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Abstract

Evidence for the scalar and the tensor glueball is reported. The evidence stems from
an analysis of BESIII data on radiative J/ψ data into π0π0, KSKS, ηη, and φω [1]. The
coupled-channel analysis is contrained by a large number of further data. The scalar
intensity is described by ten scalar isoscalar mesons, covering the range from f0(500)
to f0(2330). Five resonances are interpreted as mainly-singlet states in SU(3), five as
mainly-octet states. The mainly-singlet resonances are produced over the full mass
range, the production of octet states is limited to the 1500 to 2100 MeV mass range
and shows a large peak. The peak is interpreted as scalar glueball. Its mass, width
and yield are determined to Mglueball = (1865 ± 25)MeV, Γglueball = (370 ± 50+30

−20)MeV,
YJ/ψ→γG0

= (5.8± 1.0) · 10−3. The study of the decays of the scalar mesons identifies sig-
nificant glueball fractions [2]. The tensor wave shows the f2(1270) and f ′2(1525) and a
small enhancement at M = 2210 ± 40 MeV, Γ = (355+60

−30)MeV [3]. An interpretation of
these data is suggested.
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1 Introduction

Nearly 50 years ago, Fritzsch and Gell-Mann proposed a new theory of strong interactions:
Quantum Chromo Dynamics (QCD) was born [4, 5]. The new theory predicted not only qq̄
mesons and qqq baryons but also allowed for the existence of quark-less particles called glue-
balls. Their existence is a direct consequence of the nonabelian nature of QCD and of con-
finement. First quantitative estimates of glueball masses were given in a bag model [6]. More
reliable are calculations on a lattice where the scalar glueball is predicted to have a mass in the
1500 to 1800 MeV range [7–10]. Analytic approximations to QCD predict the scalar glueball
at 1850 to 1980 MeV [11–13]. The tensor glueball is expected to have higher mass, with a
mass gap of about 600 MeV. QCD sum rules predict a scalar glueball at about 1780 MeV and
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Figure 1: Number of events in the S-wave as functions of the two-meson invariant
mass from the reactions J/ψ→ γ π0π0 (a), KSKS (b), ηη (c), φω (d). (a) and (b)
are based on the analysis of 1.3 · 109 J/ψ decays, (c) and (d) on 0.225 · 109 J/ψ
decays.

a tensor glueball 100 MeV higher [14]. We thus expect the mass of the scalar glueball to be
between 1500 and 2000 MeV and a tensor glueball mass in the 1900 to 2600 MeV range. The
mass of the pseudoscalar glueball is expected slightly above the tensor glueball.

Glueballs are embedded into the spectrum of isoscalar mesons. The scalar and tensor
glueball have isospin I = 0, positive G-parity (decaying into an even number of pions), their
parity P and their C-parity are positive, and their total spin J is 0 or 2: (IG)J PC = (0+)0++ or
(0+)2++. Glueballs have the same quantum numbers and may mix with them. Most claims for
the scalar glueball are based on the observation of three scalar isoscalar resonances, f0(1370),
f0(1500), and f0(1710). In this mass range, two isoscalar tensor mesons are known, f2(1270)
and f ′2(1525) where f2(1270) consists mainly of light quarks (nn̄) and f ′2(1525) of strange
quarks (ss̄). Amsler and Close [15, 16] interpreted these three scalar mesons as mixed states
of an nn̄, ss̄ and the scalar glueball (g g). Several authors suggested similar mixing schemes all
based on the three resonances f0(1370), f0(1500), and f0(1710) (see [17] and refs. therein).

In this contribution, I present the results on a coupled-channel analysis of BESIII data
on radiative J/ψ decays into π0π0 [18], KsKs [19], ηη [20], and ωφ [21]. The results on
J/ψ → γ2π+2π− [22, 23] and J/ψ → γωω [24] were included in the interpretation of the
results. The analysis was constrained by a large number of further data: from the GAMS
collaboration on the charge-exchange reactions π−p→ π0π0 n,ηηn and ηη′ n at 100 GeV/c
in a mass range up to 3 GeV, BNL data on π−p→ KSKS n, the CERN-Munich data on ππ→ ππ
elastic scattering, the low-mass ππ interactions from the Ke4 of charged Kaons, and by 15
Dalitz plots on p̄N annihilation. The references to these data can be found elsewhere [1].

2 Radiative J/ψ decays

Radiative J/ψ decays are the prime reaction for searching for glueballs. Lattice gauge cal-
culations predict a branching ratio for radiative J/ψ decays to produce the scalar glueball of
(3.8±0.9)10−3 [25] and the tensor glueball with a branching ratio of (11±2)10−3 [26]. This
is a significant fraction of all radiative J/ψ decays, (8.8±1.1)%.

The fit to the data – shown in Fig. 1 – requires five pairs of close-by isoscalar resonances.
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Table 1: Pole masses and widths (in MeV) of scalar mesons. The RPP values are listed
as small numbers for comparison.

Name f0(500) f0(1370) f0(1710) f0(2020) f0(2200)

M [MeV] 410±20 1370±40 1700±18 1925±25 2200±25
400→550 1200→1500 1704±12 1992±16 2187±14

Γ [MeV] 480±30 390±40 255±25 320±35 150±30
400→700 100→500 123±18 442±60 ∼ 200

Name f0(980) f0(1500) f0(1770) f0(2100) f0(2330)

M [MeV] 1014±8 1483± 15 1765±15 2075±20 2340±20
990±20 1506± 6 2086+20

−24 ∼2330

Γ [MeV] 71±10 116±12 180±20 260±25 165±25
10→100 112±9 284+60

−32 250±20

Their masses and widths are given in Table 1. Most resonances have been reported before: the
five lower-mass resonances are included in the Meson Summary Table of the Review of Particle
Physics [27], four states are not considered to be established, one is “new”. The agreement
between our values and those reported earlier is rather good.

Oller has interpreted the f0(500) as mainly singlet state in SU(3), f0(980) as mainly octet
state [28] (see also [29]). The interference between f0(1370) and f0(1500) in Fig. 2 (left)
reveals a repetition of this pattern: f0(1370) is a singlet, f0(1500) is an octet state.

We now assume that the upper states in Table 1 are singlet states, the lower ones octet
states. In Fig. 2 (right) we plot the squared meson masses as a function of a consecutive
number. A linear relation is found with a slope of 1.1 GeV−2. The separation is equal to the
η′ − η mass square separation but reversed: the mainly singlet states are lower in mass than
the mainly octet states. This pattern is expected for instant-induced interactions [30]. These
states could have a glueball component; then they certainly have at least a singlet component.
We define high-mass states (H) as resonances that have a mainly-octet qq̄ configuration but
that may additionally have a glueball component. The low-mass states (L) are mainly-singlet
states.

3 The scalar glueball

Table 2 lists the yields of scalar mesons in radiative J/ψ decays in units of 10−5. RPP numbers
are also given for comparison but with two digits only, statistical and systematic uncertainties
are added quadratically. The CERN-Munich data on elastic ππ scattering extend up to 1.9 GeV
only; the missing intensity can hence be given only up to this mass.

The missing intensity is compared with the ρρ andωω yield in radiative J/ψ decays. The
J/ψ yields for f0(1750) reported in the RPP should be compared to our sum for the yields
of f0(1710) and f0(1770). The RPP presents yields for f0(2100) and f0(2200); they should
be compared to the yields of our three high-mass states. The J/ψ → γ4π yield [22, 23] is
distributed among these three states.

Figure 3 (left) presents the total yield of H and L scalar mesons in radiative J/ψ decays.
Both distributions show a significant yield at about 1900 MeV. The production of mainly-octet
scalar mesons is surprising. The production is strong, it could be due to a singlet qq̄ component
but this hypothesis does not explain the peak structure. We assign the production of high-mass
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Table 2: J/ψ radiative decay rates in 10−5 units. Small numbers represent the RPP
values, except the 4π decay modes that gives our estimates derived from [22, 23].
The RPP values and those from Refs. [22, 23] are given with small numbers and
with two digits only; statistical and systematic errors are added quadratically. The
missing intensities in parentheses are our estimates. Ratios for KK̄ are calculated
from KSKS by multiplication with a factor 4. Under f0(1750) we quote results listed
in RPP as decays of f0(1710), f0(1750) and f0(1800). The RPP values should be
compared to the sum of our yields for f0(1710) and f0(1770). BES [19] uses two
scalar resonances, f0(1710) and f0(1790) and assigns most of the KK̄ intensity to
f0(1710). Likewise, the yield of three states at higher mass should be compared to
the RPP values for f0(2100) or f0(2200).
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scalar mesons to their glueball component. Obviously, H and L scalar mesons have a glueball
component of similar strength in their wave function.

To quantify the glueball fractions in the wave functions, we write the wave function of
scalar states in the form

f nH
0 (x x x) =
�

nn̄ cosϕs
n − ss̄ sinϕs

n

�

cosφG
nH + G sinφG

nH

f nL
0 (x x x) =
�

nn̄ sinϕs
n + ss̄ cosϕs

n

�

cosφG
nL + G sinφG

nL

ϕs
n is the scalar mixing angle, φG

nH and φG
nL are the meson-glueball mixing angles of the high-

mass state H and of the low-mass state L in the nth nonet. The fractional glueball content of
a meson is given by sin2φG

nH or sin2φG
nL.

The qq̄ component of a scalar meson couples to the final states with the SU(3) structure
constant γα and with a decay coupling constant cn. The structure constants γα are shown in
Fig. 4 as functions of the scalar mixing angle. The SU(3) structure constants γα of a qq̄ singlet
and of a glueball are, of course, identical. There is one coupling constant cG for the glueball
contents of all scalar mesons.

The coupling of a meson in nonet n to the final state α can be written as

gn
α = cnγ

q
α + cGγ

G
α .

The coupling constants were fit to the values derived from the PWA of the BESIII data. Thus,
the fractional contributions were determined. The probability that the glueball mixes into one
of these resonances is

f0(1370) f0(1500) f0(1710) f0(1770) f0(2020) f0(2100)
(5±4)% < 5% (12±6)% (25±10)% (16±9)% (17±8)%

.

The glueball is distributed, the sum of the fractional contribution is (78±18)%. A small
further contribution (of about 10%) can be expected from the two higher mass states f0(2200)
and f0(2330). Figure 3 shows the fractional contribution of the scalar mesons to the glueball.
The solid curve is a Breit-Wigner function with mass and width M = 1865 MeV, Γ = 370 MeV,
the area is normalized to one. Obviously, one full glueball is observed.

Further evidence for the glueball nature of the peak in Fig. 3 can be derived from a compar-
ison of J/ψ radiative decays with the decay B̄s→ J/ψ f0. Figure 5 shows the form factor [31]
from production of scalar mesons in J/ψ→ γ f0 and B̄s→ J/ψ f0 decays [32,33]. The squared
form factors are proportional to the yield.

The LHCb data demonstrate that the production of high-mass scalar states is strongly sup-
pressed. The f0(980) is produced abundantly, there is some f0(1500) intensity but little pro-
duction of scalar mesons above this mass. The ss̄ → f0 yield dies out rapidly with increasing
mass. In contrast, two gluons couple strongly to high-mass scalar mesons. The difference is
particularly large for the f0(1710)/ f0(1770) resonances in their KK̄ decay. These two reso-
nances decay strongly into KK̄ but are not produced with ss̄ in the initial state, only via two
gluons.

4 The tensor glueball

With a scalar glueball at 1865 MeV and its large yield in radiative J/ψ decays we must expect
the tensor glueball with an even larger yield. The experimental mass distributions in the D-
wave show large peaks due to f2(1270) and f ′2(1525). In addition, there is a small but wide
enhancement at M = 2210 ± 40 MeV, Γ = (355+60

−30)MeV. This could be the desired tensor
glueball. To have the large expected yield, the resonance should have large unobserved decay
modes. Certainly, significant more work is required to decide if this is the tensor glueball.
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Figure 2: Left: Interference between f0(1370) and f0(1500): The BESIII data on ππ
and KK̄ are shown with the BnGa fit (left) and the JPAC fit (right). In the center,
the interference of two Breit-Wigner amplitudes with masses and widths given in
Table 1 is shown. A phase difference between the ππ and KK̄ decay modes of 180◦

is required to reproduce the phase difference. One state is singlet in SU(3), the other
one octet. Right: Squared masses of mainly-octet and mainly-singlet scalar isoscalar
mesons as functions of a consecutive number.
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Figure 3: Left: Yield of radiatively produced scalar isoscalar “octet" mesons (open
circles) and “singlet" (full squares) mesons. Right: Glueball component in the wave
function.

Figure 4: The SU(3) structure constants as functions of the mixing angle α= ϕ−90◦.
For α = 0, the meson is a nn̄, for α = 90◦, it is a ss̄ state. Singlet and octet configu-
rations are indicated.
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Figure 5: The BESIII data on J/ψ→ γπ0π0 and KsKs and pion and kaon form factor
derived from LHCb data on B̄s→ J/ψπ+π− and K+K−.

5 Conclusion

In radiative J/ψ decays mainly-octet and mainly-singlet scalar mesons are produced abun-
dantly. The yield of scalar mesons shows a peak structure; mainly-octet mesons are produced
with no background, mainly-singlet mesons above a smooth background. The peak is fit with
a Breit-Wigner shape with a pole at M = (1865 ± 25) − i(185 ± 25+15

−10)MeV . The yield is
determined to YJ/ψ→γG0

= (5.8±1.0) ·10−3. The peak is interpreted as scalar glueball because
of the following reasons:

1. Its mass is consistent with QCD predictions.

2. It is produced abundantly in radiative J/ψ decays where glueballs are expected.

3. The yield in radiative J/ψ decays is consistent with QCD predictions.

4. The decay modes of scalar mesons contributing to the glueball yield require a glueball
contribution.

5. The glueball fractions of the observed scalar mesons contributing to the glueball add up
to (78±18)%. About 10% are expected from higher-mass states. Hence the full glueball
is is identified in the decays of scalar mesons.

6. In the reaction B̄s → J/ψ → f0 under similar kinematic conditions, scalar mesons of
higher mass are only weakly produced. There is little overlap of these scalar mesons
with ss̄ in the initial state. In radiative J/ψ with two gluons in the initial state, the yield
of high-mass scalar mesons is siginicantly larger: the overlap of these scalar mesons with
two gluons is larger.

The search for the tensor glueball in radiative J/ψ decays revealed a several 100 MeV wide
peak of little intensity. This could be the tensor glueball but further studies are certainly
required to establish its nature.
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Figure 6: The scalar and tensor intensities in radiative J/ψ decays to π0π0 and KsKs.
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Abstract

Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or
imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts
severe limitations on the reliability of such methods. We studied the QCD chiral tran-
sition at finite real baryon density with the more direct sign reweighting approach. We
simulate up to a baryochemical potential-temperature ratio of µB/T = 2.7, covering the
RHIC Beam Energy Scan range, and penetrating the region where methods based on an-
alytic continuation are unpredictive. This opens up a new window to study QCD matter
at finite µB from first principles. This conference contribution is based on Ref. [1].
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1 Introduction

1.1 QCD at finite µB and the need for more direct methods

One of the major unsolved problems in high energy physics is the calculation of the phase
diagram of strongly interacting matter in the temperature (T) - baryochemical potential (µB)
plane. Many aspects of QCD thermodynamics at µB = 0 have been clarified by first principle
lattice QCD calculations, such as the crossover nature of the transition and the value of the
transition temperature [2–4].
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It is conjectured that at higher baryochemical potential the QCD crossover gets stronger
and above a certain point turns into a first order phase transition. The endpoint of the line of
first order transitions is called the critical endpoint. Establishing the existence and the location
of this conjectured critical endpoint is one of the main goals of the phenomenology of heavy
ion collisions and of QCD thermodynamics.

First principle lattice calculations at finite µB are, however, hampered by the notorious
complex-action problem: the path integral weights become complex numbers, and importance
sampling breaks down. A number of methods have been introduced over the years to side-step
this problem. In particular, most state-of-the-art calculations involve analytic continuation
using either i) data on Taylor coefficients of different observables at µB = 0 or ii) data at
purely imaginary chemical potentials µ2

B ≤ 0, where the sign problem is absent. An example
of an important result coming from these approaches is the calculation of the curvature of
the crossover line Tc(µB) near zero chemical potential [5–7]. Another important result is
the calculation of the Taylor coefficients of the pressure in a series expansion in the chemical
potential up to fourth order [8,9], which have been calculated on the lattice up to high enough
temperatures to match results from resummed perturbation theory [10,11].

The extension of these results to higher orders in the Taylor expansion and to higher chem-
ical potentials, however, faces immense challenges: For the Taylor method, the signal-to-noise
ratio increases significantly with increasing order of the Taylor expansions. Similarly, in the de-
termination of the same high-order coefficients with the imaginary chemical potential method,
one runs into the ill-posedness of high-order numerical differentiation. Even if the high-order
coefficients were available, extrapolation by a Taylor polynomial ansatz is limited by the ra-
dius of convergence of such an expansion. While there were attempts to locate the leading
singularity of the pressure with several different methods [12–15], these calculations have
so far not reached the continuum limit. Even if one knows the leading singularity determin-
ing the radius of convergence, it is not obvious how to go beyond it. Several resummation
schemes have been experimented with, including Padé resummation in Refs. [15–17], a joint
expansion in temperature and chemical potential along lines of constant physics in Ref. [18],
and a truncated reweighting scheme in Ref. [14]. While these methods are interesting, at the
moment they provide no clear way of going beyond the crossover region of the conjectured
phase diagram. Moreover, these type of reweighting schemes have so far been used mostly
to calculate observables that are not very sensitive to criticality - such as the pressure and the
transition line Tc(µB). Extrapolations of observables that are sensitive to criticality, such as the
width of the transition, are even less under control [7].

To shed light on the ultimate fate of the QCD crossover at finite µB, it is therefore of great
importance to come up with more direct methods, that can provide results directly at a finite
chemical potential, and are free of additional systematic effects, such as the aforementioned
analytic continuation problem of the Taylor and imaginary chemical potential methods, or the
convergence issues of complex Langevin [19–21].

1.2 Reweighting and the overlap problem

Given a theory with fields U , reweighting is a general strategy to calculate expectation values
in a target theory - with path integral weights wt and partition function Zt =

∫

DUwt(U) - by
performing simulations in a different (simulated) theory - with path integral weights ws and
partition function Zs =

∫

DUws(U). The ratio of the partition functions and expectation value
in the target theory are then given by

Zt

Zs
=
­

wt

ws

·

s
and 〈O〉t =

¬

wt
ws
O
¶

s
¬

wt
ws

¶

s

(1)
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respectively, where 〈. . . 〉t,s denotes taking expectation value with respect to the weights wt
and ws, respectively. In the present conference contribution, we will consider examples where
the target theory is QCD at finite baryochemical potential discretized on the lattice. In this
case the partition function of the target theory is:

Zµ =

∫

DU det M(U ,µ, m)e−Sg (U) =

∫

DU Re det M(U ,µ, m)e−Sg (U), (2)

where Sg is the gauge action, det M denotes the fermionic determinant, including all quark
types with their respective masses collectively denoted by m, their respective chemical poten-
tials collectively denoted by µ, as well as rooting in the case of staggered fermions, and the
integral is over all link variables U . Replacing the determinant with its real part is not per-
mitted for arbitrary expectation values, but it is allowed for i) observables satisfying either
O(U∗) =O(U) or ii) observables obtained as derivatives of Z with respect to real parameters,
such as the chemical potential, the quark mass or the gauge coupling.

Since the target theory is lattice QCD at finite chemical potential, the weights wt have
wildly fluctuating phases: this is the infamous sign problem of lattice QCD at finite baryon
density. In addition to this problem, generic reweighting methods also suffer from an overlap
problem: the probability distribution of the reweighting factor wt/ws has generally a long tail,
which cannot be sampled efficiently in standard Monte Carlo simulations.

Many attempts at reweighting to finite baryochemical potential, such as Refs. [13,22–24]
use reweighting from zero chemical potential, when the weights are proportional to the ratio of
determinants det M(µ)/det M(0). However, these studies have so far been restricted to coarse
lattices, with temporal extent Nτ = 4, and mostly an unimproved staggered action, with the
exception of Ref. [13], that uses the 2stout improved staggered action [3], albeit still at Nτ = 4.
It was actually demonstrated in Ref. [25], that the main bottleneck in extending such studies
to finer lattices is the overlap problem in the weights wt/ws, which becomes severe already at
moderate chemical potentials, where the sign problem is still numerically manageable.

This overlap problem in the weights wt/ws is not present if they take values in a compact
space. The most well-known of these approaches is phase reweighting [26, 27], where the
simulated theory - the so called phase quenched theory - has path integral weights:

ws = wPQ = |det Mud(µ)
1
2 |det Ms(0)

1
4 e−Sg . (3)

In this case the reweighting factors are pure phases:
�

wt

ws

�

PQ
= eiθ , (4)

where θ = Arg det M . We will contrast this approach with sign reweighting, where the simu-
lated - sign quenched - ensemble has weights:

ws = wSQ = |Redet Mud(µ)
1
2 |det Ms(0)

1
4 e−Sg . (5)

In this case the reweighting factor are signs:
�

wt

ws

�

SQ
= ε≡ signcosθ = ±1, (6)

provided that the target theory is the one with wt = Redet Me−Sg , i.e., provided one restricts
one’s attention to observables satisfying i) or ii).
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2 The severity of the sign problem

A measure of the strength of the sign problem in the phase reweighting scheme is given by
the expectation value of the phases

Zµ
ZPQ
= 〈cosθ 〉PQ. Similarly, in the sign reweighting scheme

the severity of the sign problem is measured by
Zµ
ZSQ
= 〈ε〉SQ. The earliest mention of the sign

reweighting approach we are aware of is Ref. [28], where it was noted that out of the reweight-
ing schemes where the weights wt/ws are a function of the phase of the quark determinant
only, sign reweighting is the optimal one, with the weakest sign problem, in the sense that
the ratio Zt/Zs is maximal. In this section we study how much one gains by this optimality
property of the sign quenched ensemble, when compared to the phase quenched ensemble.
For this purpose we introduce a simplified model - to be later compared with direct simulation
data - where the distribution of the phases θ in the phase quenched ensemble is given by a
wrapped Gaussian distribution:

PPQ(θ ) =
Gaussian
approx.

1
p

2πσ

∞
∑

n=−∞
e−

1
2σ2 (θ+2πn)2 . (7)

Once one has a model for this probability distribution, the strength of the sign problem can
be estimated in both the phase and sign quenched ensembles. The estimates and their small
chemical potential (i.e., small σ) asymptotics are given by:

〈cosθ 〉PQ
T,µ = e−

σ2(µ)
2 ∼

µB→0
1−

σ2(µ)
2

,

〈ε〉SQ
T,µ =

〈cosθ 〉PQ
T,µ

〈|cosθ |〉PQ
T,µ

∼
µB→0

1−
� 4
π

�
5
2
�

σ2(µ)
2

�

3
2

e
− π2

8σ2(µ) .
(8)

Note the two very different asymptotics at small chemical potential: the phase reweighting ap-
proach leads to a regular Taylor series, while in the sign reweighting approach the asymptotics
approach 1 faster than any polynomial.

The large-µ or large volume asymptotics are on the other hand very similar: in the large-σ
limit a wrapped Gaussian tends to the uniform distribution, and so at large chemical potential
or volume one arrives at

〈ε〉SQ
T,µ

〈cosθ 〉PQ
T,µ

∼
µB or V→∞

�∫ π

−π
dθ |cosθ |

�−1

=
π

2
, (9)

which asymptotically translates to a factor of (π2 )
2 ≈ 2.5 less statistics needed for a sign

quenched as compared to a phase quenched simulation.
To have a numerical estimate of the strength of the sign problem as a function of µ, rather

than σ we further approximate the variance of the weights by the leading order Taylor expan-
sion [29]:

σ(µ)2 ≈



θ2
�

LO = −
4
9
χud

11 (LT )3
�µB

T

�2
, (10)

where

χud
11 =

1
T2

∂ 2p
∂ µu∂ µd

|µu=µd=0 (11)

is the disconnected part of the light quark susceptibility, which is easily obtained by performing
simulations at zero chemical potential.

The simple approximations made above are actually quite close to the actual simulation
data, as can be seen in Fig. 1: our simple model predicts the strength of the sign problem both
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Figure 1: The strength of the sign problem on 2stout improved 163 × 6 staggered
lattices as a function of µB/T at T = 140 MeV (left) and as a function of T at
µB/T = 1.5. A value close to 1 shows a mild sign problem, while a small value indi-
cates a severe sign problem. Data for sign reweighting (black) and phase reweighting
(orange) are from simulations. Predictions of the Gaussian model (see text) are also
shown.

as a function of µB at a fixed temperature (left) and as a function of temperature at a fixed
µB/T (right). While deviations are visible at larger µ, even at the upper end of our µ̂B ≡

µB
T

range the deviation is at most 25%, and Eq. (9) approximates well the relative severity of the
sign problem in the two ensembles at µB/T > 1.5. This is of great practical importance, as
it makes the planning of future simulation projects with either the sign or phase reweighting
approaches relatively straightforward: simulation costs can be easily estimated beforehand.

3 Lattice setup and numerical results

For the simulations we used a tree level Symanzik improved gauge action with the staggered
Dirac operator being a function of fat links, obtained by two steps of stout smearing [30] with
parameter ρ = 0.15. We only introduce a chemical potential for the up and down quarks,
that have the same chemical potential µ = µl = µu = µd = µB/3, while for the strange
quark we have µs = 0. We used a lattice size of 163 × 6, and performed a scan in chemical
potential at fixed T = 140MeV, and a scan in temperature at fixed µB/T = 1.5. In both cases,
simulations were performed by modifying the RHMC algorithm at µB = 0 by including an

extra accept/reject step that takes into account the factor |Redet Mud (µ)
1
2 |

det Mud (0)
. The determinant was

calculated with the reduced matrix formalism [22] and dense linear algebra, with no stochastic
estimators involved.

The main observables we studied were the light quark condensate and density. The light-
quark chiral condensate was obtained via the formula

〈ψ̄ψ〉T,µ =
1

Z(T,µ)
∂ Z(T,µ)
∂mud

=
T
V

1

〈ε〉SQ
T,µ

­

ε
∂

∂mud
ln
�

�

�Re det M
1
2

ud

�

�

�

·SQ

T,µ
, (12)

using a numerical differentiation of the determinant det M = det M(U , mud , ms,µ) calculated
with the reduced matrix formalism of Ref. [22]. The step size in the derivative was chosen
small enough to make the systematic error from the finite difference negligible compared to
the statistical error. The additive and multiplicative divergences in the condensate were renor-
malized with the prescription

〈ψ̄ψ〉R(T,µ) = −
mud

f 4
π

�

〈ψ̄ψ〉T,µ − 〈ψ̄ψ〉0,0

�

. (13)
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Figure 2: The renormalized chiral condensate (left) and the light quark number-to-
light quark chemical potential ratio (right) as a function of T at fixed µB/T = 1.5,0
and 1.5i on 2stout mproved lattices at Nτ = 6. The insets show a rescaling of the
temperature axis by T → T

�

1+κ
�µB

T

�2�
, which approximately collapses the curves

onto each other if κ≈ 0.012 and 0.016 are chosen for the chiral condensate and the
quark number-to-chemical potential ratio, respectively.
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Figure 3: The renormalized chiral condensate (left) and the light quark number-to-
light quark chemical potential ratio (right) as a function of (µB/T )

2 at temperature
T = 140 MeV with the 2stout improved staggered action at Nτ = 6. Data from simu-
lations at real µB (black) are compared with analytic continuation from simulations
at imaginary µB (blue). In the left panel the value of the condensate at the crossover
temperature at µB = 0 is also shown by the horizontal line. The simulation data cross
this line at µB/T ≈ 2.2.

We also calculated the light quark density

χ l
1 ≡

∂
�

p/T4
�

∂ (µ/T )
=

1
V T3

1
Z(T,µ)

∂ Z(T,µ)
∂ µ̂

=
1

V T3〈ε〉SQ
T,µ

­

ε
∂

∂ µ̂
ln
�

�

�Re det M
1
2

ud

�

�

�

·SQ

T,µ
. (14)

In this case the derivative on a fixed configuration can be obtained analytically using the re-
duced matrix formalism. The light quark density does not have to be renormalized.

Our results for a temperature scan between 130 MeV and 165 MeV at real chemical po-
tential µB/T = 1.5, zero chemical potential, and imaginary chemical potential µB/T = 1.5i
are shown in Fig. 2. We also show that a rescaling of the temperature axis of the form
T → T

�

1+κ
�µB

T

�2�
, where κ ≈ 0.012 for the chiral condensate and κ ≈ 0.016 for χ l

1/µl

collapses the curves into each other. Such a simple rescaling indicates that up to µB/T = 1.5
the chiral crossover does not get narrower, which is what one would expect in the vicinity of
a critical endpoint.

Our results for the chemical potential scan at a fixed temperature of T = 140 MeV are
shown in Fig. 3. We have performed simulations at µB/T = 1, 1.5,2, 2.2,2.5, 2.7. The sign-
quenched results are compared with the results of analytic continuation from imaginary chem-
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ical potentials. To demonstrate the magnitude of the systematic errors of such an extrapolation
we considered two fits. (i) As the simplest ansatz, we fitted the data with a cubic polynomial
in µ̂2

B =
�µB

T

�2
in the range µ̂2

B ∈ [−10,0]. (ii) As an alternative, we also and ansätze for
both




ψ̄ψ
�

R and χ l
1/µ̂l based on the fugacity expansion p/T4 =

∑

n An cosh(nµl/T ), fitting
the data in the entire imaginary-potential range µ̂2

B ∈
�

−(6π)2, 0
�

using respectively 7 and 6
fitting parameters. Fit results are also shown in Fig. 3; only statistical errors are displayed.
While sign reweighting and analytic continuation give compatible results, in the upper half of
the µB range the errors from sign reweighting are an order of magnitude smaller. In fact, sign
reweighting can penetrate the region µ̂B > 2 where the extrapolation of many quantities is
not yet possible with standard methods [7,9].

4 Conclusions

Due to the increasing computing power of modern hardware, direct approaches to finite den-
sity QCD are becoming increasingly feasible, and are opening up a new window to study
the bulk thermodynamics of strongly interacting matter from first principles. In this confer-
ence contribution and the paper Ref. [1] which it is based on, we studied the method of sign
reweighting in detail for the first time. While the method is ultimately bottlenecked by the sign
problem, in the region of applicability it offers excellent reliability compared to the dominant
methods of Taylor expansion and imaginary chemical potentials - which always provide results
having a shadow of a doubt hanging over them due to the analytic continuation problem. We
have demonstrated that the strength of the sign problem can be easily estimated with µ = 0
simulations, making the method practical and the planning of simulation projects straightfor-
ward. We have also demonstrated that the method extends well into the regime where the
established methods start to lose predictive power, and covers the range of the RHIC Beam
Energy Scan (BES) [31,32].

The lattice action used in this study is often the first point of a continuum extrapolation
in QCD thermodynamics. Furthermore, while the sign problem is exponential in the physical
volume, it is not so in the lattice spacing. Continuum-extrapolated finite µB results in the range
of the RHIC BES and is already within reach for the phenomenologically relevant aspect ratio
of LT ≈ 3.

