on X.-K. Dong, V. Baru, F.-K. Guo, C. Hanhart, A.N. Phys. Rev. Lett. **126** (2021), 132001 Sci.Bull. **66** (2021), 2462-2470 LHCb data Analysis X(6200) X(6200) as molecule Conclusion LHCb data on di- J/ψ production (Sci.Bull. 65 (2020) 1983)

LHCb: nonresonant production

NRSPS=NonResonant Single Parton Scattering DPS=Double Parton Scattering

X(6200)

LHCb: conclusions from experimental analysis

イロト イポト イヨト イヨト

Theoretical analysis of LHCb data

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states

LHCb data Analysis X(6200) X(6200) as molecule Conclusions

Theoretical analysis of LHCb data

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states
- Coupled-channel approach is a must

LHCb data Analysis X(6200) X(6200) as molecule Conclusions

Theoretical analysis of LHCb data

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states
- Coupled-channel approach is a must

Minimal models compatible with data are considered

Theoretical analysis of LHCb data

- Naive models and parametrisations have to be disregarded
 - \implies Breit-Wigner fits mislead rather than educate
 - \implies Breit-Wigner parameters (M and Γ) hide nature of states
- Coupled-channel approach is a must

Minimal models compatible with data are considered

- \implies Only most relevant channels included
- \implies Minimal necessary order in EFT expansion
- \implies Interpret only results robust w.r.t. model modification
- \implies Highlight predictions to distinguish between models

Choosing relevant channels

- Restrict ourselves to thresholds in the range 6.2-7.2 GeV
- Consider only *S*-wave channels
- Compatible with light exchanges
 - $J/\psi J/\psi \iff \chi_{cJ}\chi_{cJ} \ (J=0,1)$ Lowest exchange particle (ω) is (relatively) heavy \implies suppression
 - $J/\psi J/\psi \Leftrightarrow \psi(2S)J/\psi, \psi(3770)J/\psi, \dots$ Mediated by soft gluons (two pions) \Longrightarrow no suppression
- Retain only HQSS-allowed channels
 - $J/\psi J/\psi \Leftrightarrow h_c h_c$

Heavy quark spin flip needed \implies suppressed by $\Lambda_{\rm QCD}/m_c \ll 1$ (HQSS)

• $J/\psi J/\psi \Leftrightarrow \psi(2S)J/\psi, \psi(3770)J/\psi$ No *c*-quark spin flip needed \Longrightarrow HQSS-allowed

6/21

LHCb data Analysis X(6200) X(6200) as molecule Conclusions

All channels

X(6200)

X(6200) as molecule

Conclusions

Only *S*-wave channels

<□> <圕> <≧> <≧> <≧> <≧> <≧ 8/21

X(6200)

X(6200) as molecule

Conclusions

No heavy exchanges

<□> <륜> <분> <분> <분> 분 % Q (~ 9/21

X(6200)

X(6200) as molecule

Conclusions

Only HQSS-allowed channels

10/21

Analysis

X(6200)

X(6200) as molecule

Conclusions

The models

Two-channel model (7 parameters) $J/\psi J/\psi \& \psi(2S) J/\psi$

 $V_{\rm 2ch}(E) = \begin{pmatrix} a_1 + b_1 k_1^2 & c \\ c & a_2 + b_2 k_2^2 \end{pmatrix}$

Lippmann-Schwinger equation

Three-channel model (8 parameters)
$$J/\psi J/\psi, \ \psi(2S)J/\psi \ \& \ \psi(3770)J/\psi$$

$$V_{3ch}(E) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

 $T(E) = V(E) + T(E) \cdot G(E) \cdot V(E) \implies T(E) = V(E) \cdot [1 - G(E) \cdot V(E)]^{-1}$

Production amplitude in $J/\psi J/\psi$ channel (channel 1):

$$\mathcal{M}_1 = \alpha e^{-\beta E^2} \Big[b + G_1(E) T_{11}(E) + G_2(E) T_{21}(E) + r_3 G_3(E) T_{31}(E) \Big]$$