On a more methodological point, the phase and sign reweighting approaches only guar-
antee the absence of heavy tailed distributions when calculating the ratio of the partition
functions (or the pressure difference) of the target and simulated theories. Furthermore, the
optimum property of the sign quenched ensemble is only a statement about the denominator
of Eq. (1) (right). The optimal ensemble when both the numerator and the denominator are
taken into account is most likely, however, observable dependent. For these two reasons, the
study of the probability distributions of observables other than the pressure is an important
direction for future work.
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Abstract

A major objective of lattice QCD is the computation of hadronic matrix elements. The
standard method is to use three-point and four-point correlation functions. An alterna-
tive approach, requiring only the computation of two-point correlation functions is to
use the Feynman-Hellmann theorem. In this talk we develop this method up to second
order in perturbation theory, in a context appropriate for lattice QCD. This encompasses
the Compton Amplitude (which forms the basis for deep inelastic scattering) and hadron
scattering. Some numerical results are presented showing results indicating what this
approach might achieve.
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1 Introduction

Understanding the internal structure of hadrons and in particular the nucleon directly from the
underlying QCD theory is a major task of particle physics. It is complicated because of the non-
perturbative nature of the problem, and presently the only known method is to discretise QCD
and use numerical Monte Carlo methods. The relevant information is encoded in correlation
functions – from the all encompassing two-quark correlation functions to GTMDs, TMDs, GPDs
Wigner functions, PDFs and Form Factors, e.g. [1].
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Using the Operator Product Expansion (OPE), it is possible to relate form factors to mo-
ments of certain matrix elements, which in principle are calculable using lattice QCD tech-
niques. However due to theoretical problems such as much more mixing of lattice operators
due to reduced H(4) symmetry and numerical problems, for many years it was only possible
to compute the very lowest moments. (As an example of a complete calculation – albeit for
quenched fermions – see for example [2].) This does not allow for the reconstruction of the
associated PDF. Progress was recently achieved with the concepts of quasi-PDFs and pseudo-
PDFs, for a comprehensive review see [3].

Here in this talk we shall describe a complementary approach which relates the structure
function to that of the associated Compton amplitude, emphasising via dispersion relations the
physical and unphysical regions and their connection with Minkowski and Euclidean variables.
While the Compton amplitude is a correlation function it is 4-point and hence difficult to com-
pute with the straightforward standard approach used in Lattice QCD of tying the appropriate
Grassmann quark lines together in the path integral. However, we are able to circumvent
this problem by using a Feynman–Hellmann approach. This approach avoids operator mixing
problems, has a simple renormalisation and as independent of the Operator Product Expan-
sion, OPE, allows an investigation of power corrections to the leading behaviour (twist 2) of
the OPE. We first described this method in [4] and have been developing it further e.g. [5,6].

In this talk we give a brief introduction to this approach, first in section 2 giving the relation
between structure functions and the Compton amplitude. This is followed in section 3 by a
description of the Feynman–Hellmann approach. Some numerical results are given in 4.2.
Further details and results are given in [5]. The Feynman–Hellmann approach is a versatile
method and in the following section 5 some further applications are mentioned. Finally we
give some conclusions.

2 Structure functions and the Compton amplitude

Deep Inelastic Scattering (DIS) is the inclusive scattering of a lepton (usually an electron) from
nucleon (usually a proton), eN → e′X . The process is shown diagrammatically in Fig. 1. The

P

k k0

q

P + q
N

e−

X

e−

p p

Figure 1: DIS, where k, k′ represent the incoming, outgoing lepton momenta, p is
the momentum of the incoming nucleon of mass MN , q = k − k′ is the momentum
transfer and X represents the recoiling system.

kinematics is such that Q2 ≡ −q2 > 0; the invariant mass of X is M2
X = (p+q)2 and the Bjorken

variable, x , is defined by x = Q2/(2p · q). Here we shall be mainly using the inverse Bjorken
variable ω = 1/x . x > 0 from kinematics and M2

X > M2
N means that x < 1 which translates

to 1 < ω <∞ as the physical region. The square of the amplitude can be factorised into a
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calculable leptonic tensor together with an unknown hadronic tensor, Wµν, given1 by

Wµν ≡
1

4π

∫

d4z eiq·zρss′ rel〈p, s′|[J†
µ(z), Jν(0)]|p, s〉rel , (1)

where Jµ is the electromagnetic current (γ)2 and for unpolarised nucleons we haveρss′ = δss′/2.
The tensor has the Lorentz decomposition

Wµν =
�

−ηµν +
qµqν
q2

�

F1(x ,Q2) +
�

pµ −
p · q
q2

qµ

��

pν −
p · q
q2

qν

�

F2(x ,Q2)
p · q

, (2)

with structure functions F1(x ,Q2) and F2(x ,Q2). It is useful to relate the Wµν scattering am-
plitude to the forward Compton scattering amplitude, Tµν, depicted in the LH panel of Fig. 2,
as this is a correlation function and so more amenable to lattice QCD or other calculational

p p

p p

q q

Im ω

Re ω

Figure 2: LH panel: The forward Compton Amplitude. RH panel: The analytic struc-
ture for F1 – branch cuts starting from ω = ±1, together with the contour used for
the dispersion relation.

methods. The definition parallels that of Wµν

Tµν(p, q)≡ i

∫

d4z eiq·zρss′ rel〈p, s′|T (J†
µ(z)Jν(0))|p, s〉rel

=
�

−ηµν +
qµqν
q2

�

F1(ω,Q2) +
�

pµ −
p · q
q2

qµ

��

pν −
p · q
q2

qν

� F2(ω,Q2)
p · q

, (3)

with corresponding structure functions F1(ω,Q2), F2(ω,Q2). Due to the time ordering in its
definition it is a correlation function. These are related via the Optical theorem to the hadronic
tensor structure functions by ImF1(ω,Q2) = 2πF1(x ,Q2) (and similarly for F2, however in
this talk we shall concentrate on F1). Photon crossing symmetry N → N̄ means that F1 is
symmetric under ω → −ω (while F2 is anti-symmetric). The analytic structure, e.g. [7],
is thus given in the RH plot of Fig. 2. Analyticity properties (including using the Schwarz
reflection principle across the branch cut) then give a once subtracted3 dispersion relation

F1(ω,Q2) =
2ω
π

∫ ∞

1

dω′
�

ImF1(ω′,Q2)
ω′(ω′ −ω− iε)

−
ImF1(ω′,Q2)
ω′(ω′ +ω− iε)

�

+F1(0,Q2)

= 4ω2

∫ 1

0

d x ′
x ′F1(x ′,Q2)

1− x ′2ω2 − iε
︸ ︷︷ ︸

F1(ω,Q2)

+ F1(0,Q2)
︸ ︷︷ ︸

once subtracted

. (4)

1The state normalisation is given by rel〈N |N〉rel = 2EN . See also footnote 5.
2This can, of course, be generalised to neutral (Z) or charged (W±) currents.
3Conventionally ω= 0 is chosen as the subtraction point, but others have recently been suggested, [8].
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(Replacing x ′F1 by F2 with no subtraction gives the equivalent dispersion relation for F2.) As
long as we are in the unphysical region |ω| < 1⇐⇒ M2

X < M2
N , i.e. below elastic threshold,

there is no singularity in previous integral the time ordering is irrelevant, so the iε in eq. (4)
can be dropped. The Minkowski and Euclidean amplitudes are then identical which as we
shall see in section (3) will eventually allow a direct lattice QCD computation. Physically
|ω| < 1 means states propagating between currents cannot go on-shell. Taylor expanding the
denominator in eq. (4) then gives

F1(ω,Q2) = 2
∞
∑

n=1

ω2nM (1)2n (Q
2) , where M (1)2n (Q

2) = 2

∫ 1

0

d x ′ x ′2n−1F1(x
′,Q2) (5)

are the Mellin moments of F1. Furthermore for the numerical results considered later we set
µ= ν= z, pz = qz = 0 giving

T33(p, q) = F1(ω,Q2) = 2
∞
∑

n=1

ω2nM (1)2n (Q
2) . (6)

So from Compton amplitude data we can directly extract the Mellin moments. The positivity
of the cross section means that F1 > 0 or M (1)2 ≥ M (1)4 ≥ . . . M (1)2n ≥ . . . > 0 so the expected
shape of the Compton amplitude in the unphysical region for fixed Q2 is simply an increasing
polynomial function of ω2.

3 The Feynman–Hellmann approach

The task now is to compute the (Euclidean) Compton amplitude and in particular that given
in eq. (6). A direct lattice QCD computation of the path integral for the necessary 4-point
correlation function is complicated as there are many diagrams to compute. As an alternative
we shall use the Feynman–Hellmann approach here.

We now sketch a derivation of the procedure. Consider the 2-point nucleon correlation
function

C f iλ(t; ~p, ~q) = λ〈0| ˆ̃BN f
(0; ~p)

︸ ︷︷ ︸

Sink:momentum

Ŝ(~q)t ˆ̄BNi
(0, ~0)

︸ ︷︷ ︸

Source: spatial

|0〉λ , (7)

where Ŝ is the ~q-dependent transfer matrix Ŝ(~q) = exp (−Ĥ(~q)) in the presence of a perturbed
Hamiltonian

Ĥ(~q) = Ĥ0 −
∑

α

λα
ˆ̃Oα(~q) , (8)

where

ˆ̃Oα(~q) =
∫

~x

�

Ôα(~x)e
i~q·~x + Ô†

α(~x)e
−i~q·~x� (9)

is a Hermitian operator. λ can be taken as a real positive parameter4. Using time dependent
perturbation theory via the Dyson Series, namely the operator expansion, regarding B̂ as ‘small’

et(Â+B̂) = etÂ+

∫ t

0

d t ′ e(t−t ′)Â B̂ et ′Â+

∫ t

0

d t ′
∫ t ′

0

d t ′′ e(t−t ′)Â B̂ e(t
′−t ′′)Â B̂et ′′Â+O(B̂3) , (10)

4Can generalise to complex λ by absorbing the phase into the operator: λαÔα(~x)→ |λα|eiφα Ôα(~x).
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and inserting complete sets of unperturbed states5

|N(~p)〉〈N(~p)|+
∑

EX (~pX )>EN (~p)

|X (~pX )〉 〈X (~pX )|= 1 , (11)

appropriately gives after some algebra the factorised result

C f iλ(t; ~p, ~q) = λ〈0| ˆ̃BN f
(~p)|N(~p)〉 × λ〈N(~p)| ˆ̄BNi

(~0)|0〉λ × e−EN λ(~p,~q)t + . . . , (12)

where as this equation suggests we have taken the lowest state |N(~p)〉 to be well separated
from other states. Furthermore we have defined λ〈N(~p)| as

λ〈N(~p)|= 〈N(~p)|+λα
∑

EY (~pY )>EN (~p)

〈N(~p)| ˆ̃Oα(~q)|Y (~pY )〉
EY (~pY )− EN (~p)

〈Y (~pY )|+O(λ2) . (13)

(We do not give the O(λ2) term here.) While the final nucleon operator, ˆ̃BN f
(~p), has a definite

momentum and so just picks out one state, the initial nucleon operator, B̂Ni
(~0), being at posi-

tion ~x = ~0 contains all momenta and states (indicated here by the sum over |X (~pX )〉). For the
matrix elements that appear in the modified energy in eq. (12), rather than writing them in

terms of the operator ˆ̃Oα we first use Ô(~x) = e−i ~̂p·~x Ô(~0) ei ~̂p·~x on the relevant term to give

〈X (~pX )|
ˆ̃Oα(~q)|N(~p)〉= 〈X (~pX )|Ôα(~0)|N(~p)〉δ~pX ,~p+~q + 〈X (~pX )|Ô†

α(~0)|N(~p)〉δ~pX ,~p−~q , (14)

so matrix elements step up or down in ~q. As this is also valid for X = N then the O(λ) term6

vanishes (~q 6= ~0). Generalising each λ inserts another ˆ̃O into the matrix element, so we need
an even number of λs, i.e. odd powers of λ vanish. This gives finally

EN λ(~p, ~q) = EN (~p)−
∑

EX (~p±~q)>EN (~p)

�

|〈X (~p+ ~q)|λαÔα(~0)|N(~p)〉|2

EX (~p+ ~q)− EN (~p)
(15)

+
|〈X (~p− ~q)|(λαÔα(~0))†|N(~p)〉|2

EX (~p− ~q)− EN (~p)

�

+O(λ3) .

We need EN (~p± ~q)> EN (~p) (X = N is the worst case) giving −1<ω< 1 with ω= 2~p · ~q/~q2.
This is the usual definition of ω (with q0 = 0), which is in the safe unphysical region.

What has all this to do with the Compton Amplitude? We now interpret this result and
relate it to the Compton Amplitude. Considering its Minkowski (M) definition again, eq. (3),
and again inserting a complete set of states for t > 0 and t < 0 with the appropriate iε
prescription

T (M)
µν (p, q) =

∑

X

�

〈X (~p+ ~q)|Ôµ(~0)|N(~p)〉∗ 〈X (~p+ ~q)|Ôν(~0)|N(~p)〉
EX (~p+ ~q)− EN (~p)− q0 − iε

+
〈X (~p− ~q)|Ô†

ν(~0)|N(~p)〉
∗〈X (~p− ~q)|Ô†

µ(~0)|N(~p)〉

EX (~p− ~q)− EN (~p) + q0 − iε

�

. (16)

Comparing with the previous result of eq. (15) if we set q0 = 0 and choose the ~p, ~q geometry
so that EX (~p± ~q)> EN (~p), i.e. −1<ω< 1 then we can also drop the iε which gives

EN λ(~p, ~q) = EN (~p)−
λ∗αλβ

rel〈N(~p)|N(~p〉rel
T (M)

αβ
((EN (~p), ~p), (0, ~q)) +O(λ4) . (17)

5The lattice normalisation is used here: 〈X (~pX )|Y (~pY )〉= δX Yδ~pX ~pY
. To convert to the usual relativistic normal-

isation, with an additional factor 2EX , change |X 〉 → |X 〉/
p

〈X |X 〉 with |0〉 → |0〉.
6Namely −λα〈N(~p)|

ˆ̃Oα(~q)|N(~p)〉.
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As T (M)

αβ
(p, q)∗ = T (M)

βα
(p, q) then the real part of Compton amplitude is symmetric (unpolarised

case with λ real) while the imaginary part is anti-symmetric (polarised with λ complex).
For the DIS case considered here in eq. (6) where µ = ν = z; pz = qz = 0, giving

T33(p, q) = F1(ω,Q2). So with Oα→ Jz we have finally

∆EN λ(~p, ~q)≡ EN λ(~p, ~q)− EN (~p) = −
λ2

z

2EN (~p)
F1(ω,Q2) +O(λ4) , (18)

writing the relativistic normalisation explicitly.

4 The Lattice

We now briefly describe some lattice details. In the Lagrangian in the path integral we add
the equivalent perturbation

L(x) = L0(x) + 2λz cos(~q · ~x)Jz(x) , (19)

where rather than considering the complete electromagnetic current we take the vector cur-
rent J (q)µ to be either ZV ūγµu (where q → u) or ZV d̄γµd (q → d). ZV has been previously
determined. We only modify the propagators for the valence u/d quarks in λ. So there are
no quark-line disconnected terms considered here. To include this would require at least very
expensive dedicated configuration generation.

More specifically we consider 2+1 quark mass degenerate flavours on a N3
S ×NT = 323×64

lattice with a spacing a ∼ 0.074 fm. (Technically β = 5.50, κl = 0.120900, l = u, d or
s giving mπ ∼ 470MeV and mπL ∼ 5.4 where L = aNS .) For more details of the action
and configuration generation see [9]. Apart from λz = 0, we use 4 values of λz , namely
±0.0125, ±0.025. Q2 has 5 values in the range between 3 and 7 GeV2 and we make ∼ O(104)
measurements for each λz , Q2 pair (varying ~p is numerically cheap as it is not part of the
source, and hence not connected with the numerically expensive fermion matrix inversion).

4.1 Kinematic coverage

We now briefly discuss the possible kinematic coverage, which is sketched in the LH panel of
Fig 3. As an example consider fixed ~q = (2π/L) (3,5, 0). We can access differentω by varying
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Figure 3: LH panel: The allowed kinematic possibilities for ~p given ~q = 2π/L(3,5, 0),
where L = 32a. Lines of constant ω = (2/34)(3nx + 5ny) are shown dashed. The
blue dots give the allowed momenta. RH panel: A plot of ∆EN λ against λz for
~q = 2π/L(4,1, 0) and ~p = 2π/L(1,0, 0).
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the nucleon momenta ~p = (2π/L)~n as ω = 2~p · ~q/~q2 = (2/34)(3nx + 5ny). Thus for a given
constant ω we have a linear relationship between ny and nx as shown by the lines in the LH
panel of Fig. 3. The blue dots give allowed values of ~p.

To extract energy shifts, ∆EN λ, for each λz we form ratios, Rλ which isolate the O(λ2
z )

term

Rλ =
CNN +λz

(t)CNN −λz
(t)

CNN 0(t)2
= Aλ(~p, ~q) e−2∆EN λ(~p,~q) + . . . . (20)

After extracting ∆EN λ, this is plotted against λz . An example is shown in the RH panel of
Fig. 3 for ~q = 2π/L(4,1, 0), ~p = 2π/L(1, 0,0) (giving Q2 = 4.7 GeV2). A quadratic fit gives
from eq. (18) the structure function, F1(ω,Q2), at one value of ω. Repeating this for various
values of ~p and ~q gives the complete structure function of ω and Q2.

4.2 Results

In Fig. 4 we show F1(ω,Q2) as a function of ω for Q2 = 4.7GeV2 for J (u)z and J (d)z separately.
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ω
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0.0

0.5

1.0

1.5

2.0

F
q
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Q

2
)

q =(4, 1, 0) 2π/L

uu

dd

mean± stat.± sys.

µuu1 0.240+0.044+0.000
−0.063−0.002

µuu3 0.150+0.050+0.001
−0.055−0.004

µuu5 0.073+0.032+0.001
−0.054−0.004

µuu7 0.033+0.008+0.002
−0.033−0.003

µdd1 0.128+0.034+0.000
−0.037−0.002

µdd3 0.045+0.018+0.001
−0.037−0.001

µdd5 0.019+0.005+0.000
−0.019−0.001

µdd7 0.009+0.002+0.000
−0.009−0.000

Figure 4: ω dependence of F1(ω,Q2) for Q2 = 4.7GeV2. The blue circles are for J (u)z ,
the red diamonds for J (d)z . The fits, blue and red lines with errors given by shaded
region are described in the text. The points are slightly shifted for clarity.

This figure is our main result. We now mention some further consequences from this result.
From eq. (5) we can make a fit to F1(ω,Q2) to determine the (low) Mellin moments. We
have the constraints M (1)2 ≥ M (1)4 ≥ . . . ≥ M (1)2n ≥ . . . > 0 for u, d separately and so we have
implemented a Bayesian procedure (likelihood with priors as constraints). These are also
shown in the LH panel of Fig. 5 for n = 6. We note that the fall-off of the moments is as
expected, however the second moment does not decrease as rapidly as expected from DIS.

Alternatively we can investigate the Q2 dependence of a particular moment and investigate
scaling and the existence of power corrections not restricted to the OPE and large Q2 as shown
in the RH panel of Fig. 5. We also made the naive fit

M (1)2;u−d(Q
2) = M (1)2;u−d +

C (u−d)
2

Q2
. (21)

We concluded, [5, 10, 11], that we need Q2
∼> 16 GeV2 to reliably extract moments at a scale

of µ= 2GeV.
Is it possible to reconstruct the Form Factor, F1 or indeed the PDF? This, of course, would

be the ultimate goal. From eq. (4) we have

T33(ω,Q2) =ω

∫ 1

0

d x K(xω) F1(x ,Q2) , where K(ξ) = 4
ξ

1− ξ2
. (22)
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Figure 5: LH panel: The first 5 isovector moments M (1)2n;u−d(Q
2) (using J (u)z − J (d)z

for various Q2 values). RH panel: The corresponding valence PDF for M (1)2;u−d(Q
2)

Q2 = 2.7 GeV2, together with the fit from eq. (21).

This is a Fredholm integral equation and so an inverse problem, which is ill defined. Presently
with this data, we have first made the ansatz

F1(x ,Q2)≡ apval(x; b, c) = a
Γ (b+ c + 3)

Γ (b+ 2)Γ (c + 1)
x b(1− x)c , (23)

(normalised to
∫ 1

0 d x x pval = 1). Again with a Bayesian implementation, we find typical results
as in Fig. 6 here for Q2 = 2.7 GeV2. The general shape is okay (the parton model would give
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Figure 6: The valence PDF, p(u−d)
val for Q2 = 2.7GeV2.

a δ-function at x = 1/3, which is smeared out by QCD corrections).

5 Further applications

Finally we briefly mention some more applications of this method.

5.1 The O(λ) term

We previously showed that the O(λ) terms vanish if ~q 6= ~0. However for ~q = ~0 then it is possible
to determine the baryon charges. For example in [12] the tensor charge of octet baryons was
determined.

However we can escape this constraint if there is an degeneracy when two (or more) states
have the same energy. Then we now have a matrix of states Mrs = 〈N(~pr)| ˆ̃O(~q)|N(~ps)〉 (where
r, s = 1 , . . . , dS , where dS is the number of degenerate states). As before the diagonal elements
vanish, but the off-diagonal do not. This can be diagonalised to give ∆EN λ. In [13] this was
investigated (for dS = 2 in the Breit frame) and applied to form factors and scattering over a
large range of Q2.
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5.2 The O(λ2) term

While most of our present effort has been directed at the forward Compton amplitude, we
have also started to investigate Off-forward Compton Amplitude (OFCA) and GPDs in [14]
where we described the fomalism and determined the two lowest moments.

5.3 Possible future perspectives

Possible future perspectives include Spin dependent Structure functions and Form factors
as indicated in eq. (17), electromagnetic corrections to the proton – neutron mass splitting
Mp −Mn = δMγ +δM md−mu via the Cottingham formula

δMγ =
i

2M
αem

(2π)2

∫

ηµν

q2 + iε
Tµν(p, q) , (24)

and mixed currents, for example neutrino-nucleon charged weak current νN → eX or eN → νX

Wµν ≡
1

4π

∫

d4z eiq·zρss′ rel〈p, s′|[Jµem(z), JνW,A(0)]|p, s〉rel

= −iεµναβ
qαpβ
2p · q

F3(x ,Q2) , (25)

where JνW,A = ūγνγ5d the axial part of the weak charged current.
A potential problem is including quark-line-disconnected matrix elements. This needs pur-

pose generated configurations with the fermion determinant also containing the λ term. For
(H)MC for the probability definition of the action also need a real determinant so fermion
matrix must be γ5-Hermitian which means that λV and λA have to be imaginary (while λS , λP

and λT are all real). In this case ∆Eλ develops an imaginary part. (This is not a problem for
the valence sector, as this is just an inversion of a matrix.) Simulations are however possible
and this was investigated in [15] (at O(λ)) for the disconnected contributions to the spin of
the nucleon.

6 Conclusions

We have described here a new versatile approach for the computation of matrix elements only
involving computation of 2-point correlation functions rather than 3-pt or 4-pt which is able
to compute Compton amplitudes and structure function moments. Advantages include longer
source-sink separations – so less excited states contamination and overcoming fierce operator
mixing / renormalisation issues.
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Abstract

The non-trivial ground-state vacuum fields of QCD form the foundation of matter. Using
modern visualisation techniques, this presentation examines the microscopic structure
of these fields. Of particular interest are the centre vortices identified within the ground-
state fields of lattice QCD. Our current focus is on understanding the manner in which
dynamical fermions in the QCD vacuum alter the centre-vortex structure. The impact
of dynamical fermions is significant and provides new insights into the role of centre
vortices in underpinning both confinement and dynamical chiral symmetry breaking in
QCD.
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1 Introduction

Lattice QCD calculations have been instrumental in revealing the fundamental role of centre
vortices [1–12] in the ground-state vacuum fields in governing the confinement of quarks.

By identifying centre vortices and then removing them from QCD ground-state fields, a
deep understanding of their contributions has been developed. Removal of centre vortices
from the ground-state fields results in a loss of dynamical mass generation and restoration of
chiral symmetry [13,14], a loss of the string tension [15,16] and a suppression of the infrared
enhancement of the Landau-gauge gluon propagator [16–18].

One can also examine the role of the centre vortices alone. Remarkably centre vortices
produce both a linear static quark potential [15, 19, 20] and infrared enhancement in the
Landau-gauge gluon propagator. The planar vortex density of centre-vortex degrees of free-
dom scales with the lattice spacing providing an well defined continuum limit [15]. These
results elucidate strong connections between centre vortices and confinement.

A connection between centre vortices and instantons was identified through gauge-field
smoothing [20]. An understanding of the phenomena linking these degrees of freedom was
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illustrated in Ref. [21]. In addition, centre vortices have been shown to give rise to mass
splitting in the low-lying hadron spectrum [13,14,22].

Still, the picture is not perfect. The vortex-only string tension obtained from pure Yang-
Mills lattice studies has been consistently shown to be about ∼ 62% of the full string tension.
Moreover, upon removal of centre vortices the gluon propagator shows a remnant of infrared
enhancement [18]. In the pure gauge sector, the removal of long-distance non-perturbative
effects via centre-vortex removal is not perfect.

Here we turn our attention to understanding the impact of dynamical fermions on the
centre-vortex structure of QCD ground-state fields. We will illustrate the differences in the
microscopic structure and reveal how the change in structure affects the static quark potential
and the Landau-gauge gluon propagator. We find the introduction of dynamical fermions
brings the phenomenology of centre vortices much closer to a perfect encapsulation of the
salient features of QCD.

2 Centre Vortex Identification

In identifying centre vortices one commences with a gauge fixing procedure which brings the
lattice link variables as close as possible to the identity times a phase. Here, the original
Monte-Carlo generated configurations are considered. They are gauge transformed directly to
Maximal Centre Gauge [15,23,24], without preconditioning [25]. The brings the lattice link
variables Uµ(x) close to the centre elements of SU(3),

Z = exp
�

2πi
m
3

�

I, with m= −1, 0,1. (1)

One considers gauge transformations Ω such that,

∑

x ,µ

�

�

�tr UΩµ (x)
�

�

�

2 Ω
→max , (2)

and then projects the link variables to the centre

Uµ(x)→ Zµ(x) where Zµ(x) = exp

�

2πi
mµ(x)

3

�

I , (3)

and mµ(x) = −1, 0,1.
The product of these centre-projected links around an elementary 1×1 square on the lattice

reveals the centre charge associated with that plaquette. The centre-line of an extended vortex
in three dimensions is identified by tracing the presence of nontrivial centre charge, z, through
the spatial lattice

z =
∏

�
Zµ(x) = exp

�

2πi
m
3

�

. (4)

A right-handed ordering of the dimensions is selected in calculating and illustrating the centre
charge. If z = 1, no vortex pierces the plaquette. If z 6= 1 a vortex with charge z pierces the
plaquette. We refer to the centre charge of a vortex via the value of m= ±1.

3 Centre Vortex Visualisation

The centre lines of extended vortices are illustrated on the dual lattice by rendering a jet
piercing the plaquette producing the nontrivial centre charge. The orientation of the jet follows
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Z∗y(n)

Zx(n)

x

y
z

Zy(n+ x̂)

Z∗x(n+ ŷ)
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Figure 1: Illustrating nontrivial centre charge via a jet. (left) An m = +1 vortex
with centre charge z = exp(2πi/3) is rendered as a jet pointing in the +ẑ direction.
(right) An m = −1 vortex with centre charge z = exp(−2πi/3) is rendered as a jet
in the −ẑ direction.

the right-handed coordinate system. Figure 1 provides an illustration of this assignment. For
example, with reference to Eq. (4), an m = +1 vortex in the x-y plane is plotted in the +ẑ
direction as a blue jet. Similarly, an m = −1 vortex in the x-y plane is plotted in the −ẑ
direction. As the centre charge transforms to its complex conjugate under permutation of the
two dimensions describing the plaquette, the centre charge can be thought of as the directed
flow of charge z = exp(2πi/3).

Our current focus is to understand the impact of dynamical-fermion degrees of freedom
on the centre-vortex structure of a gluon field. Here we consider the PACS-CS (2+ 1)-flavour
full-QCD ensembles [26], made available through the ILDG [27]. These 323 × 64 lattice en-
sembles employ a renormalisation-group improved Iwasaki gauge action with β = 1.90 and
non-perturbatively O(a)-improved Wilson quarks, with CSW = 1.715. In this section, their
lightest u- and d-quark-mass ensemble identified by a pion mass of 156 MeV [26] is consid-
ered. The scale is set using the Sommer parameter with r0 = 0.4921 fm providing a lattice
spacing of a = 0.0933 fm [26].

For comparison, a matched 323 × 64 pure-gauge ensemble has been generated using the
same improved Iwasaki gauge action with β = 2.58 providing a Sommer-scale spacing of
a = 0.100 fm. This spacing facilitates comparisons with all the PACS-CS ensembles.

The centre-vortex structure of pure-gauge and dynamical-fermion ground-state vacuum
fields is illustrated in Figs. 2 and 3 respectively. The vortex flow displays a rich structure. One
observes the continuous flow of centre charge and the presence of monopole or anti-monopole
contributions, where three jets emerge from or converge to a point. We refer to the latter as
branching points in general. Upon introducing dynamical fermions, the structure becomes
more complicated, both in the abundance of nontrivial centre charge and in the increased
abundance of branching points.

These figures provide interactive illustrations which can be activated in Adobe Reader1 by
clicking on the image. Once activated, click and drag to rotate, Ctrl-click to translate, Shift-
click or mouse wheel to zoom, and right click to access the “Views” menu. Several views have
been created to facilitate and inspection of the centre-vortex structure.

Both Figs. 2 and 3 contain a percolating vortex cluster, a characteristic feature of the con-
fining phase [28]. These illustrations are representative of the ensemble in that the vortex
vacuum is typically dominated by a single large percolating cluster. This single large clus-
ter is accompanied by several smaller loops or loop clusters. However, the most important
observation is how dynamical fermions significantly increase the number of vortices observed.

For an ensemble of 200 configurations with 32 three-dimensional volume slices each, the
average number of vortices composing the primary cluster in these 322 × 64 spatial slices is

1Open this pdf document in Adobe Reader 9 or later. Linux users can install Adobe acroread version 9.4.1, the
last edition to have full 3D support. From the “Edit” menu, select “Preferences...” and ensure “3D & Multimedia”
is enabled and “Enable double-sided rendering” is selected.
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3, 277 ±156 vortices in the pure gauge theory, versus 5,924 ±239 vortices in full QCD. Since
there are 322×64×3= 196,608 spatial plaquettes on these lattices, the presence of a vortex
is a relatively rare occurrence.

Similarly, Figs. 4 and 5 illustrate the secondary loop structures left behind as one removes
the single large percolating structure. Again, the introduction of dynamical fermions increases
the complexity of the structure through a proliferation of branching points (or monopoles [29]).
Figure 5 contains many views in the drop-down menu to facilitate the observation of this com-
plexity.

4 Static Quark Potential

With an understanding the impact of dynamical-fermion degrees of freedom on the centre-
vortex structure of ground-state vacuum fields, we turn our attention to confinement as re-
alised in the static quark potential. The results presented here are supported by complimentary
studies of the nonperturbative gluon propagator.

The static quark potential is accessed via consideration of the expectation value of Wilson
loops, 〈W (r, t)〉, with spatial separation r and temporal extent t,

〈W (r, t)〉=
∑

α

λα(r) exp (−Vα(r) t) . (5)

The relevant static quark potential is given by the lowest α = 0 state. We use a variational
analysis of several spatially-smeared sources to isolate this state.

With knowledge of the vortex content of a configuration, contained in Zµ(x) of Eq. (3),
we can analyse two vortex-modified ensembles in addition to the original untouched configu-
ration, Uµ(x). We refer to these as the vortex-only, Zµ(x), and vortex-removed, Z†

µ(x)Uµ(x),
ensembles.

The static quark potential for the original untouched configurations is expected to follow
a Cornell potential

V (r) = V0 −
α

r
+σ r , (6)

composed of a Coulomb term, dominant at short distances, and a linear term, dominant at
large distances. As centre vortices are anticipated to encapsulate the non-perturbative long-
range physics, the vortex-only results should give rise to a linear potential [5,12,30]. On the
other hand, the vortex-removed results are expected to capture the short-range behaviour. To
analyse the linearity of the potential at large distances we plot a sliding local linear fit to the
potential with extent r ± 3

2 a.
We commence with preliminary results for the pure-gauge ensemble illustrated in Fig. 6.

Qualitatively, centre vortices account for the long-distance physics. The lower plot illustrates
how removal of centre vortices completely removes the long-range potential. However, the
phenomenology is not perfect. The value of the string tension produced in the vortex-only
analysis is once again only 60 % of the original string tension.

Upon introducing dynamical fermions with light quark masses corresponding to a pion
mass of mπ = 701 MeV, the preliminary results shown in Fig. 7 are observed. Comparing with
the pure-gauge sector of Fig. 6, we observe a screening of the original string tension with the
introduction of dynamical fermions, in accord with expectations. Again, the effect of vortex
removal is to remove confinement. The sliding average lies in excellent agreement with 0 at
large distances.

While the centre-vortex phenomenology is similar to the pure gauge sector, this time the
vortex-only string tension is in excellent agreement with the original untouched ensemble.
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Figure 2: The centre-vortex structure of a ground-state vacuum field configura-
tion in pure SU(3) gauge theory. (Click to activate.) The flow of +1 centre charge
through a gauge field is illustrated by the jets. Blue jets are used to illustrate the
single percolating vortex structure, while other colours illustrate smaller structures.

Figure 3: The centre-vortex structure of a ground-state vacuum field configu-
ration in dynamical 2+1 flavour QCD. (Click to activate.) The flow of +1 centre
charge through a gauge field is illustrated by the jets. Symbols are as described in
Fig. 2.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();
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Figure 4: The centre-vortex structure of secondary loops in a ground-state vac-
uum field configuration of pure SU(3) gauge theory. (Click to activate.) The flow
of +1 centre charge in the secondary loops – left behind as the single percolating
structure is removed – is illustrated.

Figure 5: The centre-vortex structure of secondary loops in a ground-state vac-
uum field configuration of dynamical 2+1 flavour QCD. (Click to activate.) The
flow of +1 centre charge in the secondary loops is illustrated.
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Figure 6: The static quark potential as calculated on the original untouched and
vortex-modified pure-gauge ensembles. The lower plot shows the local slope of
the potentials at position r obtained from a linear fit with extent r ± 3
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Figure 7: The static quark potential as calculated on the vortex-modified
dynamical-fermion ensembles, corresponding to a pion mass of 701 MeV. Details
are as in Fig. 6.
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This is illustrated in Fig. 7, in the lower plot where the local slopes of the untouched and vortex-
only ensembles agree at large distances. This new agreement arises from significant modifi-
cations in the centre-vortex structure of ground state fields induced by dynamical fermions,
even at relatively large quark masses.

5 Conclusion

In summary, centre-vortex structure is complex. Each ground-state configuration is dominated
by a long-distance percolating centre-vortex structure. In SU(3) gauge field theory, a prolifer-
ation of branching points is observed, with further enhancement as light dynamical fermion
degrees of freedom are introduced in simulating QCD. There is an approximate doubling in the
number of nontrivial centre charges in the percolating vortex structure as one goes from the
pure-gauge theory to full QCD. An enhancement in the number of small vortex paths is also ob-
served upon introducing dynamical fermions. Increased complexity in the vortex paths is also
observed as the number of monopole-antimonopole pairs is significantly increased with the
introduction of dynamical fermions. In short, dynamical-fermion degrees of freedom radically
alter the centre-vortex structure of the ground-state vacuum fields.

With regard to the static quark potential and confinement, we find that centre vortices
now quantitatively capture the string tension in full QCD, unlike the pure-gauge sector. This
represents a significant advance in centre-vortex phenomenology. Moreover, vortex removal
continues to eliminate the long distance potential. These encouraging results are also reflected
in more recent studies of the gluon propagator in full QCD. In summary, the results presented
here show a significant advance in the ability of centre vortices to capture the salient nonper-
turbative features of QCD.
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1 Introduction

A fundamental question in quantum field theory (QFT) concerns how the running coupling of
a theory changes as a function of the reference Euclidean energy/momentum scale µ where it
is measured. The variation of this coupling with µ is described by the renormalization group
(RG) beta function of the theory. Here we will discuss some results that we have obtained
in this area. Much of this work was with T. A. Ryttov. We will focus mainly on vectorial
asymptotically free nonabelian gauge theories in d = 4 dimensions, but also discuss some
other asymptotically free theories, namely the 2D finite-N Gross-Neveu model and 6D φ3

theories, as well as some infrared-free theories, including U(1) gauge theory, O(N) φ4 theory,
and chiral gauge theories..

2 Asymptotically Free Nonabelian Gauge Theories

Let us consider an asymptotically free (AF) vectorial nonabelian gauge theory (in d = 4 di-
mensions) with gauge group G and N f massless fermions ψ j , j = 1, ..., N f , transforming ac-
cording to a representation R of G. We denote the running gauge coupling as g(µ) and define
α(µ) ≡ g(µ)2/(4π) and a(µ) ≡ g(µ)2/(16π2). The dependence of α(µ) on µ is described by
the RG beta function, β = dα(µ)/d t, where d t = d lnµ. This has the series expansion

β = −2α
∞
∑

`=1

b` a` , (1)

005.1

https://scipost.org
https://scipost.org/SciPostPhysProc.6.005
mailto:robert.shrock@stonybrook.edu
https://doi.org/10.21468/SciPostPhysProc.6
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.6.005&amp;domain=pdf&amp;date_stamp=2022-05-31
https://doi.org/10.21468/SciPostPhysProc.6.005


SciPost Phys. Proc. 6, 005 (2022)

where b` is the `-loop coefficient. For a general operator O, we denote the full scaling di-
mension as DO and its free-field value as DO, f ree. The anomalous dimension of this operator,
denoted γO, is defined via DO = DO, f ree−γO. The coefficients b1 and b2 are independent of the
scheme used for regularization and renormalization and are b1 = (1/3)[11CA−4T f N f ] [1,2]
and b2 = (1/3)[34C2

A − 4(5CA + 3C f )N f T f ] [3, 4], where C2(R) is the quadratic Casimir in-
variant, and T (R) is the trace invariant, for the representation R, and we use the notation
C2(ad j)≡ CA, T (R)≡ T f , and C2(R)≡ C f . The AF condition means that b1 > 0, i.e., N f < Nu,
where Nu = 11CA/(4T f ). Since α(µ) is small at large µ, one can self-consistently calculate β
as a power series in α(µ). As µ decreases from large values in the ultraviolet (UV) to small
values in the infrared (IR), α(µ) increases.

A situation of special interest occurs if β has a zero at a nonzero (physical) value
α = αIR. In the asymptotically free regime, this happens if the condition
Nu > N f > 17C2

A/[2(5CA + 3C f )T f ] holds, so that b2 < 0. At the two-loop (2`) level, the
zero in β occurs at αIR,2` = −4πb1/b2. If N f is close enough to Nu that this IR zero of β
occurs at small enough coupling so that the gauge interaction does not produce any sponta-
neous chiral symmetry breaking (SχSB), then it is an exact IR fixed point (IRFP) of the RG.
The theory at this IRFP exhibits scale invariance and is inferred to exhibit conformal invari-
ance, whence the term “conformal window” for this regime. In this IR limit, the theory is in
a chirally symmetric, deconfined, nonabelian Coulomb phase (NACP). If, on the other hand,
as µ decreases and α(µ) increases toward αIR, there is a scale µ = Λ at which α(µ) exceeds
a critical value, αcr , for the formation of a fermion condensate 〈ψ̄ψ〉 with associated SχSB,
then the fermions gain dynamical masses of order Λ. These fermions are then integrated out
of the low-energy effective field theory operative for µ < Λ. In this case, αIR is only an ap-
proximate IRFP. We define N f ,cr to be the critical value of N f such that as N f decreases below
N f ,cr , there is SχSB. If N f is only slightly less than Nu, so that αIR is small, then the theory
at the IRFP is weakly coupled and is amenable to perturbative analysis [5]. A case of interest
for studies of physics beyond the Standard Model (BSM) is N f slightly less than N f ,cr . In this
case, there is slow-running, quasi-conformal behavior of α(µ) over an extended interval of µ.
The dynamical breaking of the approximate scale (dilatation) symmetry then leads to a light
pseudo-Nambu-Goldstone boson, the dilaton. In a BSM application, with the Higgs boson be-
ing at least partially a dilaton, this might help to solve the fine-tuning problem of why the
Higgs mass is protected against large radiative corrections.

It is of interest to investigate the properties of IRFPs in these vectorial AF gauge theories.
Among these properies are the anomalous dimensions of (gauge-invariant) operators, such
as ψ̄ψ =
∑N f

i=1 ψ̄iψi , denoted γψ̄ψ,IR. In general, one can express the anomalous dimension
γψ̄/ψ as the series expansion

γψ̄ψ =
∞
∑

`=1

c` a` , (2)

where c` is the `-loop coefficient. Evaluating this with α set equal to the IRFP value, calculated
to a given n-loop (n`) order then yields γψ̄ψ,IR to this order, denoted as γψ̄ψ,IR,n`. Another
operator of interest is Tr(FλρFλρ), where F b

λρ
is the field-strength tensor (with b a group

index). The anomalous dimension γF2,IR of this operator at the IRFP satisfies γF2 = −β ′IR,
where β ′ = dβ/dα.

As N f decreases through the conformal regime, αIR increases, motivating higher-loop cal-
culations of anomalous dimensions. We have carried out this program of calculating the UV
to IR renormalization-group evolution and anomalous dimensions at an IRFP to higher-loop
order in a series of papers, many with T. A. Ryttov, including [6]- [23]. Our first calculations
were at the 4-loop level [6], and subsequently, we have extended these to the 5-loop level,
with inputs (in the MS scheme) up to the 5-loop level from [24,25]. (At the 4-loop level, see

005.2

https://scipost.org
https://scipost.org/SciPostPhysProc.6.005


SciPost Phys. Proc. 6, 005 (2022)

also [26]). Our calculations to higher-loop order enable us to describe the IR properties of the
theory throughout a larger portion of the conformal window than would be possible with the
lowest-order (two-loop) results. As N f decreases below N f ,cr , the properties of the IR theory
change qualitatively, and the perturbative calculations do not apply. A unitarity upper bound
in the conformal regime is γψ̄ψ,IR < 2 (reviewed in [27]), and studies of Schwinger-Dyson
equations [28] suggest that the onset of SχSB occurs if γψ̄ψ,IR > 1. Thus, for a given G and
R, our higher-loop calculations of γψ̄ψ,IR yield estimates for N f ,cr ; in turn, this information is
relevant for the above-mentioned BSM theories.

There is an intensive ongoing program of research in the lattice gauge theory community to
study this physics. Much work has been done for G = SU(3) with R equal to the fundamental
representation. For this theory, Nu = 16.5 (where a formal continuation from physical integer
N f to real N f is understood). There is not yet a consensus among lattice groups concerning the
value of N f ,cr (i.e., the lower end of the conformal window as a function of N f ) for this theory.
As an example, we consider the case N f = 12. Several lattice groups [29–34] have found that
this theory is IR-conformal, while Ref. [35] has argued that it is chirally broken and hence
not IR-conformal. For our 5-loop analysis, we have made use of Padé resummation methods
in addition to direct analysis of series expansions. As above, we denote our n-loop value of
γψ̄ψ,IR as γψ̄ψ,IR,n`. We calculate γψ̄ψ,IR,2` = 0.773, γψ̄ψ,IR,3` = 0.312, γψ̄ψ,IR,4` = 0.253,
and γψ̄ψ,IR,5` = 0.255. These results show reasonable convergence at the 4-loop and 5-loop
levels, and our values of γψ̄ψ,IR,4` and γψ̄ψ,IR,5` are in very good agreement with the values
γψ̄ψ,IR = 0.23(6) [33] (in accord with [31,32]) and γψ̄ψ,IR = 0.235(46) [34] measured in lat-
tice simulations. Our values are also in agreement with the range of effective values reported
in [35]. For β ′IR in this N f = 12 theory, as calculated via power series in the IR coupling, we
find β ′IR,2` = 0.360, β ′IR,3` = 0.295, and β ′IR,4` = 0.282. Again, these values show good conver-
gence, and the 4-loop value is in very good agreement with the value β ′IR = 0.26(2) obtained
from lattice measurements [32]. In our papers we have discussed corresponding comparisons
with lattice results for other gauge groups G, fermion representations R, and flavor numbers
N f . We have also studied theories with fermions in multiple different representations [23].

Since the b` for ` ≥ 3 and the c` for ` ≥ 2 depend on the scheme used for regularization
and renormalization, it is important to assess the effects of this scheme dependence. We have
done this in [10–14]. This scheme dependence is a generic feature of higher-order perturbative
calculations, e.g., in QCD. A scheme transformation can be expressed as a mapping between
α and α′, or equivalently, a and a′, which we write as a = a′ f (a′), where f (a′) is the scheme
transformation function. We can write f (a′) as a series expansion

f (a′) = 1+
smax
∑

s=1

ks(a
′)s , (3)

where smax may be finite or infinite. In the new scheme, the beta function is
βα′ = −2α′
∑∞
`=1 b′

`
(a′)`. We have calculated the b′

`
in terms of the b` and ks. In addition to

the results b′1 = b1 and b′2 = b2, we find

b′3 = b3 + k1 b2 + (k
2
1 − k2)b1 , (4)

b′4 = b4 + 2k1 b3 + k2
1 b2 + (−2k3

1 + 4k1k2 − 2k3)b1 , (5)

and so forth for higher `. We have specified a set of conditions that a physically acceptable
scheme transformation must satisfy and have shown that although these can easily be satisfied
in the vicinity of zero coupling, they are not automatic, and can be quite restrictive, at a
nonzero coupling, as is relevant for an IRFP in an UV-free (AF) theory, or a UVFP in an IR-free
theory. As part of this work, we have constructed scheme transformations that can map to
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a scheme with vanishing coefficients at loop level ` ≥ 3 in the vicinity of the origin, but we
have also shown that it is more difficult to try to do this at a zero of β away from the origin.
We have applied these results to assess the degree of scheme dependence in our higher-loop
calculations of anomalous dimensions at IRFPs in AF gauge theories and have shown that this
dependence is small. This is similar to the experience in QCD, where calculations performed
to higher order exhibited reduced scheme dependence (e.g. [36] and references therein).

The anomalous dimensions of gauge-invariant operators at the IRFP are physical and hence
cannot depend on the scheme used for regularization and renormalization. However, this
property is not maintained by finite-order perturbative series expansions beyond the lowest
orders. It is therefore useful to calculate these anomalous dimensions in a scheme-independent
(SI) manner [5, 37, 38]. To do this, one utilizes the fact that αIR → 0 as N f → Nu. Hence,
one can reexpress the anomalous dimensions as series expansions in the manifestly scheme-
independent variable ∆ f = Nu − N f , rather than as power series in the IR coupling:

γψ̄ψ,IR =
∞
∑

j=1

κ j∆
j
f (6)

and

β ′IR =
∞
∑

j=1

d j∆
j
f , (7)

where d1 = 0. In general, the calculation of the coefficient κ j in Eq. (6) requires, as inputs,
the values of the b` for 1≤ `≤ j+1 and the c` for 1≤ `≤ j. The calculation of the coefficient
d j in Eq. (7) requires, as inputs, the values of the b` for 1≤ `≤ j. We denote the truncation of
these series to maximal power j = p as γψ̄ψ,IR,∆p

f
and β ′

IR,∆p
f
, respectively. With Ryttov we have

calculated (i) the κ j up to j = 4, and thus the series expansion for γψ̄ψ,IR to O(∆4
f ), and (ii)

the d j up to j = 5 and hence β ′IR to O(∆5
f ) for general G and R. We have studied a number of

specific theories in detail, including the gauge groups SU(Nc) with R equal to the fundamental,
adjoint, and rank-2 symmetric and antisymmetric tensor representations, and similarly for
SO(Nc) and Sp(Nc) for various Nc . For the illustrative theory discussed above, namely SU(3)
with N f = 12 fermions in the fundamental representation, our calculations of γψ̄ψ,IR via Eq.
(6) yield slightly larger values than our calculations via Eq. (2), and our computations of
β ′IR yield slightly smaller values than those that we obtained via series expansions in the IR
coupling.

An interesting feature of our scheme-independent results is that κ1 and κ2 are manifestly
positive, and this positivity also holds for κ3 and κ4 for a general G and all of the represen-
tations R that we have studied. This leads to two monotonicity properties in the conformal
regime: (i) for a fixed p with 1 ≤ p ≤ 4, the anomalous dimension γψ̄ψ,IR,∆p

f
is a monoton-

ically increasing function of ∆ f , i.e., increases monotonically with decreasing N f ; (ii) for a
fixed N f , γψ̄ψ,IR,∆p

f
is a monotonically increasing function of p in the range 1 ≤ p ≤ 4. From

our analyis of a N = 1 supersymmetric SU(Nc) gauge theory with N f conjugate pairs of chiral
superfields [19], we have found that this positivity property of the κ j is true for all j

3 RG Studies of Other Theories

We have also performed higher-loop studies of RG flows and possible zeros of beta functions for
other theories, including (i) the 2D finite-N Gross-Neveu model [39], (ii) variousφ3 theories in
6D [40,41], (iii) 4D U(1) gauge theory [42], (iv) 4D nonabelian gauge theories with N f > Nu

[42], and (v) 4D O(N) λ| ~φ|4 theory [43–45]. The theories (i) and (ii) are UV-free (i.e., AF),
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while the theories (iii)-(v) are IR-free. In these studies, we combined direct analyses of higher-
loop beta functions with Padé approximants and scheme transformations to derive results.

3.1 Finite-N Gross-Neveu Model

The Gross-Neveu (GN) model [46] is a 2D QFT with an N -component massless fermion, ψ j ,
j = 1, ..., N and a four-fermion interaction. This model has been of interest because it exhibits
some properties similar to QCD, namely asymptotic freedom and formation of massive bound
states of fermions. The model was solved exactly in the N →∞ limit in [46]. In this limit,
the beta function has no IR zero. This leaves open the question of whether the beta function
has an IR zero for finite N . We investigated this in [39], using the beta function up to the
4-loop level from [47]. We found that, where the perturbative calculation of the beta function
is reliable, it does not exhibit robust evidence for an IR zero.

3.2 6D φ3 Theories

φ3 theories in d = 6 dimensions are asymptotically free, and it is of interest to investigate
whether they exhibit IRFPs. We have done this in [40] with Gracey and Ryttov, using beta
functions calculated up to the 4-loop order. As before, without loss of generality, we take the
matter field to be massless, since a φ field with nonzero mass mφ would be integrated out of
the low-energy effective theory for momentum scales µ < mφ and hence is not relevant for the
IR limit µ→ 0. We have studied φ3 theories with a real 1-component φ field and also with an
N -component field φi transforming according to the fundamental representation of a global
SU(N) symmetry, with a self-interaction∝ di jkφ

iφ jφk + h.c.. For both of these theories, we
find evidence against an IRFP. An interesting study of φ3 theory in a 6D spacetime with two
compact dimensions by Kisselev and Petrov is [48]. In [41], we show that if a beta function
is not identically zero but has a vanishing one-loop term, then it is not, in general, possible to
use scheme transformations to eliminate `-loop terms with `≥ 3 in the beta function, even in
the vicinity of the origin in coupling constant space.

3.3 Studies of IR-free Theories, Including 4D U(1) and O(N) λ| ~φ|4

If the β function of a theory is positive near zero coupling, then this theory is IR-free; as the
reference scale µ decreases, the coupling decreases toward 0. As µ increases from the IR, the
coupling increases, and a basic question is whether the beta function has a UV zero (in the
perturbatively calculable range), which would be a UV fixed point (UVFP) of the RG.

An explicit example of a UVFP in an IR-free theory occurs in the O(N) nonlinear σ model
in d = 2 + ε dimensions. From a solution of this model in the N →∞ limit, one finds, for
small ε [49,50],

β(ξ) = εξ
�

1−
ξ

ξc

�

, (8)

where ξ is the effective coupling and ξc = 2πε. Hence, assuming that ξ is small for small µ,
it follows that limµ→∞ ξ(µ) = ξc , so the theory has a UVFP at ξc .

Let us consider a 4D U(1) gauge theory with N f fermions with a charge q. This theory is IR-
free, and the 1-loop and 2-loop coefficients in β have the same sign, so there is no UV zero in β
at the maximal scheme-independent order. In [42] we investigated a possible UVFP at higher-
loop order. One part of our work in [42] was an analysis of the beta function using the 5-loop
coefficient [51, 52]. Another part made use of exact closed-form results for N f →∞ [53].
In [42] we also performed a corresponding investigation of possible UVFP for a nonabelian
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gauge theory with N f > Nu. In both the U(1) and nonabelian case, we found evidence against
a UVFP. Of course, in neither case does this imply that the theory has a Landau pole, because
the running gauge coupling gets too large for perturbative calculations to be reliable before
one actually reaches this would-be pole.

In [43–45] we investigated the RG behavior of 4D O(N) λ| ~φ|4 theory to six-loop order,
using b5 from [54] and b6 from [55] (in the MS scheme). Again, for values of the interaction
coupling where the perturbative (and Padé resummation) methods were applicable, we did
not find robust evidence for a UVFP.

4 Asymptotically Free Chiral Gauge Theories

The analysis of asymptotically free chiral gauge theories is also of considerable interest. The
(massless) fermion content is chosen so as to avoid any gauge anomalies, mixed
gauge-gravitational anomalies, and global anomaly. As the theory flows from the UV to the
IR and the coupling grows, several possible types of behavior can occur, including (i) an exact
IRFP in a conformal phase; (ii) bilinear fermion condensate formation with dynamical break-
ing of gauge and global symmetries; or (iii) confinement with formation of massless composite
fermions. These theories have been of interest for BSM physics (e.g, [56]). Our works in this
area include [57]- [62], which contain references to the extensive literature.

5 Conclusion

Studies of RG flows and possible RG fixed points in quantum field theories continue to be
of great interest, both from the point of view of formal theory and for applications to BSM
physics. Here we have briefly discussed some of our results on higher-loop perturbative cal-
culations with inputs up to the five-loop level for anomalous dimensions at IR fixed points in
asymptotically free nonabelian gauge theories and comparisons of these results with lattice
measurements. We have also discussed our results on RG flows and investigation of possible
RG fixed points for several other UV-free theories and for several IR-free theories. There are
many opportunities for further work in this area.
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Abstract

We give an overview on the evaluation of the axial and pseudoscalar form factors of the
nucleon within the lattice QCD formulation. We discuss recent results obtained from the
analysis of N f = 2+ 1+ 1 twisted mass fermion gauge ensembles generated at physical
values of the pion mass. Besides evaluating the isovector form factors, and the PCAC and
Goldberger-Treiman relations, we also discuss results for the strange and charm axial
form factors. We provide a comparison with other recent lattice QCD results obtained
with different discretization schemes of the fermion action.
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1 Introduction

The electromagnetic form factors of the nucleon have been extensively studied experimentally
for many years leading to their precise determination, for recent results see e.g. [1, 2]. Thus,
they are being used to benchmark theoretical approaches. However, the nucleon axial form fac-
tors are less well known. The axial form factors are important quantities needed for studying
weak interaction processes both theoretically and experimentally. The nucleon matrix element
of the isovector axial-vector current Aµ can be expressed in terms of two form factors, the axial,
GA(Q2), and the induced pseudoscalar GP(Q2). The axial form factor, GA(Q2), is experimen-
tally determined from elastic scattering of neutrinos with protons, νµ+p→ µ++n [3,4], while
GP(Q2) from the longitudinal cross section in pion electro-production [5]. The axial charge
gA ≡ GA(0) can be measured in high precision from β-decay experiments [6,7]. The induced
pseudoscalar coupling g∗P can be determined via the muon capture process µ−+ p→ n+νµ at
momentum transfer squared of Q2 = 0.88m2

µ [8,9], where mµ is the muon mass. If one com-

putes also the pseudoscalar form factor GP(Q2) one can check important phenomenological
relations, such as the partially conserved axial-vector current (PCAC) relation. Furthermore, at
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low momentum transfer square Q2 and assuming pion pole dominance (PPD), one can relate
GA(Q2) to GP(Q2) and derive the Goldberger-Treiman (GT) relation.

Beyond isovector axial form factors mentioned above, it is also interesting to study the
isoscalar, strange and charm quark axial form factors. There is a rich experimental program
studying parity-violating processes asymmetries. Results in forward elastic electron-proton
scattering by HAPPEX [10] combined with data from neutrino and antineutrino-proton elastic
scattering cross sections from Brookhaven E734 [11] determined both the strange vector and
axial form factors of the proton at non-zero Q2 [12]. Additional parity-violating data from the
G0 experiments [13,14] improved the determination of the strange axial form factors and the
MicroBooNE neutrino detector at FermiLab aims ar extracting it for Q2 ∈ 1− 0.08 GeV2. To
date, the axial form factors are the main source of error in the description of neutrino-nucleon
interactions. Therefore, a calculation of these form factors from first principle is important
and will provide valuable input to phenomenology and to on-going and future experiments,
such as DUNE [15] and Hyper-K [16].

Lattice Quantum Dynamics (QCD) provides the ab initio non-perturbative framework for
computing from factors using directly the QCD Lagrangian. Early studies of the nucleon axial
form factors were done using dynamical fermion simulations at heavier than physical pion
masses, as e.g. in Ref. [17]. Only recently, several groups are computing the axial form factors
using simulations generated directly at the physical value of the pion mass [18–24]. The results
discussed here are mostly based on Refs. [25,26].

2 Isovector axial and pseudoscalar form factors and their relations

On the hadron level, the nucleon matrix element of the isovector axial-vector current,
Aµ = ūγµγ5u− d̄γµγ5d, is decomposed into two Lorenz-invariant isovector form factors, the
axial form factor GA(Q2), and the induced pseudoscalar, GP(Q2):

〈N(p′, s′)|Aµ|N(p, s)〉= ūN (p
′, s′)

�

γµGA(Q
2)−

Qµ
2mN

GP(Q
2)
�

γ5uN (p, s), (1)

where uN is the nucleon spinor with initial (final) momentum p(p′) and spin s(s′), q = p′−p the
momentum transfer and q2 = −Q2. The nucleon pseudoscalar matrix element is parameterized
in terms of a single form factor G5(Q2) as

〈N(p′, s′)|P5|N(p, s)〉= G5(Q
2)ūN (p

′, s′)γ5uN (p, s), (2)

where P5 = ūγ5u− d̄γ5d. We omit the superscripts on isovector quantities, unless otherwise
indicated. Isoscalar, strange and charm quantities have a corresponding superscript.

At the form factors level partial conservation of the axial-vector current (PCAC) relates
GA(Q2) and GP(Q2) to G5(Q2) as follows

GA(Q
2)−

Q2

4m2
N

GP(Q
2) =

mq

mN
G5(Q

2). (3)

Expressing the pion field as ψπ =
2mq P
Fπm2

π
, one can connect GP(Q2) to the pion-nucleon form

factor GπNN (Q2) as

G5(Q
2) =

Fπm2
π

mq

GπNN (Q2)
m2
π +Q2

. (4)

Eq. (4) is written so that it illustrates the pole structure of G5(Q2). Substituting G5(Q2) in
Eq. (3), one obtains the GT relation [17,27]

GA(Q
2)−

Q2

4m2
N

GP(Q
2) =

1
mN

GπNN (Q2)Fπm2
π

m2
π +Q2

. (5)
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The pion-nucleon form factor GπNN (Q2) at the pion pole gives the pion-nucleon coupling
gπNN ≡ GπNN (Q2 = −m2

π). In the limit Q2→−m2
π, the pole on the right hand side of Eq. (5)

must be compensated by a similar one in GP(Q2), since GA(−m2
π) is finite. Therefore, if we

multiply Eq. (5) by (Q2 +m2
π) we have

lim
Q2→−m2

π

(Q2 +m2
π)GP(Q

2) = 4mN FπgπNN (6)

and, thus, one can extract gπNN from GP(Q62). Assuming pion pole dominance and for
limQ2→−m2

π
, GP(Q2) = 4mN FπGπNN (Q2)/(m2

π + Q2). Inserting this expression for GP(Q2) in
Eq. (5) we obtain the GT relation [28]

mN GA(Q
2) = FπGπNN (Q

2), (7)

which means that GP(Q2) can be expressed as [29]

GP(Q
2) =

4m2
N

Q2 +m2
π

GA(Q
2). (8)

From Eq. (7), the pion-nucleon coupling can be expressed as gπNN = mN GA(−m2
π)/Fπ. In the

chiral limit, lim
mπ→0

GA(−m2
π) → gA and we have that gπNN =

mN
Fπ

gA, which at finite pion mass

receives corrections. The deviation from equality is known as the GT discrepancy given by
∆GT ≡ 1− gAmN

gπNN Fπ
and it is estimated to be at the 2% level [30].

3 Determination of nucleon matrix in lattice QCD

In order to extract the nucleon matrix elements one need to calculate the appropriate three-
point functions, as schematically shown in Fig. 1. The three-point function is given by

Cµ(Γk, ~q, ~p ′; ts, tins, t0)=
∑

~xins,~xs

ei(~xins−~x0)·~qe−i(~xs−~x0)·~p ′×Tr
�

Γk〈JN (ts, ~xs)Aµ(tins, ~xins)J̄N (t0, ~x0)〉
�

,

(9)
where Γk = iΓ0γ5γk and J̄N creates states with the quantum numbers of the nucleon. From
now on we will use ~p ′ = ~0.

Figure 1: Diagrammatic representation of three-point functions (left: connected,
right: disconnected) needed for the determination of nucleon matrix elements. Oµ
is the operator whose nucleon matrix element we seek to evaluate e.g. the axial
vector current Aµ.

The Euclidean time dependence of the three-point function and unknown overlaps of the
interpolating field with the nucleon state, are canceled in an appropriately constructed ratio
of three- to a combination of two-point functions [31–34],

Rµ(Γk, ~q; ts, tins) =
Cµ(Γk, ~q; ts, tins )

C(Γ0, ~0; ts)
×

√

√

√ C(Γ0, ~q; ts − tins)C(Γ0, ~0; tins)C(Γ0, ~0; ts)

C (Γ0, ~0; ts − tins)C(Γ0, ~q; tins)C(Γ0, ~q; ts)
, (10)
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where we take ts and tins relative to the source time t0, or equivalently t0 is set to zero. In the
limit of large time separations (ts − tins)� a and tins � a, the ratio in Eq. (10) converges to
the nucleon ground state matrix element, namely

Rµ(Γk; ~q; ts; tins)
ts−tins�a
−−−−−→

tins�a
Πµ(Γk; ~q) . (11)

Three well-established methods are used to identify ground state dominance, namely the
plateau, summation and two-state fit methods [25]. In the two-state fit we consider contri-
butions from both the ground and first excited states. We allow the first excited state in the
three-point function to be in general different from that of the two-point function. The rea-
son is that multi-particle states are volume suppressed and are typically not observed in the
two-point function. However, if they couple strongly to a current they may contribute in the
three-point function. As pointed out in Refs. [35, 36], this may happen for the case of the
axial-vector current considered here. In order investigate the possibility that multi-particle
states contribute to the three-point function, we perform the following two types of fits:

M1: We assume that the first excited state is the same in both the two- and three-point func-
tions and first fit the two-point function to extract the first excited energy E1(~p) and
overlap factor. We then input this information into our fit of the ratio of Eq. (10). We
also fit the zero momentum two-point function to determine the nucleon mass and then
use the continuum dispersion relation E0(~p) =

q

m2
N + ~p 2 to determine the nucleon en-

ergy for a given value of momentum. The continuum dispersion relation is satisfied for
all the momenta considered. We will refer to this as fit M1.