Slope β fixed to double-parton scattering (DPS): $\beta = 0.0123$ GeV⁻²

$$r_3 = \left\{ egin{array}{cc} 0 & 2 {
m ch} \mbox{ model} \ 1 & 3 {
m ch} \mbox{ model} \end{array}
ight.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fits & poles

イロト 不得下 イヨト イヨト

12/21

2

X(6200) vs X(6900)

- Poles above the double- J/ψ threshold (X(6900)) are badly determined
 - More (accurate) data are needed
 - Parameters of X(6900) are highly uncertain
- Pole near the double- J/ψ threshold (X(6200)) is robust

X(6200) vs X(6900)

- $\bullet\,$ Poles above the double- J/ψ threshold (X(6900)) are badly determined
 - More (accurate) data are needed
 - Parameters of X(6900) are highly uncertain
- Pole near the double- J/ψ threshold (X(6200)) is robust
- X(6200)=tetraquark (2 quarks + 2 antiquarks) \implies Different clusterings:

cc

 $\bar{c}c$

- Compact Tetraquark
- Hadronic Molecule

Molecule = large probability to find the studied resonance in the observation hadron-hadron channel $(J/\psi J/\psi)$

• Data in the $\psi(2S)J/\psi$ channel \implies distingush between the models

- Data in the double- η_c channel \implies verify predictive power of the models
- Models for J/ψ - J/ψ binding \implies (dis)prove X(6200) nature
- Data on double- Υ production \implies check in complementary sector
- Lattice simulation of double- J/ψ (η_c) scattering \implies independent test

Conclusions from data analysis

- LHCb data on the double- J/ψ spectrum are consistent with a coupled-channel description
- Even minimalistic models provide a good description of the data $(\chi^2/{
 m dof}\simeq 1)$
- Position of the poles above the double- J/ψ threshold is vaguely fixed by the present data
- All models employed support the existence of the X(6200) state with $J^{PC} = 0^{++}$ or 2^{++} near the double- J/ψ threshold
- Molecular model for X(6200) is plausible and compatible with data
- Experimental tests are outlined to verify the existence of X(6200) and shed light on its nature
- More data on double charmonium and bottomonium production are desperately awaited!

X(6200)

16/21

Double- J/ψ molecule

Question: Can interaction between two J/ψ 's produce a near-threshold pole? We know: Soft-gluon exchanges hadronise as light-meson $(\pi\pi, K\bar{K})$ exchanges Approach: Multipole expansion for $r_{\bar{Q}Q} \ll \Lambda_{\rm QCD}^{-1}$:

Gottfried'1977, Voloshin'1978, Peskin'1979,...Voloshin& Sibirtsev'2005

$$H_{\rm int} \approx -\frac{1}{2} \xi_a \vec{r} \cdot \vec{E}^a \quad \Longrightarrow \quad \mathcal{M}(A \to B\pi\pi) = \alpha_{AB} \langle \pi\pi | \vec{E}^a \cdot \vec{E}^a | 0 \rangle$$

Problem: How to find $\alpha_{J/\psi J/\psi}$?

X(6200)

Double- J/ψ molecule

Question: Can interaction between two J/ψ 's produce a near-threshold pole? We know: Soft-gluon exchanges hadronise as light-meson $(\pi\pi, K\bar{K})$ exchanges Approach: Multipole expansion for $r_{\bar{Q}Q} \ll \Lambda_{\rm QCD}^{-1}$:

Gottfried'1977, Voloshin'1978, Peskin'1979,...Voloshin& Sibirtsev'2005

$$H_{\rm int} \approx -\frac{1}{2} \xi_a \vec{r} \cdot \vec{E}^a \quad \Longrightarrow \quad \mathcal{M}(A \to B\pi\pi) = \alpha_{AB} \langle \pi\pi | \vec{E}^a \cdot \vec{E}^a | 0 \rangle$$

Problem: How to find $\alpha_{J/\psi J/\psi}$?