M2: We allow the first excited state to be different in the two- and three- point functions. In
this case, the first excited energy and overlap in the three-point function are fit param-
eters. We will refer to this as M2 fit.

We follow Ref. [19] and use the matrix element of the temporal component of the axial
vector current, A0, which is very precise, in order to determine the first excited energy and
overlap. The temporal component has not been used in past studies, since it has been found
to suffer from large excited state contributions. For more details see Ref. [25].

In Fig. 2 we show the energy of the first excited state extracted from fitting the two-point
and the three-point function of A0. We observe that the first excited energy extracted from the
two-point function is in agreement with the energy of the Roper. We note that this is different
from what is observed in two recent studies [19, 22], where the first excited state extracted
from the two-point function is much higher. Moreover, the energy of the first excited state
extracted from the three-point function, is in general in agreement with the energy of the
non-interacting two-particle states of N(0) +π(−~p) and N(~p) +π(−~p).

4 Renormalization
The lattice QCD matrix elements need to be renormalized in order to extract physical form
factors. A detailed description of our procedure can be found in Ref. [37]. In the twisted
mass formulation and for the quantities of interest here, we need the renormalization func-
tions ZS for the renormalization of pseudoscalar current, ZP for the renormalization of the
bare quark mass and ZA for the renormalization of the axial-vector current. ZP and ZS are
scheme and scale dependent. Therefore, after the extrapolation (amπ)2 → 0, we convert to
the MS-scheme, which is commonly used in experimental and phenomenological studies. The
conversion procedure is applied on the Z-factors at each initial RI′ scale (aµ0), with a simul-
taneous evolution to a MS scale, chosen to be µ=2 GeV. For the conversion and evolution
we employ the intermediate Renormalization Group Invariant (RGI) scheme, which is scale
independent.
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1 (~p =~0)
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1 (~p)

Figure 2: The energy of the first excited state as a function of Q2. The orange
dashed and cyan dashed-dotted lines are the energies of the non-interacting systems
N(~p)+π(−~p) and N(~0)+π(~p), respectively, and the magenta dotted line is the Roper
energy. The red circles are extracted by a two-state fit to the two-point function. The
blue right- and green down-pointing triangles are E3pt

1 (~p) and E3pt
1 (~p

′ = ~0) extracted
from the three-point function of the temporal axial-vector current with a two-state
fit. Figure is taken from Ref. [25].

5 Results on isovector form factors
Our main results are obtained using an ensemble simulated with two mass degenerate u-
and d-quarks, a strange and a charm quark with mass tuned to approximately the physical one
(N f = 2+1+1), lattice spacing a = 0.08 fm and spatial lattice size L = 5.12 fm or mπL = 3.62
with pion mass mπ = 0.139(1) GeV, used as a proxy for finite volume effects. We refer to this
ensemble as cB211.64. For isovector form factors only the connected contributions are needed.

0.1 0.2 0.3 0.4 0.5
Q2[GeV2]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

G
A

(Q
2 )

M2-fit
M1-fit

0.0 0.1 0.2 0.3 0.4 0.5
Q2[GeV2]

0

10

20

30

40

50

60

G
P(

Q
2 )

M2-fit
M1-fit
PPD

0.0 0.1 0.2 0.3 0.4 0.5
Q2[GeV2]

0

10

20

30

40

50

60

70

G
5(

Q
2 )

M2-fit
M1-fit
PCAC+PPD

Figure 3: Results for the GA(Q2) (left), GP(Q2) (middle) and G5(Q2) (right) form
factors as a function of Q2 from the analysis of the cB211.64 ensemble. Filled red
circles are results using M2 approach and purple crosses using M1. Open red circles
are results using Eq.(8) for GP(Q2) and combining Eq.(8) and Eq. (3) for G5(Q2).

In Fig. 3 we show results for the three form factors using the fit procedures M1 and M2 and
compared with the pion-pole dominance relation of Eq. (8) for GP(Q2) and combining Eq.(8)
and the PCAC relation of Eq. (3) for G5(Q2). We find that allowing the first excited state energy
to be different in the two- and three-point functions has a negligible effect on GA and a larger
effect on GP and G5 but not large enough to fulfil the predicted behaviour from pion pole
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Figure 4: GP(Q2) computed using the cB211.64 ensemble and an N f = 2 + 1 + 1
ensemble (cC211.80) with a = 0.07 fm. Both ensembles have similar volume and
mπ = 0.139 GeV. Figure taken from Ref. [25].

dominance (PPD). As a consequence, the PCAC and PPD relations are not satisfied at low Q2.
Other lattice QCD collaborations find a bigger effect when not constraining the first excited
state energy in the three-point function, resulting in satisfying the PPD relation [19, 38]. In
order to understand the origin of the discrepancy in the PPD and PCAC relations, we examine
lattice spacing effects by analysing an additional N f = 2+1+1 ensemble with a = 0.07 f m and
similar volume. Preliminary results, shown in Fig. 4, illustrate that GP increases at low Q2 as a
decreases and so the continuum limit is important in recovering the PPD and PCAC relations.
Since to take the continuum limit we need at least three lattice spacings, for the results that
follow, we will use the PCAC and PPD relations to obtain GP and G5 from the lattice data on GA.
In Fig. 5 we compare our results with those by other lattice QCD collaborations. Overall, there
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Figure 5: Lattice QCD results on the isovector axial GA(Q2) (left), GP(Q2) (middle)
and G5(Q2) using simulations with physical pion masses. Results using the cB211.64
ensemble are shown with red circles, from the PNDME collaboration [19] with green
squares, from the RQCD collaboration [22] with blue upward-pointing triangles and
from the PACS collaboration [23] with brown down-pointing triangles. Figure taken
from Ref. [25].

is a very good agreement among all results for GA(Q2). PACS results [23] are available for very
small Q2 values since their lattice spatial extent is approximately twice as compared to the size
of the other lattices. Furthermore, unlike other lattice QCD results shown, PACS extracted the
results using the plateau method at the largest time separation available. The results from the
PNDME and RQCD collaborations were extracted using the type-M2 fit. Our results for GP(Q2)
are determined from GA(Q2) and Eq. (3) and are in agreement with the results of PNDME and
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RQCD that were extracted directly form the matrix element without using GA(Q2). Results on
GP(Q2) from PACS are lower at small Q2 values, but their GP(Q2) has been determined using
the plateau fits at relatively small value of the source-sink separations. Our data on G5(Q2)
also used GA(Q2) and PPD and agree with those from PACS computed directly form the matrix
element of the pseudoscalar operator.
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Figure 6: Left panel: Results on the isovector axial mass mA (left) and the axial ra-
dius

q

〈r2
A〉 (right). Right panel: Results for the muon capture coupling constant, g∗P

(top) and the pion-nucleon coupling gπNN (bottom). Red circles with the associated
red band are the results using the cB211.64 ensemble. Results re also shown for two
N f = 2 twisted mass fermion ensembles with a = 0.094 fm and L = 4.5 fm (green
up triangle) and 6.0 fm (orange down triangle), for PNDME [19] (blue left-pointing
triangle), for RQCD [22] (purple right-pointing triangle, with † are results obtained
after chiral and continuum extrapolation), and for PACS [23] (brown rhombus). In-
ner error bars are statistical errors while outer errors bars include systematic errors.
The black crosses are results from phenomenology. Figure taken from Ref. [25],
modified by including the phenomenological value of gπNN from Ref. [39].

Results on the axial mass mA and root mean square radius
q

〈r2
A〉, the muon capture cou-

pling constant, g∗P and the pion-nucleon coupling gπNN are compared to those of other recent
lattice QCD studies using physical point ensembles, experimental results and phenomenology
in Fig. 6. Lattice QCD results are in agreement amongst them. Phenomenological results are
in general much more precise for gπNN . On the other hand, experimental results on g∗P from
ordinary muon capture are compatible with lattice QCD results but carry large errors, while
the result from chiral perturbation theory [40], is as precise as our value from the analysis of
the cB211.64 ensemble.

6 Flavor decomposition of axial form factors
In order to compute the isoscalar, strange and charm form factors, we need to include the dis-
connected three-point function, schematically shown in Fig. 1. An order of magnitude more
computational resources are needed to calculate these contributions as compared to the con-
nected ones. We also need to compute the non-singlet renormalization functions, see Ref. [26].

We show results for the isoscalar axial form factors Gu+d
A (Q2) and Gu+d

P (Q2) in Fig. 7. We
observe that the connected contribution is positive, while the disconnected is negative. For
Gu+d

P (Q2), the disconnected part is of the same magnitude as the connected. This has already
been observed in previous studies [18, 41]. This behavior leads to the cancellation of the
sharp rise observed in the connected only isoscalar Gu+d

P (Q2). Consequently, the isoscalar has
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Figure 7: Renormalized results for the isoscalar Gu+d
A (Q2) (left) and Gu+d

P (Q2) (mid-
dle) as a function of Q2. We show separately the connected (blue triangles) and
the disconnected (open red squares) contributions as well as the sum (black circles).
Open symbols are used for the form factors versus Q2 when showing only discon-
nected contributions. Right: With the solid red line we show the dipole fit and the
dashed blue of the z-expansion fit to Gu+d

A (Q2). Figure taken from Ref. [26].
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Figure 8: Left: Results for the strange Gs
A(Q

2) (top) and charm Gc
A(Q

2) (bottom)
and right: result for the strange Gs

P(Q
2) (top) and charm GC

P (Q
2) form factors as a

function of Q2. We show the fits using the dipole from and z-expansion as well as
the dipole form fit taking the upper fit range up to '0.5 GeV2 (green dotted line and
band). Figure taken from Ref. [26].

an almost flat Q2-dependence, unlike the isovector combination discussed in the Sec. 5. We
use the dipole Ansatz and the z-expansion to fit the Q2 dependence of Gu+d

A (Q2) shown in
Fig. 7. We find gu+d

A = 0.436(28) in agreement with our previous study [42]. The results for
the strange and charm axial form factors are shown in Fig. 8 and are clearly non-zero. Gs

A(0)
gives the strange axial charge and we find gs

A = −0.044(8), while for the charm axial charge
we find g c

A = −0.0098(17). In the SU(3) limit disconnected contributions should vanish in the
octet combination u+d-2s. Instead, we observe deviations of up to 10% for Gu+d−2s

A (0) and up
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to 50% for Gu+d−2s
P (0).

7 Conclusions
Axial form factors including contributions from non-valence quarks can be extracted precisely
enabling us to extract a lot of interesting physics and make predictions. The calculation of sea
quark contributions is feasible providing valuable input e.g. for the determination of strange
and charm form factors and for checking SU(3) symmetry. Further study of the PCAC and
Goldberger-Treiman relations is required. In particular, taking the continuum limit will be a
major next step.
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Abstract

Recently the LHCb Collaboration announced intriguing results on the double-J/ψ pro-
duction in proton-proton collisions. A coupled-channel interpretation of the measured
di-J/ψ spectrum is presented and a possible nature of the proposed near-threshold state
X (6200) is discussed.
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1 Introduction

Recently the LHCb Collaboration announced the first measurement of the double-charmonium
production in proton-proton collisions [1]. The cross section of the double-J/ψ production
was measured (see the left plot in Fig. 1) and a significant (5σ) deviation from a non-resonant
production was found (see the right plot in Fig. 1). In particular, a narrow resonance-like
structure at 6.9 GeV and a broad structure just above the double-J/ψ threshold were reported
by LHCb. We present a theoretical coupled-channel analysis [2] of the LHCb data and discuss a
possible molecular interpretation [3] of the proposed fully charmed tetraquark state residing
very near the double-J/ψ threshold (hereinafter referred to as X (6200)) entailed from this
analysis.
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Figure 1: Data on the double-J/ψ production in proton-proton collisions provided
by the LHCb Collaboration (left plot) superposed with the non-resonant distributions
(right plot) where NRSPS and DPS stand for the NonResonant Single Parton Scatter-
ing and Double Parton Scattering, respectively. Adapted from Ref. [1].
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Figure 2: The LHCb data and best fit reported in Ref. [1] superposed with the double-
charm thresholds residing in the energy range from 6.2 to 7.2 GeV. Only relevant
thresholds are retained in the left plot (see the text for details) while additional (not
considered) S- and P-wave thresholds are given in the middle and right plot, respec-
tively.

2 Theoretical data analysis

2.1 Coupled-channel approach

A theoretical analysis of the LHCb data reported in Ref. [1] requires an approach based not
on naive models and parametrisations such as the Breit-Wigner formula but on a suitable
coupled-channel approach since many double-charmonium thresholds reside in the energy
range of interest between 6.2 and 7.2 GeV (see Fig. 2). Meanwhile, the quality of the present
data does not allow one to reliably fix as many fitting parameters as needed to include all
these channels. Therefore, minimal possible models should be employed in the analysis that
implies that only the most relevant channels are retained and the minimal necessary order in
the Effective Field Theory (EFT) expansion is employed. Thus, as the first step we reduce the
number of channels by

• considering only S-wave channels with the thresholds lying in the range 6.2-7.2 GeV,

• retaining only transitions from the double-J/ψ channel through light (not heavier than
two pions) exchanges; this allows us to disregard all χcJχcJ (J = 0,1) channels which
can be produced from the J/ψJ/ψ one through ω-exchanges regarded as heavy,
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• excluding heavy quark spin symmetry (HQSS)-suppressed transitions between channels,
that is, neglecting the transitions like J/ψJ/ψ ↔ hchc which require a heavy quark
spin flip suppressed by the small ratio ΛQCD/mc .

2.2 Models

As explained above, we stick to the minimal possible coupled-channel model consistent with
the data. In particular, we consider (i) a 2-channel (J/ψJ/ψ & ψ(2S)J/ψ) model with the
potential

V2ch(E) =

�

a1 + b1k2
1 c

c a2 + b2k2
2

�

, (1)

containing 5 real parameters, and (ii) a 3-channel (J/ψJ/ψ, ψ(2S)J/ψ & ψ(3770)J/ψ)
model with a 6-parameter potential

V3ch(E) =





a11 a12 a13
a12 a22 a23
a13 a23 a33



 . (2)

The multichannel amplitude (T -matrix) is found as a solution of the Lippmann-Schwinger
equation,

T (E) = V (E) + T (E) · G(E) · V (E) =⇒ T (E) = V (E) · [1− G(E) · V (E)]−1. (3)

Here, depending on the version of the model, V (E) is either V2ch(E) or V3ch(E), and G(E) is a
diagonal matrix of the two-body propagators with the elements [4]

Gi(E) =
1

16π2

§

a(µ) + log
m2

i1

µ2
+

m2
i2 −m2

i1 + E2

2E2
log

m2
i2

m2
i1

+
k
E

�

log
�

2ki E + E2 +∆i

�

(4)
+ log

�

2ki E + E2 −∆i

�

− log
�

2ki E − E2 +∆i

�

− log
�

2ki E − E2 −∆i

�

�

ª

, ∆i = m2
i1 −m2

i2,

where mi1 and mi2 are the particle masses in the i-th channel, ki = λ1/2(E2, m2
i1, m2

i2)/(2E) is
the corresponding three-momentum with λ(x , y, z) = x2 + y2 + z2 − 2x y − 2yz − 2xz for the
Källén triangle function; µ denotes the dimensional regularisation scale, and a(µ) is a subtrac-
tion constant. In practical calculations we use µ= 1 GeV and a(µ= 1 GeV) = −3, keeping in
mind that its variance can be absorbed into the redefinition of the contact interactions in the
potential. The T -matrix from Eq. (3) respects constraints of unitarity.

Then the production amplitude in the J/ψJ/ψ channel (denoted as channel 1) is built as

M1 = αe−βE2
�

b+ G1(E)T11(E) + G2(E)T21(E) + r3G3(E)T31(E)
�

,

where the slope β = 0.0123 GeV−2 is pre-fixed from the fit to the double-parton scattering
(DPS) — see the right plot in Fig. 1, and the parameter r3 is

r3 =

�

0 2-channel model
1 3-channel model

,

so that the production amplitude contains two additional fitting parameters: the overall nor-
malisation α and the background b. We, therefore, end up with 2-channel 7-parameter and
3-channel 8-parameter models.
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Figure 3: The fitted line shapes for the 2- (left plot) and 3-channel (right plot) model.
Adapted from Ref. [2] under arXiv.org non-exclusive license to distribute.

2.3 Fit results

The fitted line shapes for the two models described in detail in the previous chapter are shown
in Fig. 3 and the corresponding parameters are listed in Tables 1 and 2. It should be noticed
that all parameters with bars quoted in the tables need to be multiplied by

∏4
i=1

p

2mi , where
mi ’s are the involved charmonium masses [5],

mJ/ψ = 3.0969 GeV mψ(2S) = 3.6861 GeV.

From the values of χ2/dof quoted in Tables 1 and 2 one can see that all three fits (one fit
for the 2-channel model and two fits for the 3-channel model) provide an almost equally good
description of the present data, so that the latter do not allow one to discriminate between the
two models and different types of description within the same model. Therefore, we highlight
a further prediction of our two models — the invariant mass spectrum in theψ(2S)J/ψ chan-
nel — which, if measured experimentally, could allow one to distinguish between them (see
Fig. 4).

Meanwhile, comparing the predictions of the two models with each other we interpret only
those of them which are robust with respect to the model modification. On the contrary, we
refrain from interpreting the results and predictions which appear to be different for different
versions of the model. In particular, from Fig. 5, where the position of the poles of the ampli-
tude are shown for all three fits from Tables 1 and 2, one can conclude that the poles above the
double-J/ψ threshold, the most prominent of which is known in the literature as the X (6900),
are badly determined by the data, so that its parameters (the “mass” and “width” which can be
identified with the real part and twice the imaginary part of the pole, respectively) are highly
uncertain. On the contrary, all versions of the coupled-channel model employed and all fits
found are consistent with the existence of a pole near the double-J/ψ threshold which we
refer to as the X (6200) (see Ref. [2] for further details). This finding was confirmed indepen-
dently in Ref. [6]. Therefore, we regard the existence of this new state as a robust prediction
and discussed its possible nature in more detail below. Since the Bose symmetry for the state
formed by two identical J/ψ mesons precludes the total spin 1 of this system, the possible
quantum numbers of the proposed X (6200) are J PC = 0++ or 2++.
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Figure 4: Predictions for the invariant mass spectrum in the ψ(2S)J/ψ final state.
Adapted from Ref. [2] under arXiv.org non-exclusive license to distribute.

Table 1: Fitted parameters of the 2-channel model ([āi]=GeV−2, [b̄ j]=GeV−4,
[c̄]=GeV−2) and χ2/dof.

ā1 ā2 c̄ b̄1 b̄2 α b χ2/dof

0.2+0.6
−0.5 −4.2± 0.7 2.94+0.36

−0.29 −1.8+0.4
−0.5 −7.1± 0.4 70+8

−7 3.3± 0.4 0.99

Table 2: Fitted parameters of the 3-channel model ([āi j]=GeV−2) and χ2/dof.

ā11 ā12 ā13 ā22 ā23 ā33 α b χ2/dof

6.0+2.2
−1.6 10.3+3.4

−2.8 −0.2+1.9
−1.3 13+5

−4 −2.6+2.4
−1.3 −2.3+1.5

−1.1 250+70
−60 −0.12+0.21

−0.22 0.97

7.8+3.4
−2.0 16± 4 0.9+2.3

−2.5 26+12
− 6 −3+4

−5 −2.5+2.1
−1.0 144+67

−27 −0.7+0.5
−0.4 1.05

Figure 5: The poles of the amplitude for the 2- (left plot) and 3-channel (right plot)
model. Adapted from Ref. [2] under arXiv.org non-exclusive license to distribute.

3 X (6200) as a double-J/ψ molecule

3.1 Compositeness of the X (6200)

It is obvious from the production mechanism that the proposed X (6200), if it exists, must be a
fully charmed tetraquark c̄ c̄cc state, however the clustering of the quarks may be different: this
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Table 3: The effective range parameters in the J/ψJ/ψ channel and the composite-
ness X̄A of the proposed X (6200).

2-ch. fit 3-ch. fit 1 3-ch. fit 2
a0(fm) ≤ −0.49or≥ 0.48 −0.61+0.29

−0.32 ≤ −0.60or≥ 0.99
r0(fm) −2.18+0.66

−0.81 −0.06+0.03
−0.04 −0.09+0.08

−0.05
X̄A 0.39+0.58

−0.12 0.91+0.04
−0.07 0.95+0.04

−0.06

can be either a compact tetraquark formed by the confining forces of QCD or a weakly bound
molecular state formed by soft gluon exchanges between two J/ψ mesons. The developed
coupled-channel approach allows us to evaluate the compositeness of this state which defines
the probability to observe it in the form of a double-J/ψ system. To this end we define the
nonrelativistic scattering amplitude in the J/ψ-J/ψ channel,

T (k) = −8πE
�

1
a0
+

1
2

r0k2 − i k+O(k4)
�−1

, E = 2mJ/ψ +
k2

mJ/ψ
, (5)

and extract the values of the scattering length a0 and effective range r0 (see Table 3). By
convention, the sign of the scattering length is negative (positive) for the bound (virtual)
state.

According to the findings of Ref. [7], the compositeness of the proposed X (6200) is eval-
uated as

X̄A = (1+ 2|r0/a0|)−1/2, (6)

and the corresponding numerical values obtained for different fits are quoted in Table 3, from
which one can see that the LHCb data on the double-J/ψ production are consistent with X̄A ' 1
that hints towards a molecular nature of the X (6200).

3.2 Binding forces

It was demonstrated in the previous chapter that, according to the theoretical coupled-channel
analysis of the data currently available, there exists a pole near the double-J/ψ threshold
which is very likely to be a J/ψ-J/ψ molecule. Therefore, a natural question is what interac-
tions between two J/ψ’s could produce such a near-threshold pole. It has been known since
long ago [8,9] that the interaction between heavy quarkonia mediated by soft gluon exchanges
hadronise as light-meson (ππ,KK̄) exchanges and can be described in terms of the multipole
expansion which is valid for rQ̄Q � Λ−1

QCD, where rQ̄Q is the size of the heavy quarkonium.
Then, at large distances, the operator for a gluon emission from a Q̄Q quarkonium takes the
form

Hint ≈ −
1
2
ξa~r · ~Ea, (7)

where ξa = ta
1 − ta

2 is the difference between the SU(3) colour generators acting on the quark
Q and antiquark Q̄, ~r is the relative position in the Q̄Q pair, and ~Ea is the chromoelectric field.
Then the amplitude of a dipion transition between two heavy quarkonia A and B reads

M(A→ Bππ) = αAB〈ππ|~Ea · ~Ea|0〉, (8)

where the effective coupling (chromopolarisability) is defined as [10]

αAB =
1

48
〈B|ξariGOriξ

a|A〉, (9)
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Figure 6: The fit to the BESII data on the ψ(2S)→ J/ψπ+π− transition [11] with
χ2/dof=1.1. Adapted from Ref. [3] under attribution 4.0 International license (CC
BY 4.0).

with GO for the Green’s function of the Q̄Q system in the colour-octet representation. There-
fore, we resort to a two-step procedure to derive the strength of the soft-gluon exchange po-
tential between two J/ψ’s. At the first stage, we extract the off-diagonal chromopolarisability
αψ(2S)J/ψ from the BES III experimental data [11] on the dipion transition ψ(2S)→ J/ψππ
(see Fig. 6) within an approach with a proper account for the final state interaction between
pions and kaons that gives the value [3]

|αψ(2S)J/ψ| ≈ 1.81 GeV−3. (10)

Then, as the second step, we use the value (10) to estimate the diagonal chromopolarisability
αJ/ψJ/ψ as

αJ/ψJ/ψ = ξαψ(2S)J/ψ, (11)

where ξ > 1 and, according to the findings of Ref. [3], it is natural to expect 1 ® ξ ® 3 or
larger.

3.3 Potential

With the estimate of the diagonal chromopolarisability αJ/ψJ/ψ obtained in the previous chap-
ter we are in a position to study the interaction potential between two J/ψ’s. To this end we
employ a dispersive approach to write

Vtot(r,Λ) = Vπ(r,Λ) + VK(r,Λ) = VCT(r,Λ) + Vexch(r,Λ), (12)

where Vπ and VK are the two-pion and two-kaon potentials, respectively (see Fig. 7), while
the contact term and long-range exchange potential read

VCT(q,Λ) = Const× F(q2/Λ2) (13)

and

Vexch(r,Λ) = −
1

4πM2
J/ψ

∫

d3q
(2π)3

ei~q·~r
∫ ∞

4m2
π

dµ2
ImMJ/ψJ/ψ(µ2)

µ2 + q2
F

�

q2 +µ2

Λ2

�

, (14)

respectively, with MJ/ψJ/ψ∝ α2
J/ψJ/ψ for the amplitude of the J/ψ-J/ψ scattering through

the soft gluon exchanges. Here F(q2/Λ2) is a suitable form factor used to regularise the short-
range behaviour of the potential. The results demonstrate only a weak dependence on the
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Figure 7: The behaviour of the regularised potentials Vπ(r,Λ) and VK(r,Λ) (see
Eq. (12)) as functions of r for the cut-off Λ = 2 GeV. Adapted from Ref. [3] under
attribution 4.0 International license (CC BY 4.0).

particular form of the form factor for which we finally choose a Gaussian form (see Ref. [3]
for further details). Acceptable values of the cut-off Λ consistent with the developed approach
to the interaction between J/ψ’s lie in the range, roughly, from 1 to 1.5 GeV [3].

It is important to notice that, in the system at hand, there are no sources for VCT to provide
a contribution larger than that from the pion/kaon exchanges since the exchanges by soft
gluons (light mesons) are OZI suppressed while exchanges by charmonia are suppressed as
Λ2

QCD/m
2
c . Therefore, it is natural to expect that

R≡
V S

exch(k
′ = 0, k = 0,Λ)

V S
tot(k′ = 0, k = 0,Λ)

¦
1
2

. (15)

Therefore, the answer to the question whether or not soft gluon exchanges have power to
produce a near-threshold pole in the double-J/ψ system amounts to a possibility to reconcile
such a pole on the physical (bound state) or unphysical (virtual state) Riemann sheet with the
set of constraints

1.0 GeV® Λ® 1.5 GeV, 1® ξ® 3, R¦ 0.5. (16)

The results of our investigations are visualised in Fig. 8. To arrive at them we fix particular
values of Λ and ξ consistent with Eq. (16) and, by tuning the contact potential VCT (effectively,
the ratio R), ensure that the Lippmann-Schwinger equation

T
�

E; k′, k
�

= V S
tot

�

k′, k,Λ
�

+

∫

d3l
(2π)3

V S
tot

�

k′, l,Λ
�

T (E; l, k)

E − l2/MJ/ψ + iε
, (17)

where
V S

tot

�

k′, k,Λ
�

= 〈Vtot(~k− ~k′,Λ)〉~n′ = V S
CT

�

k′, k,Λ
�

+ V S
exch

�

k′, k,Λ
�

, (18)

possesses a bound (solid line in Fig. 8) or virtual (dashed line in Fig. 8) state solution with
a given binding energy Epole (we consider Epole = 1 and 5 MeV). A large overlap of the cor-
responding bands found for ξ = 2 and 3 with the shaded rectangular regions in the upper
left corner of the plots for both Epole = 1 and 5 MeV implies that the existence of a molecu-
lar pole near the double-J/ψ threshold is consistent with our knowledge on hadron-hadron
interactions at low energies.
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Figure 8: The dependence of the ratio R from Eq. (15) on the cut-off Λ for Epole = 1
MeV (left plot) and Epole = 5 MeV (right plot) below the double-J/ψ threshold.
For ξ = 1 (yellow), ξ = 2 (green) and ξ = 3 (red) the shaded band between the
solid and dashed lines of the same colour corresponds to solutions consistent with a
near-threshold pole on the physical or unphysical Riemann sheet residing within Epole
from the di-J/ψ threshold. Adapted from Ref. [3] under attribution 4.0 International
license (CC BY 4.0).

4 Conclusions

The discovery of the X (3872) in 2003 by the Belle Collaboration [12] started a new era in the
physics of hadrons with heavy quarks. Recent data on the double-J/ψ production in proton-
proton collisions provided by the LHCb Collaboration [1] opened a new chapter in this book.
From the theoretical analysis which respects unitarity and approximate but rather accurate
HQSS we conclude that these data are consistent with a coupled-channel description, and
even minimalistic models provide a good description of the data. Further experimental tests
which could allow one to better constrain the theoretical models and distinguish between them
include measurements in the complementary double-ηc andψ(2S)J/ψ charmonium channels
and double-Υ bottomonium channel. Lattice simulations of the double-J/ψ and double-ηc
scattering could provide an independent test. Also, our approach predicts the P-wave π-J/ψ
scattering amplitude in the form

M1[J/ψπ→ J/ψπ] = 8π(MJ/ψ +mπ)k
2a1, a1 ' −(0.2∼ 0.6) GeV−3, (19)

that could potentially be verified on the lattice, too.
From the data analysis performed we conclude that the position of the poles of the ampli-

tude lying above the double-J/ψ threshold is very vaguely fixed by the present data, however
all models employed support the existence of a state with the quantum numbers J PC = 0++

or 2++ near the double-J/ψ threshold. Parameters of the effective range expansion extracted
from the fit to the data demonstrate that its molecular nature is plausible and compatible with
the data. Thus models for the J/ψ-J/ψ binding are welcome to investigate the nature of this
proposed state X (6200). In particular, we demonstrate that the existence of such a molecular
pole near the double-J/ψ threshold is indeed consistent with our knowledge on low-energy
hadron-hadron interactions.
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Abstract

In order to understand the nature of the XYZ particles, theoretical predictions of the
various XYZ decay modes are essential. In this work, we focus on the semi-inclusive
decays of heavy quarkonium hybrids into traditional quarkonium in the EFT framework.
We begin with weakly coupled potential NRQCD effective theory that describes systems
with two heavy quarks and incorporates multipole expansions and use it to develop
a Born-Oppenheimer effective theory (BOEFT) to describe the hybrids and compute the
semi-inclusive decay rates. We compute both the spin-conserving and spin-flipping decay
rates and find that our numerical results of the decay rates are different from the previous
studies. We also develop a systematic framework in which the theoretical uncertainty
can be systematically improved.
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1 Introduction

The Standard Model (SM) describes hadrons as bound states of quarks and gluons bounded
by the strong interactions. Traditionally, the hadrons were classified as mesons that are bound
state of quark-antiquark pair or baryons that are bound state of 3-quarks using the quark
model. However, the underlying theory of strong interactions, Quantum Chromodynamics
(QCD) also allows for existence of complex hadron structures beyond mesons and baryons
such as tetraquark (4-quark states), pentaquark (5-quark states), hybrids (hadrons with active
gluons) and glueballs (bound state of gluons), which are known as exotic hadrons or exotics.
The so called XYZ states are the exotic hadrons in the heavy-quark sector. The XYZ states
do not fit the usual charmonium (cc̄) or bottomonium

�

bb̄
�

spectrum and in some cases have
exotic quantum numbers which cannot be reproduced by the ordinary hadrons such as charged
Zc and Zb states. In 2003, the Belle experimental collaboration observed the first exotic state
X (3872) [1] and since then, several of the new exotic hadrons in the heavy-quark sector have
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been observed by the different experimental groups: B-factories (BaBar, Belle and CLEO),
τ-charm facilities (CLEO-c, BESIII) and also proton-(anti)proton colliders (CDF, D0, LHCb,
ATLAS, CMS) (see the reviews [2,3] for details on experimental observation).