Idea: Extract $\alpha_{\psi(2S)J/\psi}$ from $\psi(2S) \to J/\psi \pi \pi$ and estimate $\alpha_{J/\psi J/\psi}$ from it

16/21

X(6200)

Double- J/ψ molecule

Question: Can interaction between two J/ψ 's produce a near-threshold pole? We know: Soft-gluon exchanges hadronise as light-meson $(\pi\pi, K\bar{K})$ exchanges Approach: Multipole expansion for $r_{\bar{Q}Q} \ll \Lambda_{\rm QCD}^{-1}$:

Gottfried'1977, Voloshin'1978, Peskin'1979,...Voloshin&Sibirtsev'2005

$$H_{\rm int} \approx -\frac{1}{2} \xi_a \vec{r} \cdot \vec{E}^a \quad \Longrightarrow \quad \mathcal{M}(A \to B\pi\pi) = \alpha_{AB} \langle \pi\pi | \vec{E}^a \cdot \vec{E}^a | 0 \rangle$$

Problem: How to find $\alpha_{J/\psi J/\psi}$?

Idea: Extract $\alpha_{\psi(2S)J/\psi}$ from $\psi(2S) \to J/\psi \pi \pi$ and estimate $\alpha_{J/\psi J/\psi}$ from it

16/21

Double- J/ψ molecule

Double- J/ψ molecule

Assume: There is a bound (solid line) or virtual (dashed line) state with E_B

$$T\left(E_B; k', k\right) = \xi V_{\text{tot}}^S\left(k', k, \Lambda\right) + \xi \int \frac{\mathrm{d}^3 l}{(2\pi)^3} \frac{V_{\text{tot}}^S\left(k', l, \Lambda\right) T(E_B; l, k)}{E_B - l^2 / M_{J/\psi} + i\epsilon}$$

$$V_{\mathsf{tot}}^{S}\left(k',k,\Lambda\right) = \langle V_{\mathsf{tot}}(\vec{k}-\vec{k}',\Lambda) \rangle_{\vec{n}'} = V_{\mathsf{CT}}^{S}\left(k',k,\Lambda\right) + V_{\mathsf{exch}}^{S}\left(k',k,\Lambda\right)$$

Notice: There are no sources for $V_{\rm CT}$ larger than from pion/kaon exchanges:

- exchange of (soft gluons)/(light mesons) is OZI suppressed
- \bullet exchange of charmonia is suppressed as $\Lambda^2_{\rm QCD}/m_c^2$

Conclude: It is natural to expect that

$$R \equiv \frac{V_{\rm exch}^S(k'=0,k=0,\Lambda)}{V_{\rm tot}^S(k'=0,k=0,\Lambda)} \gtrsim 1/2$$

18/21

Double- J/ψ molecule

Double- J/ψ molecule

Conclusion: Existence of a molecular pole near the double- J/ψ threshold is consistent with our knowledge on hadron-hadron interactions

Analysis

X(6200)

X(6200) as molecule

Conclusions

20/21

Prediction

• S-wave scattering amplitude at threshold

 $\mathcal{M}_0[J/\psi\pi \to J/\psi\pi] = 8\pi (M_{J/\psi} + m_\pi)a_0$

was used to fix $a_{\rm 0}$

• *P*-wave scattering amplitude at threshold

 $\mathcal{M}_1[J/\psi\pi \to J/\psi\pi] = 8\pi (M_{J/\psi} + m_\pi)k^2 a_1$

provides prediction for a_1

 $a_1 \simeq -(0.2 \sim 0.6) \ \mathrm{GeV}^{-3}$

Conclusions

- Discovery of X(3872) started new era in hadronic physics of heavy quarks
- Recent discoveries by LHCb opened new chapter in this book
- Data collected are analysed
 - using (minimal but realistic) coupled-channel scheme
 - preserving unitarity
 - respecting (approximate but accurate) heavy quark spin symmetry
- $\bullet\,$ Existence of a state at $J/\psi J/\psi$ threshold is predicted from data analysis
- Conjecture of molecular nature of X(6200) proved consistent with our knowledge of hadron-hadron interactions
- Tests outlined to verify/falsify approach and conclusions
- To be continued as soon as new data arrive...