There are several theoretical models and proposals to understand the nature of the XYZ
exotics. One viable and attractive interpretation for at-least some of the XYZ mesons is the
quarkonium hybrids, which is a bound state of heavy quark and a heavy antiquark together
with gluonic excitation. The other proposals are hadroquarkonium, heavy meson molecule,
tetraquark, and diquark-diquark model (see Ref. [2, 3] for review). However, no single pro-
posal can theoretically explain the complete spectrum of the XYZ exotic states. On the other
hand, several new exotic states have been observed in experiments for which the masses and
the decay rates has been measured (see Ref. [4]). Specifically, several of these exotic states
has been discovered from their decays to standard quarkonium. Therefore, a theoretical un-
derstanding of the decays of XYZ exotics might be an another avenue for understanding their
structure. In this work, our objective is to study the inclusive decays of heavy quark hybrids
to traditional quarkonium i.e, Hm→Qn+X , where Hm is a low-lying hybrid, Qn is a low-lying
quarkonium state and X denotes other final state particles.

Within the QCD framework, one can use lattice simulations and effective field theories
(EFTs) to describe the traditional quarkonium and quarkonium hybrids and compute its spec-
tra. Since, the heavy quarks in quarkonium and heavy-quark hybrids are nonrelativistic, the
appropriate framework to use is the nonrelativistic effective theory NRQCD [5,6]. More specif-
ically, if we are only interested in the dynamics of the two heavy quarks, then the appropriate
framework to use is the potential NRQCD effective theory known as pNRQCD [7, 8]. In case
of quarkonium hybrids, there are well-separated energy scales: mQ (mass of heavy quark)
>> mQv (relative momentum scale)>> ΛQCD (energy scale for gluonic excitations)>> mQv2

(dynamics of two heavy quark). The above momentum hierarchy suggests of an energy gap
between the gluonic excitations and the excitations of the heavy quark-antiquark pair that has
also been confirmed by the lattice data [9,10]. This justifies the use of effective theory based
on Born-Oppenheimer approximation (BOEFT) to describe the hybrids [11–15]. On the other
hand, the lattice inputs are essential for determining the static potentials that are used for solv-
ing the Schrödinger equation for computing the spectra. Traditionally, the lattice studies of the
heavy quark hybrids have mainly focused in the charmonium sector and recently in bottomo-
nium sector [16]. In the charm sector, the recent lattice studies have predicted the existence
of a lowest hybrid spin-multiplet J PC = [(0, 1,2)−+, 1−−] at about 4.3 GeV [17–20]. In the
bottom sector, the lattice study in Ref. [16], predicted hybrid states with quantum numbers
J PC = [(0,1, 2)−+, 1−−] approximately 1500 MeV above the ground-state ηb meson.

In this work, we will use the BOEFT for the hybrids and pNRQCD for the low-lying quarko-
nium states. For computing the decay rates, we perform a matching calculation between
BOEFT and pNRQCD to obtain the imaginary terms in the BOEFT potential. In Sec. 2, we
compute the quarkonium and the hybrid spectrum, in Sec. 3, we perform the matching calcu-
lation and compute the decay rates and we conclude in Sec. 4.

2 Spectrum

2.1 Quarkonium

The conventional quarkonium states (QQ̄) are color singlet bound states of a heavy quark and
antiquark in the ground state static potential VΣ+g (r). The shape of the static potential VΣ+g (r) is
well described by the Cornell potential. The Schrödinger equation describing the quarkonium
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spectrum is given by
�

−
∇2

mQ
+ VΣ+g (r)

�

ΦQ
(n)(r ) = EQ

n Φ
Q
(n)(r ) , (1)

where mQ is the heavy quark mass, EQ
n is the quarkonium energy, ΦQ

(n) (r ) denotes the quarko-
nium wave-function, the index (n) = (n, j, l, s) denotes the usual set of quarkonium quantum
numbers. We use the following form of the static potential VΣ+g (r) from Ref. [12]

VΣ+g (r) = −
κg

r
+σg r + EQQ̄

g , (2)

where κg = 0.489 and the string tension parameter σg = 0.187 GeV2 are determined from the

fit to the lattice data. The constant EQQ̄
g is different for both charmonium and bottomonium

and is determined by comparison to the experimental spin-averaged mass from PDG 2020 [4]

Ecc̄
g = −0.254GeV, E bb̄

g = −0.195GeV, (3)

where have used the RS-scheme charm and bottom mass: mc = 1.477GeV and mb = 4.863 GeV
to compute the quarkonium spectrum. The quarkonium mass is given by MQQ̄ = 2mQ+ EQ

n for
Q = (c, b), where EQ

n is the eigenvalue in Eq. (1).

2.2 Hybrids

Hybrids (QQ̄g) are exotic hadrons that are color singlet bound states of a color octet QQ̄
source coupled to gluonic excitations. Therefore, hybrid states are more complicated com-
pared to traditional quarkonium due to presence of active gluons. The energy scale for the
gluonic excitations is the nonperturbative energy scale ΛQCD. In the BOEFT description, the
nonperturbative gluon dynamics generate a background static potential in which the heavy
quark-antiquark pair in the hybrids binds together. In the static limit

�

mQ→∞
�

, the hybrid
spectrum is composed of the static energies, which are characterized by the representation of
the D∞h cylindrical symmetry group just like in diatomic molecules. The hybrid static energies
are nonperturbative quantities that are generally computed on the lattice. In the short-distance
limit r → 0, where r is the relative coordinate of QQ̄, the hybrid static energies are degener-
ate and quantum numbers are characterized by representations of spherical symmetry group
O(3)× C instead of D∞h [7,13,14]. We focus here on the low-lying hybrids coming from Σ−u
and Πu static potentials and we closely follow the notations in Ref. [13].

The BOEFT Lagrangian that describes the hybrid states is given by

LBOEFT =

∫

R

∫

r

∑

κ

∑

λλ′

�

Ψ†
κλ
(r, R, t)

§

i∂t − Vκλλ′(r) + P i†
κλ

∇2
r

mQ
P i
κλ′

ª

Ψκλ′(r, R, t)

+Ψ†
κλ
(r)∆V (r)δλλ′Ψκλ′(r, R, t)

�

+ · · · , (4)

where
∫

R ≡
∫

d3R, r and R are the relative and center-of-mass coordinates of the heavy-quark-
antiquark pair, the quantum number κ is κ ≡ K PC , with K defined as the angular momentum
of the gluonic degrees of freedom, Ψκλ denotes the hybrid field (or the wave-function) and the
ellipses represent higher order terms in the multipole expansion. P i

κλ
(i denotes vector index)

is the projection operator that projects the gluonic degrees of freedom to an eigenstate of K · r̂
with eigenvalue λ. These projection operators correctly reproduce the hybrid quantum num-
bers in D∞h representation. For low-lying hybrids coming from Σ−u and Πu static potentials,
the gluon quantum number κ= 1+−. Therefore, for our purpose, the projectors P i

1λ are given
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by P i
10 = r̂ i

0 (θ ,φ) = r̂ i for projecting onto theΣ−u state and P i
1±1 = r̂ i

±1 (θ ,φ) =
�

θ̂ i ± iφ̂ i
�

/
p

2
for projecting onto the two components of the Π±u state, where θ̂ and ϕ̂ are the usual spherical
unit vectors. In Eq. (4), the BOEFT potential Vκλλ′(r) can be expanded in 1/mQ as

Vκλλ′(r) = E(0)
κλ
(r)δλλ′ +

V (1)
κλλ′
(r)

mQ
+ . . . , (5)

where E(0)
κλ
(r) denotes the static potential, and V (1)

κλλ′
(r) can be written as sum of spin-dependent

and spin-independent pieces [15]. The effective potential ∆V in Eq, (4) (that is treated as a
perturbation) is responsible for producing transitions to standard quarkonium states and the
form will be determined by performing a matching calculation in section 3. From now on, we
ignore the subscript κ (as κ= 1+− for our purpose) and we write the hybrid wave-function as

Ψ
(m)
λ
(r )≡ Ψ(m, j,l,s)

λ
(r ) =ψλm(r)Φ

λ
( jls) (θ ,φ) , (6)

where m is the principal quantum number, the quantum number j is the eigenvalue of the
total angular momentum operator: J= L+S, where S is the QQ̄ spin, L= LQQ̄ +K, where K is
the gluon angular momentum, and LQQ̄ is the angular momentum operator of the two heavy
quarks. We use the notation m

�

LQQ̄

�

L to denote the hybrid state.

At leading order, the equations of motion for the fields Ψ(m)
λ
(r ) that follow from Eq. (4)

are the set of coupled Schrödinger equations which are given by

∑

λ=0,±1

r̂ ∗
λ′
(θ ,ϕ) ·

�

−
∇2

r

mQ
+ E(0)

λ
(r)

�

r̂λ(θ ,ϕ)Ψ(m)
λ
(r ) = EmΨ

(m)
λ′
(r ) , (7)

where Em is the eigenvalue. The hybrid mass is given by MQQ̄g = 2mQ + Em for Q = (c, b).
Since, there are projection operators on both side of ∇2

r in Eq. (7), the contributions from Σ−u
and Πu potentials mix together that results in pairs of solutions with same angular momentum
quantum number but opposite parity [13]. The static potentials that we use for computing the
hybrid spectrum is split into a short-distance part and long-distance part [13]:

E(0)
λ
(r) =

¨

V RS
o (ν f ) +ΛRS

H (ν f ) + bλr2, r < 0.25 fm

V(r), r > 0.25 fm
, (8)

where for the short-distance part (r < 0.25 fm) we have used the RS-scheme octet potential
V RS

o (r) up to orderα3
s in perturbation theory and the RS-scheme gluelump massΛRS

H = 0.87(15)
GeV at the renormalon subtraction scale ν f = 1 GeV [10,21]. The RS-scheme octet potential
is given by [10,21]

V RS
o (r,ν f ,µ) = Vo(r,µ)−δV RS

o (ν f ) , (9)

with

Vo(r,µ) =
�

CA

2
− CF

� αVo
(µ)

r
, (10)

δV RS
o (ν f ) =

∞
∑

n=1

NVo
ν f

�

β0

2π

�n

αn+1
s

�

ν f

�

∞
∑

k=0

ck
Γ (n+ 1+ b− k)
Γ (1+ b− k)

, (11)

where µ denotes the energy scale scale, NVo
= 0.114001, the parameters b and ck are defined

in Ref. [10] . The form of αVo
up to order α3

s in perturbation theory is given in Ref. [22]
The long-distance (r > 0.25 fm) part of the potential V(r) is given by

V(r) =
a1

r
+
Æ

a2 r2 + a3 + a4. (12)
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The above form of the long-distance potential V(r) is chosen so as to reproduce the short
and long distance behavior of the Cornell potential. The parameters bλ in Eq. (8) and a1, a2,
a3 and a4 in Eq. (12) are different for both Σ−u and Πu static potentials. The parameters are
determined by performing a fit to the lattice data in Refs. [9,10] and demanding that the short-
range and the long-range pieces in Eq. (8) are continuous upto first derivatives (see Ref. [13]
for details). The result for the spectrum is given in Table III of Ref. [13].

3 Inclusive Decay Rate

We want to compute the inclusive decay rate of low-lying quarkonium hybrids decaying to
traditional quarkonium i.e, Hm → Qn + X , where Hm is a low-lying hybrid, Qn is a low-lying
quarkonium state and X denotes other final state particles. We denote the energy (mass)
difference by∆E = Em−EQ

n ¦ 1GeV, which for low-lying hybrid and quarkonium states satisfy
the following hierarchy of energy scales: mQv >> ∆E >> ΛQCD >> mQv2. This implies that
the relevant theory at the energy scale ∆E is the weakly coupled pNRQCD effective theory
which is obtained from NRQCD by integrating out gluons with momentum and energy of order
∼ mQv and quarks with energy of order∼ mQv. In order to describe the dynamics of two heavy
quarks in the hybrids that happens at energy scale mQv2, we will use the Born-Oppenheimer
effective theory (BOEFT). Hence, starting with pNRQCD effective theory, we integrate out
gluons with 4−momentum of order ∼ ∆E and ∼ ΛQCD in loops and match it to BOEFT that
describes system at energy scale mQv2. This matching condition leads to imaginary terms in
the BOEFT potential which is related to the hybrid decay rate by the optical theorem.

The pNRQCD Lagrangian up to next-to-leading-order (NLO) in multipole expansion or in
1/mQ is given by

LpNRQCD =

∫

R

∫

r

�

Tr
�

S† (i∂0 − hs)S +O† (iD0 − ho)O
�

+ gTr
�

S†r · E O+O†r · E S
�

+
gcF

mQ
Tr
�

S†(S1 − S2) · B O+O†(S1 − S2) · B S
�

+ · · ·
�

, (13)

where
∫

R ≡
∫

d3R, S and O denotes the singlet and the octet fields and ellipsis represents
higher order terms as well as terms including light quarks and gluons. The singlet and octet
Hamiltonian densities are given by

hs = −∇2
r/mQ + Vs(r), ho = −∇2

r/mQ + Vo(r), (14)

where Vs(r) and Vo(r) are the perturbative singlet and octet potentials. For our purpose, we
use the following form for Vs(r) and Vo(r)

Vs(r) = −
κg

r
+ Es

Q, Vo(r) = V RS
o (r), (15)

where V RS
o (r) is given by Eq. (9), κg = 0.489, and the constant Es

Q for Q = (c, b) is chosen so
as to reproduce the spin-averaged 1s charmonium and 1s bottomonium mass.

The r ·E vertex in Eq. (13) is responsible for the spin-conserving decays of hybrid whereas
the S·B/mQ vertex is responsible for the spin-flipping decays of hybrid (spin-0 hybrid decaying
to spin-1 quarkonium and vice versa). Therefore, the spin-flipping decays are suppressed by
powers of the heavy quark mass due to heavy quark spin symmetry.

Beginning with pNRQCD, we integrate out gluons with 4−momentum ∼∆E and ∼ ΛQCD
in two steps , and obtain the BOEFT theory that describes system at energy scale mQv2. We per-
form this by implementing the matching condition wherein we compute the two-point Green’s

008.5

https://scipost.org
https://scipost.org/SciPostPhysProc.6.008


SciPost Phys. Proc. 6, 008 (2022)

function in both the theories and equate them. For spin-preserving decays of hybrid to quarko-
nium, the two-point function in pNRQCD is expanded up to O

�

r2
�

in the multipole expansion
using the NLO pNRQCD Lagrangian in Eq. (13) which is equated to the corresponding two-
point function in BOEFT computed using the Lagrangian in Eq. (4). For the spin-flipping decay
of hybrids, the two-point function is expnaded up to O

�

1/m2
Q

�

using the pNRQCD Lagrangian
in Eq. (13). After implementing this matching condition, we obtain the the following form of
the effective potential ∆V in Eq. (4) for the spin-preserving decays

∆V = −
i g2

3
TF

Nc

∫ ∞

0

d t eiΛt eiho t/2rke−ihs t rkeiho t/2

∫

d3k
(2π)3

|k|e−i|k|t . (16)

In case of spin-flipping decays, the r ·E vertex is replaced by the S ·B/m vertex. Thus, using the
optical theorem, the (spin-conserving) decay rate of the hybrids for the process Hm→Qn+ X
is given by ΓHm→Qn

= −2〈Hm|Im∆V |Hm〉 (see details of the calculation in Ref. [23])

Γ (m→ n) =
∑

n′

�

�

�

�

∫

d3r Φs†
(n′)(r )Φ

Q
(n)(r )

�

�

�

�

2

Γmn′ , (17)

where in the above expression we have included the overlap between the quarkonium
�

ΦQ
(n)

�

and the Coulomb singlet
�

Φs
(n′)

�

wave-functions (we use compact notation (n) and (n′) to
denote the set of quantum numbers for quarkonium and singlet state) and Γmn′ is given by

Γmn′ = Re
8παsTF

3Nc

∫

r

∫ ∞

0

d t Ψ i†
(m)(r )e

iΛt eiho t/2rke−ihs t rkeiho t/2Ψ i
(m)(r )

∫

d3k
(2π)3

|k|e−i|k|t ,

=
4αsTF

3Nc

∫

d3l
(2π)3

∫

d3l ′

(2π)3

∫

r

∫

r ′

∫

r ′′

∫

r ′′′

�

Ψ i†
(m)(r )Φ

o
l (r )

��

Φo†
l (r

′)r ′iΦs
(n′)(r

′)
�

×
�

Φs †
(n′)(r

′′)r ′′iΦo
l ′(r

′′)
��

Φo†
l ′ (r

′′′)Ψ i
(m)(r

′′′)
�

(Λglue + Eo
l /2+ Eo

l ′/2− Es
n)

3 , (18)

where
∫

r ≡
∫

d3r , αs is evaluated at the scale∆E = Em−EQ
n ,Ψ i†

(m) is the hybrid wave-function
given in Eq. (6) (i is the vector index, (m) denotes the set of quantum numbers), Φo

l is the
octet wave-function, Eo

l is the octet energy, Es
n is the singlet energy, and Λglue = 0.87(15)GeV

in RS-scheme. In order to obtain the second line from the first line in Eq. (18), we expand the
singlet (hs) and octet (ho) Hamiltonians in terms of their eigenfunctions Φs

(n′) and Φo
l , which

satisfy

hs(r , p)Φs
(n′)(r ) = Es

n′ Φ
s
(n′)(r ), ho(r , p)Φo

l (r ) = Eo
l Φ

o
l (r ) . (19)

For computing the decay rates using Eq. (17), we need the octet and the singlet wave-functions.
We use the singlet and octet potentials in Eq. (15) to compute Φo

l and Φs
(n′).

Suppose, we assume: the singlet and quarkonium energies satisfy EQ
n ≈ Es

n, overlap be-
tween hybrid and octet wave-functions

∫

d3r Ψ i†
(m)(r )Φ

o
l (r ) is nonzero only for hybrid energy

Em: Em = Eo
l + Λglue (where ignoring the bλr2 term in Eq. (8)) such that the cubic factor

within the integrand in Eq, (18) is replaced by a constant ∆E, and the overlap function of
quarkonium and singlet wave-function satisfy

∫

d3r Φs†
(n′)(r )Φ

Q
(n)(r ) ≈ 1 for

�

n′
�

= (n), then
Eq. (17) is simplified to

Γ sim(m→ n)≈
4αs (∆E) TF

3Nc

�∫

r
Ψ i†
(m)(r )r

jΦQ
(n)(r )

��∫

r
Ψ i†
(m)(r )r

jΦQ
(n)(r )

�†

∆E3 . (20)
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Table 1: Preliminary results for the spin-conserving inclusive decay rate for hybrids
decays to quarkonium states: Hm→Qn+X due to r ·E vertex in Eq. (13). The hybrid
states are denoted by m

�

LQQ̄

�

L whereas the quarkonium states are denoted by nL′.
The decay rate in fourth column is computed using Eq. (20) and in last column using
Eq. (17). The values of αs (∆E) are obtained using the RUNDEC code [25]. The
upper error bar is from changing the scale to ∆E/2 in αs while the lower error bar
is from changing the scale to 2∆E in αs.

m
�

LQQ̄

�

L → nL′ ∆E (GeV) αs (∆E) Γ sim (MeV) Γ (MeV)

charmonium hybrid decay

1p0→ 1s 1.522 0.298 327 +137
−71 117 +49

−25

1p0→ 2s 0.912 0.381 194 +118
−53 71 +43

−19

2p0→ 1s 1.986 0.269 45 +16
−9 15 +5

−3

1p1→ 1s 1.218 0.329 156 +76
−37 146 +71

−35

2p1→ 1s 1.599 0.292 65 +27
−14 9 +4

−2

2(s/d)1→ 1p 1.013 0.361 113 +63
−29 7 +4

−2

4(s/d)1→ 1p 1.381 0.311 99 +44
−22 8 +4

−2

bottomonium hybrid decay

1p0→ 1s 1.622 0.290 69 +28
−14 102 +41

−22

1p0→ 2s 1.055 0.353 159 +86
−40 20 +11

−5

2p0→ 1s 1.909 0.273 34 +12
−7 15 +5

−3

2p0→ 2s 1.342 0.315 42 +19
−10 63 +29

−14

3p0→ 1s 2.174 0.261 19 +6
−4 12 +4

−2

3p0→ 2s 1.607 0.291 20 +4
−8 25 +10

−5

4p0→ 1s 2.421 0.251 12 +4
−2 7 +2

−1

4p0→ 2s 1.854 0.276 11 +4
−2 30 +11

−6

1p1→ 1s 1.404 0.309 29 +13
−7 80 +35

−18

2p1→ 1s 1.617 0.291 28 +11
−6 26 +11

−6

3p1→ 1s 1.828 0.277 22 +8
−4 16 +6

−3

2(s/d)1→ 1p 1.068 0.351 15 +8
−4 163 +87

−41

3(s/d)1→ 1p 1.264 0.324 73 +35
−17 90 +43

−21

3(s/d)1→ 2p 0.907 0.383 22 +14
−6 83 +51

−23

4(s/d)1→ 1p 1.300 0.320 155 +72
−36 103 +48

−24

The simplified decay rate in Eq. (20) is identical to Eq. (17) in Ref. [12] and Eq. (62) in
Ref. [24]. However, in Ref. [12], the authors only consider the diagonal elements (where they
contract the index i and j in Eq. (20)) instead of the full tensor structure. This led to a selection
rule that hybrids with L = LQQ̄ does not decay. This is incorrect as such decays are allowed
by considering the tensor structure of the matrix element in Eq. (20). The results for the spin-
conserving and spin-flipping decay rates are shown in tables 1 and 2. The spin-flipping decay
rates in table 2 are suppressed by the two-powers of the heavy quark mass m.

In both tables 1 and 2, we see that for most of the cases, the values of the hybrid decay rate
from the general expression involving overlap functions of octet and singlet state in Eq. (17)
differs from that obtained from the simplified expression in Eq. (20) even after considering
the error bars. We find that this difference is mainly due to contributions from the cubic
factor within the integrand and the Coulomb singlet wave-functions in Eq, (18). Therefore,
this raises the questions on the validity of the approximations that were used to obtain the
simplified expression in Eq. (20). Specifically, We find that the approximation about the singlet
and quarkonium energy EQ

n ≈ Es
n is only valid for 1s charmonium and bottomonium states and

the overlap between hybrid and octet wave-function
∫

d3r Ψ i†
(m)(r )Φ

o
l (r ) is nonzero over wide
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Table 2: Preliminary results for the spin-flipping inclusive decay rate for hybrids
decays to traditional quarkonium states: Hm→Qn+X due to due to S ·B/mQ vertex
in Eq. (13). The decay rate in fourth and fifth column is computed using Eq. (20)
and in last two column using Eq. (17). The notation (1→ 0) denotes spin-1 hybrid
decaying into spin-0 quarkonium while (0→ 1) denotes spin-0 hybrid decaying into
spin-1 quarkonium.

m
�

LQQ̄

�

L → N L′ ∆E (GeV) αS (∆E)
Γ sim(MeV)

(1→ 0)

Γ sim(MeV)

(0→ 1)

Γ (MeV)

(1→ 0)

Γ (MeV)

(0→ 1)

Charmonium hybrid decay

1p0→ 1p 1.096 0.347 45.54 +23.90
−11.37 136.62 +71.69

−34.10 0.07 +0.04
−0.02 0.22 +0.11

−0.05

2p0→ 1p 1.560 0.295 1.66 +0.69
−0.35 4.98 +2.06

−1.06 0.06 +0.02
−0.01 0.18 +0.07

−0.04

2p0→ 2p 1.087 0.348 44.17 +23.33
−11.07 132.51 +69.98

−33.20 0.14 +0.07
−0.04 0.43 +0.22

−0.11

3p0→ 1p 1.979 0.270 0.73 +0.26
−0.14 2.18 +0.77

−0.43 0.07 +0.02
−0.01 0.21 +0.07

−0.04

2p1→ 1p 1.173 0.335 5.09 +2.54
−1.23 15.26 +7.61

−3.69 0.07 +0.04
−0.02 0.21 +0.11

−0.05

3p1→ 1p 1.542 0.296 2.05 +0.86
−0.44 6.16 +2.57

−1.32 0.07 +0.03
−0.02 0.22 +0.09

−0.05

3p1→ 2p 1.068 0.351 3.71 +1.99
−0.94 11.13 +2.81

−5.96 0.18 +0.09
−0.04 0.53 +0.29

−0.13

1(s/d)1→ 1s 1.087 0.348 34.53 +18.23
−8.65 103.60 +54.70

−25.95 11.37 +6.00
−2.85 34.11 +18.00

−8.54

2(s/d)1→ 1s 1.439 0.305 15.45 +6.72
−3.42 46.35 +20.16

−10.26 0.18 +0.09
−0.04 0.53 +0.29

−0.13

3(s/d)1→ 1s 1.744 0.282 0.20 +0.08
−0.04 0.59 +0.23

−0.12 0.51 +0.20
−0.11 1.53 +0.59

−0.32

Bottomonium hybrid decay

1p0→ 1p 1.157 0.338 4.25 +2.14
−1.03 12.74 +6.42

−3.10 0.95 +0.48
−0.23 2.84 +1.43

−0.69

2p0→ 1p 1.444 0.305 0.82 +0.36
−0.18 2.46 +1.07

−0.54 0.11 +0.05
−0.02 0.34 +0.15

−0.07

2p0→ 2p 1.086 0.348 3.11 +1.64
−0.78 9.33 +4.93

−2.34 0.11 +0.06
−0.03 0.32 +0.17

−0.08

3p0→ 1p 1.708 0.285 0.32 +0.12
−0.07 0.95 +0.37

−0.20 0.14 +0.05
−0.03 0.41 +0.16

−0.09

3p0→ 2p 1.351 0.314 0.60 +0.27
−0.14 1.81 +0.82

−0.41 0.13 +0.06
−0.03 0.38 +0.17

−0.09

4p0→ 1p 1.955 0.271 0.16 +0.06
−0.03 0.47 +0.17

−0.09 0.03 +0.01
−0.01 0.10 +0.03

−0.02

4p0→ 2p 1.598 0.292 0.28 +0.11
−0.06 0.84 +0.34

−0.18 0.02 +0.01
−0.003 0.05 +0.02

−0.01

1p1→ 1p 0.938 0.376 1.84 +1.09
−0.49 5.51 +3.28

−1.48 1.21 +0.72
−0.32 3.63 +2.16

−0.97

2p1→ 1p 1.152 0.338 1.10 +0.56
−0.27 3.30 +1.67

−0.80 0.05 +0.03
−0.01 0.15 +0.08

−0.04

3p1→ 1p 1.362 0.313 0.60 +0.27
−0.14 1.80 +0.81

−0.41 0.12 +0.06
−0.03 0.37 +0.17

−0.08

3p1→ 2p 1.005 0.362 0.66 +0.37
−0.17 1.98 +1.11

−0.52 0.11 +0.06
−0.03 0.34 +0.19

−0.09

1(s/d)1→ 1s 1.343 0.315 2.89 +1.31
−0.66 8.66 +3.94

−1.97 3.51 +1.59
−0.80 10.52 +4.78

−2.40

2(s/d)1→ 1s 1.534 0.297 2.59 +1.08
−0.56 7.76 +3.25

−1.67 1.73 +0.72
−0.37 5.18 +2.17

−1.12

2(s/d)1→ 2s 0.967 0.369 0.09 +0.05
−0.02 0.28 +0.16

−0.07 0.61 +0.35
−0.16 1.82 +1.05

−0.48

3(s/d)1→ 1s 1.730 0.283 1.05 +0.41
−0.22 3.14 +1.22

−0.65 0.63 +0.24
−0.13 1.89 +0.73

−0.39

3(s/d)1→ 2s 1.163 0.337 0.08 +0.04
−0.02 0.25 +0.12

−0.06 0.08 +0.04
−0.02 0.23 +0.11

−0.06

4(s/d)1→ 1s 1.765 0.281 0.87 +0.33
−0.18 2.60 +0.99

−0.53 0.37 +0.14
−0.08 1.11 +0.42

−0.23

range of octet energies, if we don’t assume Em ≈ Eo
l +Λglue (see Ref. [23]).

4 Conclusions

In this work, we study the inclusive decays of heavy quark hybrids to traditional quarkonium
by using the framework of Born-Oppenheimer effective field theory. We have derived an ex-
pression of the decay rate given in Eq. (17) that depends on the overlap functions of hybrid,
octet, Coulomb singlet and quarkonium wave-functions. The values of the spin-conserving
and the spin-flipping decay rates of hybrids are shown in tables 1 and 2. We also find that us-
ing certain assumptions, our expression for the decay rate in Eq. (17) reduces to a simplified
expression given by Eq. (20) that was earlier derived in Refs. [12,24]. However, the difference
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in the values of the decay rate from Eqs. (17) and (20) shown in tables 1 and 2 raises questions
on the validity of those approximations.
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We summarize our recent lattice gauge theory computation of theΠu andΣ−u hybrid static
potentials at small quark-antiquark separations. We provide parameterizations of the
resulting lattice data points, which can be used for investigating masses and properties
of heavy hybrid mesons in the Born-Oppenheimer approximation.
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1 Introduction

The main goal of this work is to carry out a high precision first principles SU(3) lattice gauge
theory computation of hybrid static potentials, i.e. potentials corresponding to a static quark
antiquark pair and an excited gluonic flux tube with quantum numbers different from the
ground state. Such potentials can e.g. be used to predict masses of b̄b and c̄c hybrid mesons
within the Born-Oppenheimer approximation (for recent work discussing and using the Born-
Oppenheimer approximation in the context of heavy hybrid mesons see Refs. [1–7]).

Hybrid static potentials have been computed with lattice gauge theory a number of times
by independent groups [4, 8–34]. The majority of these computations were performed at a
rather coarse lattice spacing. In this work we focus on the Πu and Σ−u hybrid static potentials,
which are the lowest hybrid static potentials. We consider four different lattice spacings as
small as a = 0.040 fm, which allows to identify and remove lattice discretization errors and
also to study significantly smaller quark-antiquark separations r than before. In particular our
lattice results confirm the repulsive behavior of theΠu andΣ−u hybrid static potentials at small r
predicted perturbatively in the framework of potential Non Relativistic QCD (pNRQCD) [2,35].
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This contribution to the conference proceedings of the “XXXIII International (ONLINE)
Workshop on High Energy Physics” summarizes our more detailed recent publication [36].
Results obtained at an early stage of this project have been published in Refs. [37,38].

2 Hybrid static potential trial states and their quantum numbers

Hybrid static potentials can be characterized by the following quantum numbers:

• Absolute total angular momentum with respect to the quark-antiquark separation axis
(e.g. the z axis): Λ= 0, 1,2, . . .≡ Σ,Π,∆, . . .

• Parity combined with charge conjugation: η= +,−= g, u.

• Reflection along an axis perpendicular to the quark-antiquark separation axis (e.g. the
x axis): ε= +,−.

For Λ ≥ 1 static potentials are degenerate with respect to ε. Thus, it is common to quote
quantum numbers Λεη for Λ = Σ and quantum numbers Λη for Λ = Π,∆, . . . The ordinary
static potential has quantum numbers Λεη = Σ

+
g and is denoted as VΣ+g (r). In this work we

focus on the two lowest hybrid static potentials, which have quantum numbers Λεη = Πu,Σ−u
and are denoted as VΠu

(r) and VΣ−u (r).
To determine (hybrid) static potentials VΛεη(r) using lattice gauge theory, one has to com-

pute temporal correlation functions

WS,S′;Λεη
(r, t) = 〈Ψhybrid(t)|S;Λεη

|Ψhybrid(0)〉S′;Λεη ∼t→∞ exp
�

− VΛεη(r)t
�

(1)

of suitably designed trial states |Ψhybrid〉S;Λεη
. From the asymptotic behavior for large t one can

extract VΛεη(r). We use trial states

|Ψhybrid〉S;Λεη
= Q̄(−r/2)aS;Λεη

(−r/2,+r/2)Q(+r/2)|Ω〉 (2)

with static quark operators Q̄(−r/2) and Q(+r/2) and gluonic parallel transporters

aS;Λεη
(−r/2,+r/2) =

=
1
4

3
∑

k=0

exp
�

iπΛk
2

�

R
�

πk
2

�

�

U(−r/2, r1)
�

S(r1, r2) + εSPx
(r1, r2)
�

U(r2,+r/2) +

U(−r/2,−r2)
�

ηSP◦C(−r2,−r1) +ηεS(P◦C)Px
(−r2,−r1)
�

U(−r1,+r/2)
�

(3)

generating quantum numbers Λεη (for a detailed discussion we refer to Ref. [4]). On the lattice
these gluonic parallel transporters are products of gauge links. To optimize aS;Λεη

(−r/2,+r/2),
we have explored a large number of shapes and variations of their extents (see again Ref. [4]).
For the computation of the Πu and Σ−u hybrid static potentials we used those two operators
with the largest ground state overlap (SI I I ,1 and SIV,2 in Table 3 and Table 5 of Ref. [4]).

3 Lattice gauge theory computation of the ordinary static poten-
tial and the Πu and Σ−u hybrid static potentials

We carried out computations of the ordinary (i.e. Σ+g ) static potential and the Πu and Σ−u
hybrid static potentials on four ensembles (denoted as A, B, C and D) with lattice spacings
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Table 1: Gauge link ensembles used in this work (physical units are introduced by
setting r0 = 0.5 fm).

ensemble β a in fm (L/a)3 × T/a

A 6.000 0.093 123 × 26

B 6.284 0.060 203 × 40

C 6.451 0.048 263 × 50

D 6.594 0.040 303 × 60

AHYP2 6.000 0.093 243 × 48

a ranging from a = 0.093 fm down to 0.040 fm (see Table 1). We used unsmeared temporal
links, i.e. the standard Eichten-Hill static action, and APE smeared spatial links to maximize the
ground state overlaps of the trial states discussed in the previous section. To reduce statistical
errors, we employed a multilevel algorithm [39]. Moreover, we reuse the lattice data from our
previous work [4] obtained at lattice spacing a = 0.093 fm with the HYP2 static action (the
corresponding ensemble is denoted as AHYP2).

In that way we get a fine spatial resolution of the potentials. Because of the rather small
lattice spacings of ensemble C and ensemble D, we are also able to access significantly smaller
quark-antiquark separations than before (in lattice gauge theory one should only use lattice
data points with r >∼2 a, to avoid sizable discretization errors). Moreover, using five ensembles
we are able to quantify and eliminate discretization errors.

We note that static potentials computed via correlation functions (1) have self energies,
which depend both on the lattice spacing and the static quark action and diverge in the limit
a → 0. These self energies need to be subtracted, before all our lattice data points can be
shown together in a meaningful plot. This is done by suitable fits and discussed in section 4.

We investigated and excluded the following types of systematic errors:

• Errors due to topological freezing:
Since Monte Carlo algorithms have difficulties changing the topological charge Q for
lattice spacings a<∼0.05 fm [40], Monte Carlo histories of Q need to be checked, in par-
ticular for ensembles C and D. We found that autocorrelation times of Q are quite large
for these two ensembles. We carried out very long simulations to guarantee that there is
a sufficiently large number of changes in Q such that the ensembles form representative
sets of gauge link configurations distributed according to e−S .

• Finite volume corrections:
A finite spatial volume leads to a negative energy shift, because of virtual glueballs trav-
eling around the far side of the periodic volume [41]. For very small volumes one expects
positive energy shifts, because of squeezed wave functions [42], in particular for hybrid
static potentials, where the flux tubes are quite extended [33, 43]. We studied the vol-
ume dependence of the Σ+g , Πu and Σ−u static potentials in detail and found that both
types of effects are negligible for spatial extent L >∼1.2 fm, a condition fulfilled for all five
ensembles we used (see Table 1).

• Glueball decays:
At small r hybrid flux tubes can decay into Σ+g flux tubes and glueballs. In Ref. [36] we
showed analytically that the Σ−u flux tube is protected by symmetries from decays into a
0++ glueball. For the Πu flux tube decays into a 0++ glueball are possible for r <∼0.11 fm.

009.3

https://scipost.org
https://scipost.org/SciPostPhysProc.6.009


SciPost Phys. Proc. 6, 009 (2022)

Numerically, however, we observed no indication that V e
Πu
(r) is contaminated by such

decays. Since the Πu and Σ−u potentials approach each other for small r, glueball decays
seem to have a negligible effect on V e

Πu
(r).

For a more detailed discussion on the exclusion of systematic errors we refer to our recent
publication [36].

4 Parameterization of the ordinary static potential and the Πu and
Σ−u hybrid static potentials

In a preparatory step we determined a parameterization VΣ+g (r) of the lattice data points for the
ordinary static potential. This is important, because we obtained the ensemble dependent self
energies rather precisely and we were able to estimate lattice discretization errors at tree-level
of perturbation theory. This information will be used below to determine parameterizations
for the Πu and Σ−u hybrid static potentials. Moreover, VΣ+g (r) is useful to set the energy scale,
when interpreting the static quarks as either b quarks or c quarks. To do this one can compute
the quarkonium ground state ηb(1S)≡ Υ (1S) or ηc(1S)≡ J/Ψ(1S) in the Born-Oppenheimer
approximation and identify the result with the corresponding experimental result.

We carried out an 8-parameter fit of the ansatz

V fit,e
Σ+g
(r) = VΣ+g (r) + C e +∆V lat,e

Σ+g
(r) (4)

VΣ+g (r) = −
α

r
+σr (5)

∆V lat,e
Σ+g
(r) = α′
�

1
r
−

Ge(r/a)
a

�

(6)

to the Σ+g data points from all five ensembles with r ≥ 0.2 fm. VΣ+g (r) is the Cornell ansatz,
which provides an accurate description of the ordinary static potential for r >∼0.2 fm (see e.g.
Ref. [44]). C e denote the a-dependent self energies. Ge(r/a)/a is proportional to the ordinary
static potential at tree-level of lattice perturbation theory, i.e. it is the lattice counterpart of
1/r in the continuum. Thus, ∆V lat,e

Σ+g
(r) represent lattice discretization errors at tree-level of

perturbation theory.
The resulting fit parameters allow to define data points, with the self-energy subtracted

and discretization errors removed,

Ṽ e
Σ+g
(r) = V e

Σ+g
(r)− C e −∆V lat,e

Σ+g
(r). (7)

These improved lattice data points together with the parameterization (4) are shown in Fig-
ure 1.

Similarly, we carried out a 10-parameter fit

V fit,e
Λεη
(r) = VΛεη(r) + C e +∆V lat,e

hybrid(r) + A′e2,Λεη
a2 , Λεη = Πu,Σ−u (8)

VΠu
(r) =

A1

r
+ A2 + A3r2 , VΣ−u (r) =

A1

r
+ A2 + A3r2 +

B1r2

1+ B2r + B3r2
(9)

∆V lat,e
hybrid(r) = −

1
8
∆V lat,e
Σ+g
(r), (10)

to the Πu and Σ−u data points from all five ensembles with r ≥ 2 a. VΠu
(r) and VΣ−u (r) are

parameterizations of the Πu and Σ−u hybrid static potentials consistent with and motivated by
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Figure 1: Improved lattice data points (7) and (11) together with the parameteriza-
tions (5) and (9) for the ordinary static potential and the Πu and Σ−u hybrid static
potentials.
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the pNRQCD prediction at small r [2,35]. As before, C e denote the a-dependent self energies
and ∆V lat,e

hybrid(r) lattice discretization errors at tree-level of perturbation theory. Moreover,

A′e2,Λεη
a2 represent the leading order lattice discretization errors in the difference to the ordinary

static potential, which turned out to be sizable.
In analogy to Eq. (7), the resulting fit parameters allow to define data points, with the

self-energy subtracted and discretization errors removed,

Ṽ e
Λεη
(r) = V e

Λεη
(r)− C e −∆V lat,e

hybrid(r)− A′e2,Λεη
a2. (11)

These improved lattice data points together with the parameterizations (9) are shown in Fig-
ure 1.

5 Summary and conclusions

We used lattice gauge theory to compute theΠu andΣ−u hybrid static potentials at four different
lattice spacings, where the smallest lattice spacing a = 0.040 fm is significantly smaller than
lattice spacings used in the majority of existing computations. This allows us to provide lattice
data points for quark-antiquark separations as small as 0.08 fm. By carrying out suitable fits
we subtracted the ensemble dependent self energies and removed lattice discretization errors
to a large extent. Moreover, various systematic errors were checked and excluded.

The resulting parameterizations (5) and (9) differ from those obtained in our earlier
work [4], where only one ensemble with rather coarse lattice spacing was available. A simple
single channel Born-Oppenheimer prediction of heavy hybrid meson masses led to discrepan-
cies between 10MeV and 45 MeV (see Ref. [36]). Thus, it is expected that the high quality
lattice data discussed in this work or, equivalently, the resulting parameterizations (5) and
(9) will lead to a significant gain in precision, when used in recently developed more so-
phisticated Born-Oppenheimer approaches, which include coupled channels and heavy spin
corrections [2,3,5,6].

We note that the bare lattice data points, the improved lattice data points (7) and (11) and
the parameterizations (5) and (9) are provided in detail in Ref. [36].
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Abstract

We discuss the central exclusive production of f1 mesons in proton-proton collisions.
The diffractive pomeron-pomeron fusion process within the tensor-pomeron approach
is considered. Two ways to construct the pomeron-pomeron- f1 coupling are discussed.
The theoretical calculation of coupling constants is a challenging problem of nonpertur-
bative QCD. We adjust the parameters of the model to the WA102 experimental data.
The total cross section and differential distributions are presented. Predictions for LHC
experiments are given. Detailed analysis of the distributions in φpp the azimuthal angle
between the transverse momenta of the outgoing protons can help to check different
models and to study real pattern of the absorption effects.
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1 Introduction

In this contribution we discuss central exclusive production (CEP) of axial-vector f1 (J PC = 1++)
mesons in proton-proton collisions

p(pa,λa) + p(pb,λb)→ p(p1,λ1) + f1(k,λ) + p(p2,λ2) , (1)

where pa,b, p1,2 and λa,b, λ1,2 = ±1/2 denote the four-momenta and helicities of the protons,
and k and λ = 0,±1 denote the four-momentum and helicity of the f1 meson, respectively.
Here f1 stands for one of the axial-vector mesons with J PC = 1++, i.e. f1(1285) or f1(1420).
This presentation summarises some of the key results of [1] to which we refer the reader for
further details. CEP of f1(1285) and f1(1420)mesons was measured by WA102 Collaboration
[2–4]. Their internal structure (qq̄, tetraquark, KK̄ molecule) remains to be established. At
high energies the double-pomeron exchange mechanism (Figure 1) is expected to be dominant.
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Figure 1: Diagrams for the reaction (1) with double-P exchange and the PP f1 vertex.

The pomeron (P) is essential object for understanding diffractive phenomena. Within QCD is
a color singlet, predominantly gluonic object, thus the CEP of mesons has long been regarded
as a potential source of glueballs.

For soft reactions, calculations of the pomeron from first principle are currently not pos-
sible, and one has to retreat to Regge models to describe soft high-energy diffractive scatter-
ing. Until recently, the spin structure of the pomeron has not received much attention. It is
well known that the pomeron carries vacuum quantum numbers with regard to charge, color,
isospin and charge conjugation. But what about spin? It has been shown some time ago that
the charge-conjugation C = +1 pomeron can be regarded as a coherent sum of elementary
spin 2+ 4+ 6+ . . . exchanges [5]. The tensor-pomeron model introduced in [6] assumes this
property. We treat the reaction (1) in this model, in which the pomeron exchange is described
as effective rank 2 symmetric tensor exchange. This approach has a good basis from nonper-
turbative QCD using functional integral techniques [5]. A tensor character of the pomeron is
also preferred in holographic QCD models [7–10].

The tensor-pomeron model was applied to two-body hadronic reactions [6, 11, 12], to
photoproduction of π+π− pairs [13], to low-x deep inelastic lepton-nucleon scattering and
photoproduction [14], and especially to CEP reactions

p+ p→ p+ X + p ,

X = η, η′, f0, f1, f2, π+π−, K+K−, pp̄, 4π, 4K , ρ0, φ, φφ, K∗0K̄∗0 ; (2)

see e.g. [15–21]. In this model the C = −1 odderon [22] is described as effective vector
exchange. Exclusive reactions suitable for studies of the odderon exchange at high energies
were discussed in [13, 19, 20]. Conceptually, vector-type couplings of the pomeron turn out
to be rather questionable. For example, a vector pomeron implies that the total cross sections
for pp and pp̄ scattering at high energy have opposite sign [11]. But, of course, quantum
field theory forbids negative cross sections. A further argument against a vector pomeron
was shown in [14], mainly it does not give any contribution to photoproduction data. One
may also ask about the possibility of a scalar coupling of the pomeron to external particles.
While possible from the point of view of QFT, such a coupling is experimentally disfavoured.
In [11] it was shown that STAR data [23] on polarised elastic pp scattering are compatible with
the tensor-pomeron ansatz but clearly rule out a scalar character of the soft pomeron what its
coupling concerns. Also some historical remarks on different views of the pomeron were made
in [11]. In the light of our discussion here we cannot support the conclusions of [24,25] that
the pomeron behaves (couples) like vector current.

The theoretical calculation of PP f1 coupling is a challenging problem of nonperturbative
QCD. We argue that the pomeron couplings play an important role, and that they should
be treated as tensor couplings. Using our model we perform a fit to the available WA102
data [2, 4] and we analyse whether our study could shed light on the PP f1 couplings. In
the future the model parameters (PP f1 coupling constants, cutoff parameters in form factors)
could be adjusted by comparison with precise experimental data from both RHIC and the LHC.
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The π+π−π+π− channel seems well suited to measure the f1(1285) CEP at high energies. For
a preliminary data of the reaction pp → pp2π+2π− measured at LHC@13TeV by the ATLAS
Collaboration see [26].

2 Sketch of the formalism

2.1 The amplitude for the pp→ pp f1 reaction

The Born-level amplitude for the reaction (1) via pomeron-pomeron fusion (Figure 1) can be
written as

MBorn
λaλb→λ1λ2λ

= (−i) (εµ(λ))∗ ū(p1,λ1)iΓ
(Ppp)
µ1ν1

(p1, pa)u(pa,λa)

×i∆(P)µ1ν1,α1β1(s1, t1) iΓ
(PP f1)
α1β1,α2β2,µ(q1, q2) i∆

(P)α2β2,µ2ν2(s2, t2)

×ū(p2,λ2)iΓ
(Ppp)
µ2ν2

(p2, pb)u(pb,λb) . (3)

The relevant kinematic quantities are

s = (pa + pb)
2, s1 = (pa + q2)

2 = (p1 + k)2, s2 = (pb + q1)
2 = (p2 + k)2,

k = q1 + q2, q1 = pa − p1, q2 = pb − p2, t1 = q2
1, t2 = q2

2, m2
f1
= k2 . (4)

In (3) εµ(λ) is the polarisation vector of the f1 meson, ∆(P) and Γ (Ppp) denote the effective
propagator and proton vertex function, respectively, for the tensor-pomeron exchange [6].
The new quantity, to be studied here, is the PP f1 coupling (vertex function). In our analysis
we should also include absorption effects to the Born amplitude. Then the full amplitude is

Mpp→pp f1 =MBorn
pp→pp f1

+Mpp−rescattering
pp→pp f1

. (5)

The amplitude including the pp-rescattering corrections can be written as (within the one-
channel-eikonal approach)

Mpp−rescattering
pp→pp f1

(s, pt ,1, pt ,2) =
i

8π2s

∫

d2kt MBorn
pp→pp f1

(s, p̃t ,1, p̃t ,2)Mpp→pp(s, t) , (6)

where pt ,1 and pt ,2 are the transverse components of the momenta of the outgoing protons
and kt is the transverse momentum carried around the pomeron loop. MBorn

pp→pp f1
is the Born

amplitude given by (3) with p̃t ,1 = pt ,1 − kt and p̃t ,2 = pt ,2 + kt . Mpp→pp is the elastic pp
scattering amplitude for large s and with the momentum transfer t = −k2

t . In practice we
work with the amplitudes in the high-energy approximation, i.e. assuming s-channel helicity
conservation in the pomeron-proton vertex.

2.2 The pomeron-pomeron- f1 coupling

We follow two strategies for constructing the PP f1 coupling and the vertex function.
(1) Phenomenological approach. First we consider a fictitious process: the fusion of two

“real spin-2 pomerons” (or tensor glueballs) of mass m giving an f1 meson of J PC = 1++. We
make an angular momentum analysis of this reaction in its c.m. system, the rest system of the
f1 meson: P (m,ε1)+P (m,ε2)→ f1 (m f1 ,ε). The spin 2 of these “pomerons” can be combined
to a total spin S (0 ¶ S ¶ 4) and this must be combined with the orbital angular momentum
l to give the J PC = 1++ values of the f1. There are two possibilities, (l, S) = (2, 2) and (4, 4)
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(see Appendix A of [15]), and corresponding coupling Lagrangians PP f1 are:

L(2,2)
PP f1
=

g ′PP f1

32 M2
0

�

Pκλ
↔
∂ µ
↔
∂ ν Pρσ

��

∂αUβ − ∂βUα
�

Γ (8)κλ,ρσ,µν,αβ , (7)

L(4,4)
PP f1
=

g ′′PP f1

24 · 32 ·M4
0

�

Pκλ
↔
∂ µ1

↔
∂ µ2

↔
∂ µ3

↔
∂ µ4
Pρσ

��

∂αUβ − ∂βUα
�

Γ (10)κλ,ρσ,µ1µ2µ3µ4,αβ , (8)

where M0 ≡ 1 GeV (introduced for dimensional reasons), g ′PP f1
and g ′′PP f1

are dimensionless

coupling constants, Pκλ is the P effective field, Uα is the f1 field, and Γ (8), Γ (10) are known
tensor functions [1].

(2) Our second approach uses holographic QCD, in particular the Sakai-Sugimoto model
[27–29] where the PP f1 coupling is determined by the mixed axial-gravitational anomaly of
QCD. In this approach (see Appendix B of [1])

LCS = c′ Uα εαβγδ P
µ

β
∂δPγµ +c′′ Uα εαβγδ

�

∂νP
µ

β

��

∂δ∂µPνγ − ∂δ∂
νPγµ

�

(9)

with c′ a dimensionless constant and c′′ a constant of dimension GeV−2. For the CEP reaction,
we use the PP f1 vertex derived from (9) supplemented by suitable form factor (11).

For our fictitious reaction (P+ P → f1) there is strict equivalence LCS
Ò= L(2,2) + L(4,4) if

the couplings satisfy the relations

g ′PP f1
= −c′

M2
0

k2
−c′′

M2
0 (k

2 − 2m2)

2k2
, g ′′PP f1

= c′′
2M4

0

k2
. (10)

For our CEP reaction (1) we are dealing with pomerons of mass squared t1, t2 < 0 and, in
general, t1 6= t2. Then, the equivalence relation for small values |t1| and |t2| will still be
approximately true and we confirm this by explicit numerical studies (see Fig. 11 of [1]).

For realistic applications we should multiply the “bare” vertex Γ (PP f1)(q1, q2) as derived
from a corresponding coupling Lagrangian by a form factor F̃ (PP f1)(t1, t2, k2) which we take
in the factorised ansatz

F̃ (PP f1)(t1, t2, m2
f1
) = exp

�

t1 + t2

Λ2
E

�

, (11)

where the cutoff constant ΛE should be adjusted to experimental data.
As discussed in Appendix B of [1], the prediction for c′′/c′ obtained in the Sakai-Sugimoto

model is
c′′/c′ = −(6.25 · · ·2.44) GeV−2 (12)

for MKK = (949 · · ·1532) MeV. Usually [27] MKK is fixed by matching the mass of the lowest
vector meson to that of the physical ρ meson, leading to MKK = 949MeV. However, this choice
leads to a tensor glueball mass which is too low, MT ≈ 1.5 GeV. The pomeron trajectory
[αP(t) = αP(0) + α′P t, αP(0) = 1.0808, α′P = 0.25 GeV−2] corresponds to MT ≈ 1.9 GeV,
whereas lattice predictions correspond to MT ¦ 2.4 GeV.

3 Results

3.1 Comparison with the WA102 data

The WA102 collaboration obtained for the pp → pp f1(1285) reaction the total cross section
of σexp = (6919±886) nb at

p
s = 29.1 GeV and for a cut on the central system |xF |¶ 0.2 [2].
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The WA102 collaboration also gave distributions in t and in φpp (0¶ φpp ¶ π), the azimuthal
angle between the transverse momenta of the two outgoing protons. We are assuming that
the reaction (1) is dominated by pomeron exchange already at

p
s = 29.1 GeV. In [4] an

interesting behaviour of the φpp distribution for f1(1285) meson production for two different
values of |t1 − t2| was presented. In Figure 2 we show some of our results [1] which include
absorptive corrections; see Eqs. (5), (6). We show the φpp distribution of events from [4] for
|t1− t2|¶ 0.2 GeV2 (left panels) and |t1− t2|¾ 0.4 GeV2 (right panels). From the top panels,
it seems that the (l, S) = (4,4) term (8) best reproduces the shape of the WA102 data. The
absorption effects play a significant role there. In the bottom panels of Fig. 2 we examine
the combination of two PP f1 couplings c′ and c′′ calculated with the vertex (9). The ratio
(12) agrees with the fit c′′/c′ = −1.0 GeV−2 as far as the sign of this ratio is concerned,
but not in its magnitude. This could indicate that the Sakai-Sugimoto model needs a more
complicated form of reggeization of the tensor glueball propagator as indeed discussed in [29]
in the context of CEP of η and η′ mesons. It could also be an indication of the importance of
secondary contributions with reggeon exchanges, i.e. RR-, RP-, and PR-fusion processes.
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Figure 2: The φpp distributions for f1(1285) meson production at
p

s = 29.1 GeV,
|xF,M |¶ 0.2, and for |t1− t2|¶ 0.2 GeV2 (left panels) and |t1− t2|¾ 0.4 GeV2 (right
panels). The WA102 experimental data points are from Fig. 3 of [4]. The theoretical
results have been normalised to the mean value of the number of events. The results
for ΛE = 0.7 GeV a form-factor parameter (11) are shown.

We get a reasonable description of the WA102 data with ΛE = 0.7 GeV and the following
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possibilities:

(l, S) = (2,2) term only : g ′PP f1
= 4.89 , g ′′PP f1

= 0; (13)

(l, S) = (4,4) term only : g ′PP f1
= 0 , g ′′PP f1

= 10.31; (14)

CS terms : c′ = −8.88 , c′′/c′ = −1.0 GeV−2 . (15)

Now we can use our equivalence relation (10) in order to see to which (l, S) couplings (15)
corresponds. Replacing in (10) m2 by t1 = t2 = −0.1 GeV2 and k2 by m2

f1
= (1282 MeV)2 we

get from (15)
g ′PP f1

= 0.42 , g ′′PP f1
= 10.81 . (16)

Thus, the CS couplings of (15) correspond to a nearly pure (l, S) = (4, 4) coupling (14).
In Figure 3 we show the results for the φpp distributions for different cuts on |t1 − t2|

without and with the absorption effects included in the calculations. The results for the two
(l, S) couplings are shown. The absorption effects lead to a large reduction of the cross section.
We obtain the ratio of full and Born cross sections, the survival factor, as 〈S2〉= 0.5–0.7. Note
that 〈S2〉 depends on the kinematics. We can see a large damping of the cross section in the
region of φpp ∼ π, especially for |t1 − t2| ¾ 0.4 GeV2. We notice that our results for the
(4, 4) term have similar shapes as those presented in [30] [see Figs. 3(c) and 3(d)] where the
authors also included the absorption corrections.
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Figure 3: The φpp distributions for f1(1285) meson production at
p

s = 29.1 GeV,
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The long-dashed black lines represent the Born results and the solid black lines cor-
respond to the results with the absorption effects included. The dotted red lines
represent the ratio of full and Born cross sections on the scale indicated by the red
numbers on the r.h.s. of the panels.
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Having fixed the parameters of the model in this way we will give predictions for the LHC
experiments. Because of the possible influence of nonleading exchanges at low energies, these
predictions for cross sections at high energies should be regarded rather as an upper limit.
The secondary reggeon exchanges should give small contributions at high energies and in the
midrapidity region. As discussed in Appendix D of [1]we expect that they should overestimate
the cross sections by not more than a factor of 4.

3.2 Predictions for the LHC experiments

Now we wish to show (selected) results for the pp→ pp f1(1285) reaction for the LHC; see [1]
for many more results. In Figure 4 we show our predictions for the distributions of φpp and
the transverse momentum of the f1(1285) for

p
s = 13 TeV, |yM| < 2.5, and for the cut on

the leading protons of 0.17 GeV < |py,p| < 0.50 GeV. The results for the (l, S) = (2,2) term
(7), the (4,4) term (8), and for the c′ plus c′′ terms calculated with (9) for (12) obtained
in the Sakai-Sugimoto model (see Appendix B of [1]) are shown. For comparison, the results
for our fit to WA102 data (c′′/c′ = −1.0 GeV−2) are also presented. The contribution with
c′′/c′ = −6.25 GeV2 gives a significantly different shape. This could be tested in experiments,
such as ATLAS-ALFA [26], when both protons are measured. We obtain the ratio of full and
Born cross sections as 〈S2〉 ' 0.3 for

p
s = 13 TeV.

The four-pion decay channel seems well suited to measure the CEP of the f1(1285) at
the LHC [26]. We predict a large cross section for the exclusive axial-vector f1(1285)→ 4π
production compared to the CEP of the tensor f2(1270)→ 4π [16,18]. The 4π continuum for
the pp→ pp4π reaction was studied in [17,31].
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Figure 4: The differential cross sections for the f1(1285) production atp
s = 13 TeV, |yM| < 2.5, and with cuts on momenta of outgoing protons

(0.17 GeV < |py,p|< 0.50 GeV). The results for (l, S) and (c′,c′′) terms are shown.

4 Conclusion

• The calculations for the pp→ pp f1(1285) reaction have been performed in the tensor-
pomeron approach [6]. We have discussed in detail the forms of the PP f1 coupling.
Detailed tests of the Sakai-Sugimoto model are possible.

• We obtain a good description of the WA102 data at
p

s = 29.1 GeV [2,4] assuming that
the pp→ pp f1(1285) reaction is dominated by pomeron-pomeron fusion.
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• We obtain a large cross section for CEP of the f1(1285) of σ ∼= 6− 40 µb for the ALICE,
ATLAS-ALFA, CMS, and LHCb experiments, depending on the assumed cuts (see Table III
of [1]). Predictions for the STAR experiments at RHIC are also given in [1]. In all cases
the absorption effects were included.

• Experimental studies of single meson CEP reactions will allow to extract many PPM
coupling parameters. The holographic methods applied to QCD already give some pre-
dictions [1,29].

• Detailed analysis of the distributions in φpp, the azimuthal angle between the transverse
momenta of the outgoing protons, can help to solve several important problems for soft
processes, to check/study the real pattern of the interaction (absorption models), to
understand the difference in the dynamics of production of qq̄ mesons and glueballs
(or more accurately, states which are believed to have a large glueball component), to
disentangle f1- and η-type resonances contributing to the same final channel.

• Such studies could be extended, for instance by the COMPASS experiment where pre-
sumably one could study the influence of reggeon-pomeron and reggeon-reggeon fusion
terms. Future experiments available at the GSI-FAIR with HADES and PANDA should
provide new information about the ρρ f1 and ωω f1 couplings [32].
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Abstract

Three hard problems! In this talk I investigate the long-distance properties of quan-
tum chromodynamics in the presence of a topological θ term. This is done on the lat-
tice, using the gradient flow to isolate the long-distance modes in the functional integral
measure and tracing it over successive length scales. It turns out that the color fields
produced by quarks and gluons are screened, and confinement is lost, for vacuum an-
gles |θ |> 0, thus providing a natural solution of the strong CP problem. This solution is
compatible with recent lattice calculations of the electric dipole moment of the neutron,
while it excludes the axion extension of the Standard Model.
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1 Introduction

QCD decribes the strong interactions remarkably well, from the smallest distances probed so
far to hadronic scales, where quarks and gluons confine to hadrons. Yet it faces a problem.
The theory allows for a CP-violating term Sθ in the action. In Euclidean space-time it reads

S = SQCD + Sθ : Sθ = i θ Q , Q =
1

32π2

∫

d4 x F a
µν F̃ a

µν ∈ Z ,

where Q is the toplogical charge, and θ is an arbitrary phase with values −π < θ ≤ π. Thus,
there is the possibility of new sources of CP violation, which might shed light on the baryon
asymmetry of the Universe. A nonvanishing value of θ would result in an electric dipole
moment dn of the neutron. The current experimental upper limit on the dipole moment is
|dn|< 1.8×10−13e fm [1], which suggests that θ is anomalously small. This feature is referred
to as the strong CP problem, which is considered as one of the major unsolved problems in the
elementary particles field.

The prevailing paradigm is that QCD is in a single confinement phase for any value of
|θ | < π. The popular Peccei-Quinn solution [2] of the strong CP problem, for example, is
realized by the shift symmetry θ → θ +δ, trading the CP violating θ term Sθ for the hitherto
undetected axion.
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However, it is known from the case of the massive Schwinger model [3] that a θ term may
change the phase of the system. Callan, Dashen and Gross [4] have claimed that a similar phe-
nomenon will occur in QCD. The claim is that the color fields produced by quarks and gluons
will be screened by instantons for |θ | > 0. ’t Hooft [5] has argued that the relevant degrees
of freedoom responsible for confinement are color-magnetic monopoles, realized by partial
gauge fixing [6], which leaves the maximal abelian subgroup U(1)×U(1) ⊂ SU(3) unbroken.
Quarks and gluons have color-electric charges with respect to the U(1) subgroups. Confine-
ment occurs when the monopoles condense in the vacuum, by analogy to superconductivity.
This has first been verified on the lattice by Kronfeld, Laursen, Schierholz and Wiese [7]. Due
to the joint presence of gluons and monopoles a rich phase structure is expected to emerge as
a function of θ . In Fig. 1 I show the charge lattice of quarks, gluons and monopoles for θ = 0
and θ > 0. For θ > 0 the monopoles acquire a color-electric charge [8] proportional to θ . It
is then expected that the color fields of quarks and gluons will be screened by forming bound
states with the monopoles, and confinement is no longer guaranteed.



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

e

m

•

• •× ×

• gluon × quark • monopole

............
.............

...............
...................

........................................
.....

.......................................... .........
........
........
......



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......

e

m

θ

•

• •× ×

Figure 1: The color-electric – color-magnetic charge lattice for vacuum angle θ = 0
and θ > 0, with regard to the gauge group U(1). Gluons have color-electric charge
±1, quarks have charge ±1/2, and monopoles have color-magnetic charge ±1 in
Dirac units.

In this talk I will present recent lattice results [9,10] on the long-distance properties of the
theory, with and without the θ term. In particular, I will show that the color fields produced
by quarks and gluons are indeed screened for vacuum angles |θ |> 0, thus providing a natural
solution of the strong CP problem. This is compatible with recent lattice results for the electric
dipole moment of the neutron. The axion extension of the Standard Model is not a valid
solution.

2 θ = 0

The core of the problem is to understand the impact of the θ term on the QCD vacuum,
and on the confinement mechanism in particular. A crucial step in solving this problem is
to isolate the relevant degrees of freedom. This is achieved by a renormalization group (RG)
transformation, passing from the short-distance weakly coupled regime, the lattice, to the
long-distance strongly coupled confinement regime. The gradient flow [11, 12] provides a
powerful tool for scale setting, with no need for costly ensemble matching. It is a particular
realization of the coarse-graining step of momentum space RG transformations [13–16], and
as such can be used to study RG transformations directly.

The gradient flow describes the evolution of fields and physical quantities as a function of
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flow time t. The flow of SU(3) gauge fields is defined by the diffusion equation [12]

∂ t Bµ(t, x) = Dν Gµν(t, x) , Gµν = ∂µ Bν − ∂ν Bµ + [Bµ, Bν] , Dµ ·= ∂µ ·+[Bµ, ·] , (1)

where Bµ(t, x) = B a
µ (t, x) T a, and Bµ(t = 0, x) = Aµ(x) is the original gauge field of QCD.

It thus defines a sequence of gauge fields parameterized by t. The renormalization scale µ is
set by the flow time, µ = 1/

p
8t for t � 0. The energy density at flow time t is defined by

E(t, x) = 1/2 Tr Gµν(t, x)Gµν(t, x). The expectation value of E(t, x) defines a renormalized
coupling

g2
GF (µ) =

16π2

3
t2〈E(t)〉

�

�

t=1/8µ2 (2)

at flow time t in the gradient flow scheme. Varying µ, the coupling satisfies standard (although
scheme dependent) RG equations.

We may restrict our investigations to the SU(3) Yang-Mills theory. If the strong CP problem
is resolved in the Yang-Mills theory, then it is expected that it is also resolved in QCD. We use
the plaquette action to generate representative ensembles of fundamental gauge fields. For
any such gauge field the flow equation (1) is integrated to the requested flow time t. The
simulations are done for β = 6/g2 = 6.0 on 164, 244 and 324 lattices. The lattice spacing
at this value of β is a = 0.082(2) fm. Our current ensembles include 4000 configurations on
the 164 lattice and 5000 configurations on the 244 and 324 lattices each. The calculations
follow [9,10].
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Figure 2: The gradient flow coupling αGF (µ)/π on the 324 lattice as a function of
t/a2 = 1/8a2µ2, together with a linear fit.

The long-distance properties of the theory are reflected in the parameters of the action,
such as the running coupling, at infrared scales. In Fig. 2 I show the gradient flow run-
ning coupling αGF (µ) = g2

GF (µ)/4π as a function of flow time. The data continue linearly
far beyond t/a2 = 100, corresponding to µ ≈ 100 MeV, so that we may assume a strictly
linear behavior of αGF (µ) in t = 1/8µ2. This leads to the gradient flow beta function
∂ αGF (µ)/∂ lnµ ≡ βGF (αGF ) = −2αGF (µ), which has the solution αGF (µ) = Λ2

GF/µ
2 for

µ� 1 GeV [10]. To make contact with phenomenology, it is desirable to transform the gradi-
ent flow coupling αGF to a common scheme. A preferred scheme in the Yang-Mills theory is
the V scheme [17]. In this scheme αV (µ) = Λ2

V/µ
2 with ΛV = 0.854ΛGF .

011.3

https://scipost.org
https://scipost.org/SciPostPhysProc.6.011


SciPost Phys. Proc. 6, 011 (2022)

The linear growth of αV (µ) with 1/µ2, which is commonly dubbed infrared slavery, ef-
fectively describes many low-energy phenomena of the theory. So, for example, the static
quark-antiquark potential, which can be described by the exchange of a single dressed gluon,
V (q) = −4

3 αV (q)/q2. A popular example is the Richardson potential [18], which reproduces
the spectroscopy of heavy quark systems, like charmonium and bottomonium, very well. The
Fourier transformation of V (q) to configuration space gives

V (r) = −
1

(2π)3

∫

d3q ei qr 4
3
αV (q)
q2 + i0

=
r�1/ΛV

σ r , (3)

where σ, the string tension, is given by σ = 2
3 Λ

2
V . From a fit of ΛV to the data in Fig. 2 we

obtain
p
σ = 445(19)MeV, which is exactly what we expect from Regge phenomenology.

It is interesting to compare the nonperturbative beta function with the perturbative one
known up to four [19] and twenty loops [20]. In Fig. 3 the various beta functions are plot-
ted in the qq̄ scheme. It shows that the perturbative beta function gradually approaches the
nonperturbative beta function with increasing order.
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Figure 3: The beta function in the qq̄ scheme with Λqq̄ = 0.655ΛV .

In the following we will speak of confinement if and only if the running coupling extends
linearly to infinity.

3 θ 6= 0

A key point is that with increasing flow time the initial gauge field ensemble splits into ef-
fectively disconnected topological sectors of charge Q. This will be the case for ever smaller
flow times as the lattice spacing is reduced [12]. We distinguish the topological sectors by the
affix Q. In Fig. 4 I show the energy density in the individual topological sectors, 〈E(Q, t)〉,
normalized to one for a single classical instanton.

If the general expectation is correct, and the color fields are screened for |θ |> 0, we should
find, in the first place, that the running coupling constant gets screened at long distances.
The transformation of αV (Q,µ) from the topological sectors of charge Q to the θ vacuum is
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Figure 4: The action V 〈E(Q, t)〉/8π2 according to |Q| as a function of flow time on
the 324 lattice for charges ranging from Q = 0 (bottom) to |Q|= 22 (top). The solid
line represents the ensemble average.

achieved by the discrete Fourier transform

αV (θ ,µ) =
1

Z(θ )

∑

Q

e i θ Q P(Q) αV (Q,µ) , Z(θ ) =
∑

Q

e i θ Q P(Q) , (4)

where P(Q) is the topological charge distribution at θ = 0 with
∑

Q P(Q) = 1. In Fig. 5 I
show αV (θ ,µ) on the 164 and the 324 lattice. The left figure shows some finite size effects
for t/a2 ¦ 50. The ‘smoothing range’

p
8t should not be taken larger than the linear extent

L of the lattice. The effect of screening depends on the scale µ, which specifies the distance
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Figure 5: The running coupling αV (θ ,µ) as a function of θ on the 164 (left) and
the 324 lattice (right) for flow times ranging from t/a2 = 10 (bottom) to 100 (top).
Note that αV ' 0.729αGF .
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at which the charge is probed, and the angle θ . At large distances (t → ∞) the charge is
screened for |θ | > 0, while at short, perturbative distances the θ term has hardly any effect
on the coupling constant. It follows that confinement is limited to θ = 0.
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✵�✶
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✶

✁
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Figure 6: Flow of π/αV (θ ,µ) for different initial values of θ for t increasing from
top to bottom.

This is an important issue to understand. Let us stay with t’Hooft’s model. The density of
color-electric charge in the vacuum is proportional to θ . Thus, the screening length will be
the longer the smaller |θ | is. The result is that at asymptotic, confining distances the charge
gets totally screened for |θ | > 0, whereas for smaller distances, that is at larger values of µ,
the charge will only get totally screened once the color-electric charge density has reached a
certain level, which requires increasingly larger values of θ .

In [9] we have derived flow equations (see also [21]) for the running coupling αV (θ ,µ).
For small values of θ and π/αV they read ∂ (π/αV )/∂ ln t ' −π/αV+Dθ2, ∂ θ/∂ ln t = −θ/2.
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t/a2 = 60 on the 164 lattice.
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Outside this region the equations become increasingly complex. In Fig. 6 the flow equations
are solved. The figure shows that any initial value of θ eventually renormalizes to zero in
the infrared limit. The flow is similar to that of a scaling model of the integral quantum Hall
effect [22], which has served as a model for strong CP conservation.

Let us now consider hadron observables. By nature they are RG invariant and, according
to our understanding of the gradient flow, should be independent of the flow time. Two such
quantities, which are easily accessible numerically and can be computed with precision, are
the renormalized Polyakov loop susceptibility and the mass gap. The Polyakov loop P describes
the propagation of a single static quark around the periodic lattice. In Fig. 7 I show a scatter
plot of P at flow time t/a2 = 60. We see that for small values of |Q| the Polyakov loop P
rapidly populates the entire theoretically allowed region, while it stays small for larger values
of |Q|. The renormalized Polyakov loop susceptibility [23] reads

χP(θ ) =
〈|P|2〉θ − 〈|P|〉2θ

〈|P|〉2
θ

. (5)

It describes the connected part of the Polyakov loop correlator 〈|P|2〉θ . The transformation
to the θ vacuum follows eq. (4). In Fig. 8 I show χP(θ ) on the 164 and the 324 lattice. As
expected, χP(θ ) is independent of the flow time, and the Polyakov loop P is screened for
|θ |¦ 0.
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Figure 8: The Polyakov loop susceptibility as a function of θ on the 164 (left) and
the 324 lattice (right) for flow times ranging from t/a2 = 10 to 100.

The mass gap can be read off from the connected correlator of the energy density E. Above
the vacuum, E projects onto J PC = 0++ glueball states. The lowest energy state, which we
denote by m0++ , is called the mass gap. The inverse of the mass gap defines the correlation
length, ξ = 1/m0++ , which describes the length scale over that fluctuations are correlated. In
the θ vacuum the glueball correlator reads

〈E2〉θ − 〈E〉2θ =
1
N
∑

t

∑

n>0

|〈θ |E|n〉|2
e−mn t + e−mn(L−t)

2mn
'

1
N |〈θ |E|0

++〉|2
1

m2
0++

, (6)

where 〈E2〉θ =
∑

x 〈E(t, x) E(t, 0)〉θ/V and N = L6/16. In eq. (6) we have assumed that the
correlator is dominated by the lowest glueball state. In Fig. 9 I show 〈E2〉θ − 〈E〉2θ on the 244

lattice. Again, the correlator turns out to be independent of the flow time, and it quickly drops
to zero away from θ = 0. It follows that the correlation length vanishes for |θ |¦ 0. This leads
us to conclude that the theory has no finite mass gap for nonvanishing values of θ .
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Figure 9: The connected glueball correlator on the 244 lattice for various flow times.

How does this result and the result for the Polyakov loop fit together with the running cou-
pling and the loss of confinement for |θ |> 0? As I said before, the screening length decreases
gradually with increasing value of |θ |. For the glueball to dissipate and the Polyakov loop to be
totally screened, the screening length must be smaller than the hadronic radius. On the larger
volume, and for lattice spacing a = 0.082 fm, the Polyakov loop and the energy density appear
to be totally screened for θ ¦ 0.2. This number might decrease with increasing volume and
decreasing lattice spacing. The situation here is very similar to the finite temperature phase
transition.
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Figure 10: The electric dipolemoment of the neutron from Refs. [24], [25], [26]
and [27], from left to right.
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4 EDM

The search for an electric dipole moment (EDM) of the neutron directly from QCD constitutes
a crucial test of our results. In Fig. 10 I show recent lattice results for the dipole moment of the
neutron [24–27]. The results of [24–26] are at or extrapolated to the physical quark masses,
while [27] refers to the SU(3) flavor symmetric point [28], where the dipole moment should
be largest, while it vanishes trivially in the chiral limit. The overall result is compatible with
zero. One might ask how one can find a neutron at finite, albeit small values of θ . Again, this
is possible as long as the screening length is larger than the nucleon radius.

In absence of a nonvanishing dipole moment, no upper limit of |θ | can be drawn from the
experimental bound on dn [1].

5 Axion

In the Peccei-Quinn model [2] the CP violating θ term Sθ in the action is augmented by the
axion interaction

Sθ → Sθ + SAxion =

∫

d4 x
�

1
2

�

∂µφa(x)
�2
+ i
�

θ −
φa(x)

fa

�

q(x)
�

,

∫

d4 x q(x) =Q , (7)

raising the vacuum angle θ to a dynamical variable. Under the anomalous chiral U(1) Peccei-
Quinn transformation

UPQ(1): eiδQ5 |θ 〉 −→ |θ +δ〉 . (8)

It is then expected that QCD induces an effective potential Ueff(θ−φa/ fa), having a stationary
point at θ −φa/ fa = 0, which prompts the field redefinition φa → φa + fa θ . This results in
the shift

θ −→
φa(x)

fa
, (9)

CP violating CP conserving

thus effectively eliminating CP violation in the strong interaction. However, the key point is
that the QCD vacuum is unstable under the Peccei-Quinn transformation (8), which thwarts
the axion conjecture.

6 Conclusion

The gradient flow proved a powerful tool for tracing the evolution of the gauge field over
successive length scales. The novel result is that color fields produced by quarks and gluons
are screened for |θ | > 0 by nonperturbative effects, limiting the vacuum angle to θ = 0 at
macroscopic distances, which rules out any strong CP violation at the hadronic level. This
result does not come as a surprise. A surprise though is that the work of [3–5], for example,
has been ignored for so long. Perhaps, because one did not have the right tools to attack the
problem.

Screening is a gradual process, similar to the finite temperature transition. The screening
length is expected to decrease with increasing value of |θ |. While the color charge is screened
totally at large distances, heavy quark bound states and light hadrons of finite extent will
dissipate into quarks and gluons only once the screening length has become smaller than the
hadronic radius.
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Recent lattice results of the electric dipole moment of the neutron are found to be consistent
with zero within the errorbars, in agreement with our results. However, this is not the end.
The errors are rather large still, and I hope that people are not discouraged to further reduce
the errors.

The nontrivial phase structure of quantum chromodynamics has far-reaching consequences
for anomalous chiral transformations. In the first place that is for the axion extension of the
Standard Model. The Peccei-Quinn solution of the strong CP problem is realized by the shift
symmetry, θ → θ+δ, which is incompatible with the nonperturbative properties of the theory.
Also, no light axion was found [29] in a dedicated lattice simulation of the Peccei-Quinn model.
Rather, the axion mass turned out to be of the order of the η′ mass.
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Abstract

A spectrum of localized excitations of isolated static fermions has been discovered in
several different gauge Higgs theories. In lattice numerical simulations, we show that
the charged elementary particles can have the spectrum of excitations in the Higgs phase
of SU(3) gauge Higgs theory, q = 2 Abelian Higgs theory, Landau-Ginzburg theory, and
in chiral U(1) gauge Higgs theory. Possibly these excited states of the isolated fermions
can be observed in ARPES studies of conventional superconductors. Also, we consider
that similar kinds of excitations could exist in other gauge Higgs theories, such as the
electroweak sector of the Standard Model.
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1 Introduction

Molecules, atoms, nuclei, hadrons are composite systems having a spectrum of excitations, but
what about the charged “elementary” particles? Could quarks and leptons have a spectrum of
excitations?

A charged particle is accompanied by a surrounding gauge field (and possibly other fields)
as a consequence of Gauss’s Law. These surrounding, localized fields could in principle have a
spectrum of excitations. If so, those excitations would look like a mass spectrum of the isolated
elementary particle.

Obviously, such excitation doesn’t happen in pure QED because any energy eigenstate con-
taining a static ± charge pair is just the Coulomb field plus some number of photons. But this
could be different in the gauge Higgs theories.

1.1 Pseudomatter fields

In connection with gauge theories we often ask: are all physical states gauge invariant? The
answer is: not quite. Note that the Gauss law constraint only requires invariance under in-
finitesimal gauge transformations, but this does not exclude certain global transformations.
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As a simple example taken from QED, consider a single static charge at point x in an infinite
volume. The corresponding physical state of lowest energy, first written down by Dirac [1], is

|Ψx〉=ψ
+
(x)ρC(x; A)|Ψ0〉 , ρC(x; A) = exp

�

−i
e

4π

∫

d3z Ai(z)
∂

∂ zi

1
|x− z|

�

. (1)

The state |Ψx〉 satisfies the Gauss Law. However, considering an arbitrary U(1) gauge transfor-
mation, g(x) = eiθ (x), we separate out the zero mode θ (x) = θ0+ θ̃ (x). Then this transforms
the static charge operator as ψ(x) → eiθ (x)ψ(x), but the ρC operator in Eq. (1) transforms
without the zeroth mode ρC(x; A) → eiθ̃ (x)ρC(x; A). Then the operator combining the static
charge operator and the ρC operator together transforms as |Ψx〉 → e−iθ0 |Ψx〉, so |Ψx〉 trans-
forms under the global subgroup of the gauge group. This result reminds us that while Elitzur’s
theorem says that local symmetries cannot break spontaneously, global symmetries can.

We call operators like ρC in Eq. (1) “pseudomatter” fields [2]. These are non-local func-
tionals of the gauge field which transforms like a matter field in the fundamental representa-
tion of the gauge group, except under the global center subgroup of the gauge group. In our
work in the gauge Higgs theory, we create physical states by combining the scalar field and
pseudomatter fields with the static charge operator.

Examples of pseudomatter fields include (i) Any SU(N) gauge transformation gF (x; A) to a
physical gauge F(A) = 0. This can be decomposed into N pseudomatter fields {ρn}, and vice-
versa, via ρa

n(x; A) = g†an
F (x; A) (in fact the operator ρ∗C(x; A) in (1) is the gauge transformation

to Coulomb gauge in an abelian theory). And (ii) any eigenstate ξn(x; U) of the covariant
Laplacian operator, −D2ξn = κnξn, in an SU(N) gauge theory, where

(−D2)ab
xy =

3
∑

k=1

�

2δabδxy − Uab
k (x)δy,x+k̂ − U†ab

k (x− k̂)δy,x−k̂

�

, (2)

is a pseudomatter field.
Pseudomatter fields play an important role in the formulation of excited states of elemen-

tary fermions in gauge Higgs theories. For static quarks in a pure gauge theory there is a tower
of energy eigenstates

Ψn(R) = q(x)Vn(x,y; U)q(y)Ψ0 , (3)

which we attribute to the string excitations. In fact, these excitations have been observed in
computer simulations in [3] and in [4].

A similar spectrum of excitations (metastable due to string breaking) exists in the confine-
ment phase of a gauge Higgs theory. For light quarks, the flux tube forms between the pair of
the quark and antiquarks, and the excited hadronic states lie on linear Regge trajectories. But,
what about in the Higgs phase? Is there a similar tower of metastable states given by

Ψn(R) = qa(x)

�

∑

m

c(n)m ρ
a
m(x)ρ

†b
m (y)

�

qb(y)Ψ0 , (4)

where the {ρm(x)} are pseudo-matter fields? We asked this question in four different models,
first in SU(3) gauge Higgs theory [5], then in q = 2 Abelian gauge Higgs theory [6], in Landau-
Ginzburg effective action for superconductivity [7], and in chiral U(1) gauge Higgs theory
(Smit-Swift formulation) [8]. In those four models, we impose a unimodular constraint
φ∗(x)φ(x) = 1 for simplicity of our calculations. Of course, the four models are different, so
each model has its own special features which must be taken into account.
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1.2 Transfer matrix

Let E1(R) be the lowest energy, above the vacuum energy E0, of all states containing a static
fermion-antifermion pair separated by distance R, and let |Ψ(R)〉 be some arbitrary state of
this kind. Then on general grounds

〈Ψ(R)|T T |Ψ(R)〉 =
∑

n

cne−En(R)T → c1e−E1(R)T as T →∞ . (5)

where T = e−(H−E0)a is the transfer matrix (τ = e−Ha) rescaled by an exponential eE0a of the
vacuum energy E0 (from here on we refer to T , rather than τ as the transfer matrix). But this
is not very useful for finding the energy of the excited states, because all you get is the ground
state in this way.

Alternatively, we may choose some set of states {|Φα(R)〉}, spanning a subspace of the
full Hilbert space with the two static charges. One could then obtain an approximate mass
spectrum by diagonalizing T in the given subspace, as is done in many lattice QCD calculations.
However, this requires using a rather large set containing on the order of hundreds of states.
Obviously, this method is also not practical for our purposes, where generating the required
pseudomatter operators is a computationally intensive process.

As a practical solution for our purposes, we instead generate a small set of states {|Φα(R)〉},
diagonalize either the transfer matrix T or a power of the transfer matrix T p in the small
subspace spanned by these states, and evolve these states in Euclidean time. The idea is that
one or more of the eigenstates |Ψn〉may be orthogonal, or nearly orthogonal, to the true ground
state. If |Ψ〉 is orthogonal to the ground state, then

〈Ψ|T T |Ψ〉 =
∑

n

cne−En(R)T → cex e−Eex (R)T at large T . (6)

However this method is also not guaranteed to work, so we just need to try it to see if it works
or not.

2 Models and Results

2.1 SU(3) gauge Higgs theory

Let ξn denote the eigenstates −D2ξn = κnξn of the lattice Laplacian operator in (2) in SU(3)
gauge Higgs theory. At each quark separation R = |x − y|, we consider the 4-dimensional
subspace of the Hilbert space spanned by three quark-pseudomatter states, and one quark-
scalar state

Φn(R) = [qa(x)ξa
n(x)] × [ξ

†b
n (y)q

b(y)] Ψ0 (n= 1, 2,3)

Φ4(R) = [qa(x)φa(x)] × [φ†b(y)qb(y)] Ψ0 . (7)

For this non-orthogonal basis, we calculate numerically the matrix elements and overlaps,

[T ]αβ(R) = 〈Φα|T |Φβ〉 , [O]αβ (R) = 〈Φα|Φβ〉 . (8)

We obtain the eigenvalues of T in the subspace by solving the generalized eigenvalue problem,

[T ]~υn = λn[O]~υ
(n) and |Ψn(R)〉=

4
∑

i=1

υ
(n)
i |Φi(R)〉 . (9)
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The |Ψn(R)〉 are the linear combinations of the non-orthognal basis states |Φi(R)〉 , and the set of
states |Ψn(R)〉 are the energy eigenstates (i.e. eigenstates of the transfer matrix) of the isolated
static pair only in the restricted subspace. Next, we consider evolving states for Euclidean time
T , and compute

T T
nn(R) = 〈Ψn|T T |Ψn〉= υ

(n)∗
i 〈Φi|T T |Φ j〉υ

(n)
j with En(R, T ) = − log

�

T T
nn(R)

T T−1
nn (R)

�

,(10)

where En(R, T ) is a lattice logarithmic time derivative, and can be understood as the energy
expectation value of the state Ψ

�

R, 1
2(T − 1)

�

= T (T−1)/2Ψ(R) which is obtained by evolving

Ψ(R) by 1
2(T − 1) units of Euclidean time.

In order to compute Eq. (10), we first integrate out the massive (i.e. static) fermion fields,
and this generates a pair of Wilson lines. Then the numerical computation of 〈Φi|T T |Φ j〉 boils
down to calculating the expectation values of products of Wilson lines each terminated by
matter or pseudomatter fields.

There are three possibilities: (i) Ψn(R) is an eigenstate in the full Hilbert space, and
En(R) = E(R, T ) is time independent; (ii)Ψn(R) evolves to the ground state, and En(R, T )→ E1;
(iii) Ψn(R) evolves in Euclidean time to a stable or metastable excited state above the ground
state. Then En(R, T ) converges to a value greater than E1. For our numerical work, we have
computed En(R, T ) in SU(3) gauge theory with a unimodular Higgs field on a 143×32 lattice
volume, with γ = 0.5 and γ = 3.5, in the confinement and Higgs phases respectively. The
action is

S = −
β

3

∑

plaq

ReTr[Uµ(x)Uν(x + µ̂)U
†
µ(x + ν̂)U

†
ν(x)]− γ

∑

x ,µ

Re[φ†(x)Uµ(x)φ(x + bµ)] . (11)

Now let us consider two states in particular,

Φ1(R) = [q
a(x)ξa

1(x)]× [ξ
†b
1 (y)q

b(y)]Ψ0 , Φ4(R) = [q
a(x)φa(x)]× [φ†b(y)qb(y)]Ψ0 (12)

Φ4 is just a pair of color neutral objects, which can be separated to R → ∞ with a finite
cost in energy. The distinction between the Higgs and confinement phases is that in the con-
finement phase the energy of every pseudomatter state (such as Φ1) diverges as R→∞, no
matter which pseudomatter field is used. That is the definition of separation-of-charge (Sc)
confinement [2], which is associated with metastable flux tubes and Regge trajectories. Sc con-
finement disappears in the Higgs phase, where the global center subgroup of the gauge group
is spontaneously broken [9], and this is seen in Fig. 1, with data taken at β = 5.5,γ = 0.5 in
the confinement phase, and β = 5.5,γ= 3.5 in the Higgs phase. We also find that the overlap
〈Φ1|Φ4〉 → 0 at large R in the confinement phase, but is non-zero in the Higgs phase.

We solve the generalized eigenvalue problem (9) in the non-orthogonal basis (7) in the
Higgs phase and determine the eigenstates Ψn(R) of the pair of static fermion and antifermion.
Then we compute the time dependent energy expectation values, En(R, T ), and the overlap of
Ψ1(R),Ψ2(R) after evolution for T = 4− 12 units of Euclidean time. The results are shown in
Fig. 2.
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Figure 1: (a) Energy expectation value of Φ1(R) purple line and Φ4(R) green line in
the confinement phase. (b) Energy expectation value of Φ1(R) purple line and Φ4(R)
green line in the Higgs phase. Figure from [5].
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Figure 2: (a) energy expectation value En(R, T ) in the Higgs phase of SU(3) gauge
Higgs theory; (b) overlap of Ψ1(R),Ψ2(R) after evolution in Euclidean time in the
Higgs phase of SU(3) gauge Higgs theory. Figure from [5].

In Fig. 2a, time evolution of the energy expectation value of Ψ1(R), the ground state, con-
verges to the purple line, and the time evolution of the energy expectation value of Ψ2(R), the
first excited state, converges to yellow line, which is the different energy level from the ground
state for T = 4−12. The energy gap is far smaller than the threshold for vector boson creation.
In Fig. 2b, we see that after some Euclidean time evolution, the ground state Ψ1(R) and the
first excited state Ψ2(R) are orthogonal to each other. These results in Fig. 2 are the clear evi-
dence of existence of a stable localized excited state, which is orthogonal to the ground state,
in the excitation spectrum of the static fermion and antifermion pair in the Higgs phase of the
SU(3) gauge Higgs theory.

2.2 q = 2 Abelian Gauge-Higgs theory

We investigate the localized excited states in q = 2 Abelian gauge Higgs theory with the action,

S = −β
∑

plaq

Re[Uµ(x)Uν(x + µ̂)U
∗
µ(x + ν̂)U

∗
ν(x)]− γ

∑

x ,µ

Re[φ∗(x)U2
µ(x)φ(x + bµ)] . (13)

In this theory, the scalar field has charge q = 2 as do Cooper pairs. Similarly to SU(3) gauge
Higgs theory, we impose a unimodular constraint φ∗(x)φ(x) = 1 for simplicity of our calcu-
lations. This is a relativistic generalization of the Landau-Ginzburg effective model of super-
conductivity.
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In our calculation we make use of the four lowest-lying Laplacian eigenstates ξi and the
Higgs field, defining ζi(x) = ξi(x), i = 1− 4 and ζ5(x) = φ(x). We define

Qα(R) = ψ(x)Vα(x,y; U)ψ(y) and Vα(x,y; U) = ζα(x; U)ζ∗α(y; U) , (14)

and also

[T ]αβ = 〈Φα|e−(H−E0)|Φβ〉= 〈Q†
α(R, 1)Qβ(R, 0)〉 , [O]αβ = 〈Φα|Φβ〉= 〈Q†

α(R, 0)Qβ(R, 0)〉(15)

obtaining the five orthogonal eigenstates of [T ]αβ by solving the generalized eigenvalue prob-
lem (9), with eigenvaluesλn ordered such thatλn decreases with n. Then we consider evolving
the states Ψn in Euclidean time,

Tnn(R, T ) = 〈Ψn|T T |Ψn〉= υ∗(n)α 〈Q
†
α(R, T )Qβ(R, 0)〉υ(n)

β
, (16)

where Latin indices indicate matrix elements with respect to the Ψn rather than the Φα, and
there is a sum over repeated Greek indices. After integrating out the massive fermions, whose
worldlines lie along timelike Wilson lines (denoted P(x, t, T ) which are products of squared
timelike link variables U2

0 (because charge q = 2)), we have

〈Q†
α(R, T )Qβ(R, 0)〉= 〈Tr[V †

α (x,y; U(t + T ))P†(x, t, T )Vβ(x,y; U(t))P(y, t, T )]〉 , (17)

and then use (17) to compute the time dependent matrix elements of the transfer matrix as in
Eq. (16) numerically. On general grounds, Tnn(R, T ) is a sum of exponentials

Tnn(R, T ) = 〈Ψn(R)|e−(H−E0)T |Ψn(R) =
∑

j

|c(n)j (R)|
2e−E j(R)T , (18)

where c(n)j (R) is the overlap of state Ψn(R) with the j-th energy eigenstate of the Abelian Higgs
theory containing a static fermion-antifermion pair at separation R, and E j(R) is the corre-
sponding energy eigenvalue minus the vacuum energy.

For our numerical study, we investigate the Higgs region at β=3 and γ=0.5. We com-
pute the photon mass from the plaquette-plaquette correlator to be 1.57 in lattice units. The
energies En(R) for n = 1,2 are also obtained by fitting the data for Tnn(R, T ) vs. T , at each
R, to an exponential falloff. An example of these fits at R = 6.93 on a 164 lattice with cou-
plings β = 3,γ = 0.5 are shown in Fig. 3a. Fitting through the points at T = 2− 5, we find
E1 = 0.2929(6) and E2(R) = 1.01(1). We repeated the single exponential fitting analysis for
each separation distance R; the data and errors were obtained from ten independent runs,
each of 77,000 sweeps after thermalization, with data taken every 100 sweeps, computing Tnn
from each independent run.
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Figure 3: (a) An exponential fitting example at R = 6.93 on a 164 lattice with cou-
plings β = 3,γ = 0.5. (b) A plot of the energy expectation values En(R) vs. R for
n= 1,2, 3. Figure from [6].
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We also looked for any indication of a second stable excited state by fitting T33(R, T ) to a
sum of exponentials, but of course such an analysis must be treated with caution. With this
caveat, all values of E1, E2, E3 together with the one photon threshold are shown in Fig. 3b.
The yellow line is the one photon threshold energy line which is simply E1+mphoton = 1.86(1)
in lattice units. The most important observation is that E2(R) lies well below this threshold,
which implies that the first excited state of the static fermion-antifermion pair is stable. The
second excited state E3(R) seems to lie above or near the one photon threshold is probably a
combination of the ground state plus a massive photon.

2.3 Effective Landau-Ginzburg model

The effective Landau-Ginzburg model for ordinary superconductivity is a non-relativistic q = 2
Abelian Higgs model of this form:

S = −β
∑

plaq

Re[UUU∗U∗]− γ
∑

x

3
∑

k=1

φ∗(x)U2
k (x)φ(x + k̂)−

γ

υ2

∑

x

φ∗(x)U2
0 (x)φ(x + t̂) ,(19)

where υ∼ 10−2 in natural units, is on the order of the Fermi velocity in a metal, and
β = 1

e2 = 10.9, where e is the electric charge. In the simulations we go to unitary gauge, where
U0(x) ≈ ±1. The aim is to find excitations around pairs of static q = ±1 (e) charges, having
in mind electrons and holes.

Couplings γ,β determine the photon mass, which is the inverse to the penetration depth,
in lattice units. Therefore the penetration depth, at given γ, sets the lattice spacing in physical
units. Unfortunately in this case we found that eigenstates of T in the subspace have energies
which flow, in Euclidean time, to the ground state energy.

To overcome this problem, we instead diagonalize T 2t0 in the basis Φα at each separation
R, so that we compute the transfer matrix elements 〈Ψm|T 2t0 |Ψn〉 = λn(t0)δmn and define
Ψn(t) = T tΨn. Consider evolving Ψ1 by t0 units of Euclidean time, and suppose that after
this time period Ψ1(t0) is approximately the true ground state in the full Hilbert space. It
follows that Ψn>1(t0) is orthogonal to the ground state, because 〈Ψm(t0)|Ψn(t0)〉 ∝ δmn, and
therefore, at large T > 2t0

T22(R, T ) = 〈Ψ2|T T |Ψ2〉= 〈Ψ2(t0)|T T−2t0 |Ψ2(t0)〉 → const× e−Eex T where Eex > E1 . (20)

In Fig. 4a, we show an example of our fitting of the transfer matrix of T11(R, T ) at R= 5.385,
γ = 0.25. We choose 2t0 = 9, and we fit T11 to f1(T ) = a1 exp(−b1T ) + c1 We found c1 6= 0,
and this means that the ground state energy E1 ≈ 0. Note that b1 gives an excited state energy.
Then similarly, we fit the matrix element of T22(R, T ) in the range T > 6 to a single exponential
f2(T ) = a2 exp(−b2T ) as shown in Fig. 4b. The coefficient b2 < b1 gives another excitation
energy.
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Figure 4: (a) An exponential fitting example of the matrix element of T11 at
R = 5.385, γ = 0.25. (b) An exponential fitting example of the matrix element
of T22 at R= 5.385, γ= 0.25.

Our preliminary results (note that this is work in progress) for the excitation spectrum of
the fermion and antifermion pair in effective Landau-Ginzburg model are shown in Fig. 5a.
In the effective Landau-Ginzburg model, we found that the data at R < 4.0 are rather noisy,
with large χ2, and these points are omitted. Note that in Fig. 5a the ground state energy of
the fermion and antifermion pair is zero. Similarly to the previous models, we find that the
first exited state of the static fermion-antifermion pair lies below the one photon threshold,
at least for R > 4. Therefore, once again, the first excited state is stable. The second excited
state, the purple dots right on the threshold in Fig. 5a, is presumably the ground state plus a
massive photon.

Based on these results, we can ask if such excitations could be detected experimentally, e.g.
by ARPES (angle-resolved photoemission spectroscopy)? We don’t yet know, but of course it
would be exciting to observe such excited states in the real superconductors.
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Figure 5: Excitation spectrum of a static fermion and antifermion pair in (a) the
effective Landau-Ginzburg model and (b) a chiral U(1) gauge theory (Figure from
[8]) in a Smit-Swift formulation.

2.4 Chiral gauge theories

There is no known lattice formulation of chiral non-abelian gauge theories with a continuum
limit. In an abelian chiral gauge theory there exists a successful formulation due to Lüscher,
but this formulation involves the use of overlap fermions, and it is challenging to implement
numerically.

In the exploratory work by one of us [8], a simpler option was chosen. For static fermions,
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work instead with a quenched version, at fixed lattice spacing, of the Smit-Swift lattice action,
U(1) gauge group, with oppositely charged right and left-handed fermions.

There are doublers, even with quenched fermions. The idea was to use a Wilson-style
non-local mass term to take the mass of the doublers to infinity in the continuum. However,
the continuum limit doesn’t work because Smit-Swift formulation is not a true chiral gauge
theory. Moreover, the positivity of the transfer matrix is unproven. But at least the non-local
mass term breaks the mass degeneracy with the doublers.

In Fig. 5b, we present the numerical results for the excitation spectrum of static fermion and
antifermion pair. The plot shows excitation energies all together E1, E2, E3 vs. R at β = 3,γ= 1,
together with the one photon threshold. The first excited state energies are well below the one
photon threshold line, and this indicates that the first excited state of the static fermion and
antifermion pair is stable. The energies of the second excited state are above the one photon
threshold line, so the second excited states are probably the combination of the ground state
and massive photons. Once again, our investigation in chiral gauge theory leads to the similar
results of those other models of SU(3) gauge Higgs model, q = 2 Abelian gauge Higgs model,
and Landau-Ginzburg model.

3 Conclusion

In this work, we have shown that the gauge plus Higgs fields surrounding a charged static
fermion have a spectrum of localized excitations, and these cannot be interpreted as just the
ground state plus some propagating massive bosons. This means that charged “elementary”
particles can have a mass spectrum in gauge Higgs theories. This conclusion seems robust
because we see those excitation spectrums in four different models of SU(3) gauge Higgs, q=2
Abelian Higgs, Landau-Ginzburg, and chiral U(1) gauge Higgs models. Perhaps it is possible
to observe those localized excitations in ARPES studies, e.g. in core electron spectra found by
ARPES studies of conventional superconductors above and below the transition temperature.
Finally, we are also interested in extending our investigation to electroweak theory, and looking
for similar kinds of localized excitations of quarks and leptons, and possibly also excitations
of massive gauge bosons.

Funding for this research was provided by the United States Department of Energy under
Grant No. DE-SC0013682.
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Abstract

In this talk we want to discuss the color confinement criterion which guarantees con-
finement of all colored particles including dynamical quarks and gluons. The most well-
known criterion is the Kugo-Ojima color confinement criterion derived in the Lorenz
gauge. However, it was pointed out that the Kugo-Ojima criterion breaks down for the
Maximal Abelian gauge in which quark confinement has been verified according to the
dual superconductivity caused by magnetic monopole condensations. We give the color
confinement criterion based on the restoration of the residual local gauge symmetry
which can be applied to the Abelian and non-Abelian gauge theories as well irrespective
of the compact or non-compact formulation, and enables us to understand confinement
in all the cases. Indeed, the restoration of the residual local gauge symmetry which was
shown by Hata in the Lorenz gauge to be equivalent to the Kugo-Ojima criterion indeed
occurs in the Maximal Abelian gauge for the SU(N) Yang-Mills theory in two-, three-
and four-dimensional Euclidean spacetime once the singular topological configurations
of gauge fields are taken into account. This result indicates that the color confinement
phase is a disordered phase caused by non-trivial topological configurations irrespective
of the gauge choice.

Copyright K.-I. Kondo and N. Fukushima.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 27-01-2022
Accepted 04-05-2022
Published 31-05-2022

Check for
updates

doi:10.21468/SciPostPhysProc.6.013

1 Introduction

Quark confinement is well understood based on the dual superconductor picture [1–3] where
condensation of magnetic monopoles and antimonopoles occurs. For a review, see e.g. [4]
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and [5]. Even if the dual superconductor picture is true, however, it is not an easy task to
apply this picture to various composite particles composed of quarks and/or gluons. In fact,
gluon confinement is still less understood, although there are interesting developments quite
recently, see [6] and reference therein.

In view of these, we recall the color confinement due to Kugo and Ojima (1979) [7–10].
If the Kugo and Ojima (KO) criterion is satisfied, all colored objects cannot be observed. Then
quark confinement and gluon confinement immediately follow as special cases of color con-
finement.

However, the KO criterion was derived only in the Lorenz gauge ∂ µAµ = 0, even if the
issue on the existence of the nilpotent BRST symmetry is put aside for a while.

The KO criterion is written in terms of a specific correlation function called the KO func-
tion which is clearly gauge-dependent and is not directly applied to the other gauge fixing
conditions.

From this point of view, the maximal Abelian (MA) gauge [11] is the best gauge to be
investigated because the dual superconductor picture for quark confinement was intensively
investigated in the MA gauge.

Nevertheless, Suzuki and Shimada (1983) [12] pointed out that the KO criterion cannot be
applied to the MA gauge and the KO criterion is violated in the model for which quark confine-
ment is shown to occur by Polyakov (1977) [13] due to magnetic monopole and antimonopole
condensation. Hata and Niigata (1993) [14] claimed that the MA gauge is an exceptional case
to which the KO color confinement criterion cannot be applied.

We wonder how the color confinement criterion of the KO type is compatible with the dual
superconductor picture for quark confinement.

We reconsider the color confinement criterion of the KO type in the Lorenz gauge and give
an explicit form to be satisfied in the MA gauge within the same framework as the Lorenz gauge
in the manifestly Lorentz covariant operator formalism with the unbroken BRST symmetry
[15].

For this purpose, we make use of the method of Hata (1982) [16] claiming that the KO
criterion is equivalent to the condition for the residual local gauge symmetry to be restored.
The usual gauge fixing condition is sufficient to fix the gauge in the perturbative framework
in the sense that it enables us to perform perturbative calculations. However, it does not
eliminate the gauge degrees of freedom entirely but leaves certain gauge symmetry which is
called the residual local gauge symmetry. The residual local gauge symmetry can in principle
be spontaneously broken. This phenomenon does not contradict the Elitzur theorem [17,18]:
any local gauge symmetry cannot be spontaneously broken, because the Elitzur theorem does
not apply to the residual local gauge symmetries left after the usual gauge fixing. The residual
symmetries can be both dependent and independent on spacetime coordinates.

We show that singular topological gauge field configurations play the role of restoring the
residual local gauge symmetry violated in the MA gauge [15]. This result implies that color
confinement phase is a disordered phase which is realized by non-perturbative effect due to
topological configurations.

As a byproduct, we show that the Abelian U(1) gauge theory in the compact formulation
can confine electric charges even in D = 4 specetime dimensions as discussed long ago by
Polyakov [19] in the phase where topological objects recover the residual local gauge symme-
try.
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2 The residual gauge symmetry in Abelian gauge theory

Consider QED, or any local U(1) gauge-invariant system with the total Lagrangian density

L =Linv +LGF+FP. (1)

Here the gauge-invariant part Linv is invariant under the local gauge transformation:

Aµ(x)→ Aωµ (x) := Aµ(x) + ∂µω(x). (2)

To fix this gauge degrees of freedom, we introduce the Lorenz gauge fixing condition:

∂ µAµ(x) = 0. (3)

Then the gauge-fixing (GF) and the Faddeev-Popov (FP) ghost term is given by

LGF+FP = B∂ µAµ(x) +
1
2
αB2 − i∂ µ c̄∂µc. (4)

However, this gauge-fixing still leaves the invariance under the transformation function ω(x)
linear in xµ:

ω(x) = a+ ερ xρ, (5)

since this is a solution of the equation:

∂ µ∂µω(x) = 0=⇒ ∂ µAωµ (x) = ∂
µAµ(x) + ∂

µ∂µω(x) = 0. (6)

This symmetry is an example of the residual local gauge symmetry.
There are two conserved charges, the usual charge Q and the vector charge Qµ, as gener-

ators of the transformation:

δωAµ(x) := Aωµ (x)− Aµ(x) = [i(aQ+ ερQρ), Aµ(x)] = ∂µω(x) = εµ. (7)

This relation must hold for arbitrary x-independent constants a and εµ, leading to the com-
mutator relations:

[iQ, Aµ(x)] = 0, [iQρ, Aµ(x)] = δ
ρ
µ . (8)

The first equation implies that the usual Q symmetry, i.e., the global gauge symmetry is not
spontaneously broken:

〈0|[iQ, Aµ(x)]|0〉= 0, (9)

while the second equation implies that Qµ symmetry, i.e., the residual local gauge symmetry
is always spontaneously broken:

〈0|[iQρ, Aµ(x)]|0〉= δρµ . (10)

Ferrari and Picasso [20] argued from this observation that photon is understood as the massless
Nambu-Goldstone (NG) vector boson associated with the spontaneous breaking of Qµ symme-
try according to the Nambu-Goldstone theorem. See e.g., [21] for more details. Anyway, the
restoration of the residual local gauge symmetry does not occur in the ordinary Abelian case.
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3 Color confinement and residual local gauge symmetry

First of all, we recall the result of Kugo and Ojima on color confinement.
Proposition 1: [Kugo-Ojima color confinement criterion (1979)] [7–10]Choose the Lorenz

gauge fixing ∂ µAµ = 0. Suppose that the BRST symmetry exists. Let Vphys be the physical
state space with 〈phys|phys〉 ≥ 0 as a subspace of an indefinite metric state space V defined
by the BRST charge operator QB as

Vphys = {|phys〉 ∈ V;QB|phys〉= 0} ⊂ V . (11)

Introduce the function uAB(p2) called the Kugo-Ojima (KO) function defined by

uAB(p2)
�

gµν −
pµpν
p2

�

=

∫

dD x eip(x−y)〈0|T[(DµC )A(x)g(Aν × C̄ )B(y)|0〉. (12)

If the condition called Kugo-Ojima (KO) color confinement criterion is satisfied in the Lorenz
gauge

lim
p2→0

uAB(p2) = −δAB, (13)

then the color charge operator QA is well defined, namely, the color symmetry is not sponta-
neously broken, and QA vanishes for any physical state Φ,Ψ ∈ Vphys,

〈Φ|QA|Ψ〉= 0, Φ,Ψ ∈ Vphys. (14)

The BRST singlets as physical particles are all color singlets, while colored particles belong to
the BRST quartet representation. Therefore, all colored particles cannot be observed and only
color singlet particles can be observed.

Hata [16] investigated the possibility of the restoration of the residual “local gauge sym-
metry” in non-Abelian gauge theories with covariant gauge fixing, which is broken in per-
turbation theory due to the presence of massless gauge bosons even when the global gauge
symmetry is unbroken. Note that “local gauge symmetry” with the quotation marks means
that it is not exactly conserved, but is conserved only in the physical subspace Vphys of the state
vector space V .

Proposition 2: [Hata (1982)] [16] Consider the residual “local gauge symmetry” specified
by ω(x) ∈ su(N) linear in xµ:

ω(x) = TAω
A(x), ωA(x) = εA

ρ xρ, (15)

where εA
ρ is x-independent constant parameters. Then there exists the Noether current

J µω (x) = gJµA(x)xρεA
ρ +F

µρA(x)εA
ρ := J µA

ρ(x)ε
ρA, (16)

which is conserved only in the physical subspace Vphys of the state vector space V:

〈Φ|∂µJ µω (x)|Ψ〉= 0, Φ,Ψ ∈ Vphys, (17)

where JµA(x) is the Noether current associated with the global gauge symmetry which is con-
served in V . Then the Ward-Takahashi (WT) relation holds for the local gauge currentJ µA

ρ(x)
communicating toA B

σ (y):
∫

dD x eip(x−y)∂ x
µ 〈0|T[J

µA
ρ(x)A

B
σ (y)]|0〉= i

�

gρσ −
pρpσ

p2

�

[δAB + uAB(p2)]. (18)
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Thus, if the KO condition in the Lorenz gauge is satisfied

lim
p2→0

uAB(p2) = −δAB, (19)

then the massless “Nambu-Goldstone pole” between J µA
ρ and A B

σ contained in perturbation
theory disappears.
The restoration condition coincides exactly with the Kugo and Ojima color confinement cri-
terion! This means that the residual local gauge symmetry is restored if the KO condition is
satisfied.

We define the restoration of the residual “local gauge symmetry” as the disappearance
of the massless “Nambu-Goldstone pole” from the local gauge current J µA

ρ(x) communi-
cating to the gauge field A B

σ (y) through the WT relation. In this sense, quarks and other
colored particles are shown to be confined in the local gauge symmetry restored phase.

4 Residual gauge symmetry in the Lorenz gauge

The total Lagrangian density is given by

L =Linv +LGF+FP. (20)

The first term Linv is the gauge-invariant part for the gauge field Aµ and the matter field ϕ
given by

Linv = −
1
4
Fµν · Fµν +Lmatter(ϕ, Dµϕ), (21)

with Fµν := ∂µAν − ∂νAµ + gAµ ×Aν = −Fνµ and Dµϕ := ∂µϕ − i gAµϕ.
The second term LGF+FP is the sum of the the gauge-fixing (GF) term and the Faddeev-Popov
(FP) ghost term where the GF term includes the Nakanishi-Lautrup field B(x) which is the
Lagrange multiplier field to incorporate the gauge fixing condition and the FP ghost term
includes the ghost field C and the antighost field C̄ .

For the gauge field and the matter field, we consider the local gauge transformation with
the Lie algebra-valued transformation function ω(x) =ωA(x)TA given by

δωAµ(x) = Dµω(x) := ∂µω(x) + gAµ ×ω(x),
δωϕ(x) = i gω(x)ϕ(x),

δωB(x) = gB(x)×ω(x),
δωC (x) = gC (x)×ω(x),
δωC̄ (x) = gC̄ (x)×ω(x). (22)

Now we proceed to write down the Ward-Takahashi relation to examine the appearance or
disappearance of the massless “Nambu-Goldstone pole”. We consider the condition for the
restoration of the residual local gauge symmetry for a generalω. We focus on the WT relation

∫

dD xeip(x−y)∂ x
µ 〈TJ

µ
ω (x)A

B
λ (y)〉

=i 〈δωA B
λ (y)〉+

∫

dD x eip(x−y) 〈T∂µJ µω (x)A
B
λ (y)〉

=i 〈∂λωB(y) + g(Aλ ×ω)B(y)〉+
∫

dD xeip(x−y) 〈TδωLGF+FP(x)A B
λ (y)〉

=i∂λω
B(y) +

∫

dD xeip(x−y) 〈TδωLGF+FP(x)A B
λ (y)〉 , (23)
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where we have assumed the unbroken Lorentz invariance to use 〈0|Aλ(x)|0〉 = 0 in the final
step. Note that this relation is valid for any choice of the gauge fixing condition.

For the Lorenz gauge ∂µA µ = 0, the GF+FP term is given by

LGF+FP =B · ∂µA µ +
1
2
αB ·B − i∂ µC̄ · DµC = −iδB

h

C̄ ·
�

∂ µAµ +
α

2
B
�i

, (24)

where α is the gauge-fixing parameter. The change under the generalized local gauge trans-
formation is given by α-independent expression:

δωLGF+FP(x) = iδB(DµC̄ (x))A∂ µωA(x). (25)

In the Lorenz gauge, the above WT relation (23) reduces to
∫

dD xeip(x−y)∂ x
µ 〈TJ

µ
ω

A
ν
(x)∂ νωA(x)A B

λ (y)〉

=i∂λω
B(y) +

∫

dD xeip(x−y)∂ µωA(x) 〈T iδB(DµC̄ (x))AA B
λ (y)〉 . (26)

The second term of (26) is rewritten using δB(DµC̄ ) = δB(∂µC̄ + g(Aµ × C̄ ))
= −∂µB + gδB(Aµ × C̄ )

∫

dD xeip(x−y)∂ µωA(x) 〈T iδB(DµC̄ (x))AA B
λ (y)〉

=−
∫

dD xeip(x−y)∂ µωA(x)∂ x
µ i
∂ x
λ

∂ 2
x
δD(x − y)δAB

+ i

∫

dD xeip(x−y)∂ µωA(x)

�

gµλ −
∂ x
µ ∂

x
λ

∂ 2
x

�

uAB(x − y), (27)

where we have used 〈δBF〉 = 0 for any functional F due to the physical state condition, the
exact form of the propagator in the Lorenz gauge

〈0|TA A
µ (x)B

B(y)|0〉= 〈0|T∗(DµC )A(x)iC̄ B(y)|0〉=i
∂ x
µ

∂ 2
x
δD(x − y)δAB, (28)

and the definition of the Kugo-Ojima (KO) function uAB in the configuration space

〈0|T(DµC )A(x)(gAν × C̄ )B(y)|0〉=
�

gµν −
∂ x
µ ∂

x
ν

∂ 2
x

�

uAB(x − y). (29)

Thus, we obtain the general condition in the Lorenz gauge written in the Euclidean form:

lim
p→ 0

∫

dD xeip(x−y)∂µω
A(x)

�

δµλ −
∂ x
µ ∂

x
λ

∂ 2
x

�

�

δD(x − y)δAB + uAB(x − y)
�

= 0 . (30)

This confinement criterion can be applied to the Abelian and non-Abelian gauge theory as well
irrespective of the compact or non-compact formulation, and is able to understand confine-
ment in all the cases.

In the non-compact gauge theory formulated in terms of the Lie-algebra-valued gauge field,
the choice of ωA(x) as the non-compact variable linear in x ,

ωA(x) = const.+ εA
µxµ = const. + non-compact variable, (31)
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is allowed. Indeed, for this choice, the criterion (30) is reduced to

εA
µ lim

p→ 0

�

δµλ −
pµpλ

p2

�

�

δAB + ũAB(p)
�

= 0. (32)

This reproduces the KO condition ũAB(0) = −δAB as first shown by Hata.
For the Abelian gauge theory, the KO function is identically zero uAB(x)≡ 0, i.e., ũAB(0) = 0.

Therefore, the KO condition is not satisfied, which means no confinement in the Abelian gauge
theory.

In the compact gauge theory, however, confinement does occur even in the Abelian gauge
theory, as is well known in the lattice gauge theory. This case is also understood by the above
criterion.

5 Restoration of residual local symmetry in MA gauge

We decompose the Lie-algebra valued quantity to the diagonal Cartan part and the remainig
off-diagonal part, e.g., the gauge fieldAµ =A A

µ TA with the generators TA (A= 1, . . . , N2− 1)
of the Lie algebra su(N) has the decomposition:

Aµ(x) =A A
µ (x)TA = a j

µ(x)H j + Aa
µ(x)Ta, (33)

where H j are the Cartan generators and Ta are the remaining generators of the Lie algebra
su(N). In what follows, the indices j, k,`, . . . label the diagonal components and the indices
a, b, c, . . . label the off-diagonal components. The maximal Abelian (MA) gauge is given by

(Dµ[a]Aµ(x))a := ∂ µAa
µ(x) + g f a jbaµ j(x)Ab

µ(x) = 0. (34)

The MA gauge is a partial gauge which fix the off-diagonal components, but does not fix the
diagonal components. Therefore, we further impose the Lorenz gauge for the diagonal com-
ponents

∂ µa j
µ(x) = 0. (35)

The GF+FP term for the gauge-fixing condition (34) and (35) is given using the BRST trans-
formation as

LGF+FP =− iδB

n

C̄a
�

Dµ[a]Aµ +
α

2
B
�ao

− iδB

�

c̄ j
�

∂ µaµ +
β

2
b
� j�

, (36)

which reads

LGF+FP =− (Dµ[a]baBa)Ab
µ +

α

2
BaBa − i(Dµ[a]ba C̄a)Dµ[a]bcC c

− i g(Dµ[a]ba C̄a) f bcdAc
µCd − i g(Dµ[a]ba C̄a) f bc jAc

µc j

+ i gC̄a f a jb∂µc jAµb + i g2C̄a f a jb f jcdAc
µCdAµb

− ∂ µb ja j
µ +

β

2
b j b j − i∂ µ c̄ j∂µc j − i g∂ µ c̄ j f jabAa

µC b. (37)

The local gauge transformation of the Lagrangian has the following form

δωL = δωLGF+FP = ∂µJ µω = g∂µJ µ ·ω+ [∂νFµν + gJ µ] · ∂µω

= g∂ µJ j
µω

j +
�

∂ ν f j
µν + gJ j

µ

�

∂µω
j + g∂ µJ a

µω
a +

�

∂ νF a
µν + gJ a

µ

�

∂µω
a

= iδB∂µ c̄ j∂ µω j + iδB∂
µ(Dµ[A ]C̄ )aωa + iδB(Dµ[A ]C̄ )a∂ µωa. (38)
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This is BRST exact, showing that the local gauge current J µω is conserved in the physical state
space.
The WT relation in the MA gauge can be calculated in the similar way to the Lorenz gauge
by using (38) as follows. We focus on the diagonal gauge field ak

λ
. Consequently, we obtain

the condition for the restoration of the residual local gauge symmetry for the diagonal gauge
field [15]

lim
p→ 0

∫

dD x eip(x−y)∂ x
µ 〈TJ

µ
ω (x)a

k
λ(y)〉

= lim
p→ 0

i

∫

dD x eip(x−y)∂ µωk(x)(δµλ�D − ∂µ∂λ)�−1
D (x , y) = 0 , (39)

where �−1
D (x , y) denotes the Green function of the Laplacian �D = ∂µ∂µ in the D-dimensional

Euclidean space.
If we choose ω j(x) = ε j

νxν, this indeed reproduces non-vanishing divergent result.
However, this choice must be excluded in the MA gauge, since the maximal torus subgroup
U(1)N−1 for the diagonal components is a compact subgroup of the compact SU(N) group. In
some sense, ω j(x) must be angle variables reflecting the compactness of the gauge group.

In the compact gauge theory formulated in terms of the group-valued gauge field, on the
other hand, we must choose the compact, namely, angle variables for ωA,

ωA(x) = const. + angle variable= const. + compact variable. (40)

For concreteness, we consider the SU(2) case with singular configurations coming from the
angle variables. In what follows, we work in the Euclidean space and use subscripts instead
of the Lorentz indices. As the residual gauge transformation, we take the following exam-
ples which satisfy both the Lorenz gauge condition ∂µA A

µ = 0 and the MA gauge condition

(Dµ[a]Aµ)a = 0 (and ∂ µa j
µ = 0).

• For D = 2, a collection of vortices of Abrikosov-Nielsen-Olesen type (1979) [22]

∂µω
j(x) =

n
∑

s=1

Csε jµν
(x − as)ν
|x − as|2

( j = 3, µ,ν= 1,2) (x , as ∈ R2), (41)

where Cs (s = 1, . . . , n) are arbitrary constants. This type of ω(x) is indeed an angle variable
θ going around a point a = (a1, a2) ∈ R2, because

ω(x) = θ (x) =: arctan
x2 − a2

x1 − a1
=⇒ ∂µω(x) = −εµν

xν − aν
(x1 − a1)2 + (x2 − a2)2

(µ= 1,2). (42)

This is a topological configuration which is classified by the winding number of the map from
the circle in the space to the circle in the target space: S1 → U(1) ∼= S1, i.e., by the first
Homotopy group π1(S1) = Z.
• For D = 3, a collection of magnetic monopoles of the Wu-Yang type (1975) [23–25], which
corresponds to the zero size limit of the ‘t Hooft-Polyakov magnetic monopole (1974) [26,27]

∂µω
j(x) =

n
∑

s=1

Csε jµν
(x − as)ν
|x − as|2

( j = 3, µ,ν= 1,2, 3) (x , as ∈ R3). (43)

A magnetic monopole is a topological configuration which is classified by the winding number
of the map from the sphere in the space to the sphere in the target space: S2→ SU(2)/U(1)∼= S2,
i.e., by the second Homotopy group π2(S2) = Z.
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• For D = 4, a collection of merons of Alfaro-Fubini-Furlan (1976) [28], instantons of the
Belavin-Polyakov-Shwarts-Tyupkin (BPST) type (1975) [29] in the non-singular gauge with
zero size,

∂µω
j(x) =

n
∑

s=1

Csη
j
µν

(x − as)ν
|x − as|2

( j = 3, µ,ν= 1, 2,3, 4) (x , as ∈ R4). (44)

Meron and instanton are topological configuration which are classified by the winding number
of the map from the 3-dimensional sphere in the space to the sphere in the target space:
S3→ SU(2)∼= S3, i.e., by the third Homotopy group π3(S3) = Z.

By taking into account ε j
µν = −ε

j
νµ, η j

µν = −η
j
νµ, it is easy to show that all these config-

urations satisfy the Laplace equation �ω j(x) = 0 almost everywhere except for the locations
as ∈ RDof the singularities: �ω j(x) =

∑n
s=1 Csδ

D(x − as). These configurations are examples
of the classical solutions of the Yang-Mills field equation with non-trivial topology.

We can show that the restoration condition is satisfied for these singular configurations
[15]:

lim
p→0

∫

dD x eip(x−y) (x − as)ν
|x − as|2

�

δµλ�D − ∂µ∂λ
�

Γ( D
2 −1)

4πD/2

(|x − y|2)
D−2

2

= 0 , (45)

where we have used the expression of the Green function�−1
D (x , y) of the Laplacian�D = ∂µ∂µ

in the D-dimensional Euclidean space given by

�−1
D (x , y) =

∫

dDp
(2π)D

eip(x−y) 1
−p2

= −
Γ
� D

2 − 1
�

4πD/2

1
|x − y|D−2

, (46)

where Γ is the gamma function with the integral representation given by

Γ (z) =

∫ ∞

0

d t tz−1e−t (z > 0). (47)

For any D ≥ 2, this integral (45) goes to zero linearly in p in the limit p→ 0 [15]. Therefore,
the restoration of the residual local gauge symmetry occurs.

6 Conclusion and discussion

Â Conclusions: we summarize our results:
• We have reexamined the restoration of the residual local gauge symmetry left even after
imposing the gauge fixing condition in quantum gauge field theories. This leads to a general-
ization of the color confinement criterion.
•We have found an important lesson to understand color confinement in quantum gauge the-
ories that the compactness and non-compactness must be discriminated for the gauge trans-
formation of the gauge field.
• The Kugo-Ojima color confinement criterion can be applied only to the non-compact gauge
theory. This is a reason why the Kugo-Ojima criterion obtained in the Lorenz gauge cannot be
applied to the Maximal Abelian gauge (maximal torus group is a compact group).
• In the Maximal Abelian gauge we have shown that the restoration of the residual local gauge
symmety indeed occurs for the SU(N) Yang-Mills theory in two-, three- and four-dimensional
Euclidan spacetime once the singular topological configurations of gauge fields are taken into
account.
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• This result indicates that the color confinement phase is a disordered phase caused by non-
trivial topological configurations irrespective of the gauge choice.
• As a byproduct, we find that the compact U(1) gauge theory can have the disordered con-
finement phase, while the non-compact U(1) gauge theory has the deconfined Coulomb phase.
Â Future perspectives: we have the issues to be investigated in future:
• Gribov copies, existence of BRST symmetry,
• Higgs phase, Brount-Englert-Higgs (BEH) mechanism,
• Finite temperatures,
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Abstract

We enlarge the chiral model, the so-called extended Linear Sigma Model (eLSM), by in-
cluding the low-lying hybrid nonet with exotic quantum numbers J PC = 1−+ and the
nonet of their chiral partners with J PC = 1+− to a global U(3)r × U(3)l chiral symmetry.
We use the assignment of the πhy b

1 = π1(1600) as input to determine the unknown pa-
rameters. Then, we compute the lightest vector and pseudovector hybrid masses that
could guide ongoing and upcoming experiments in searching for hybrids.
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1 Introduction

The investigation of the properties of exotic quarkonia, the so-called hybrids, is extremely
interesting and an important step toward the understanding of the nontraditional hadronic
states, i.e., those structures beyond the normal meson and baryon, which are allowed in the
framework of quantum chromodynamics (QCD) [1–3] and quark model [4, 5]. Hybrids are
colour singlets and constitute of quark-antiquark pair and gluonic degree of freedom. In Lattice
QCD, a rich spectrum of hybrid states are predicted below 5 GeV [6–8], but there are still no
predominantly hybrid states assigned to be one of the listed mesons in the PDG [9]. Quite
interestingly, recent results by COMPASS concerning the confirmation of the state π1(1600)
with exotic quantum numbers 1−+ led to a revival of interest in this topic [10].

In this work, we investigate vector hybrids by enlarging the extended Linear Sigma Model
(eLSM) [11]. In particular, we make predictions for a nonet of exotic hybrids with quantum
numbers J PC = 1−+. Moreover, we also make predictions for the nonet of their chiral partners,
with quantum numbers J PC = 1+−.

The eLSM has shown to be able to describe various hadronic masses and decays below 1.8
GeV, as the fit in Ref. [11] confirms, hence it represents a solid basis to investigate states that go
beyond the simple q̄q picture. In the past, various non-conventional mesons were studied in the
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eLSM. Namely, the scalar glueball is automatically present in the eLSM as a dilaton and is cou-
pled to light mesons: it represents an important element of the model due to the requirement
of dilatation invariance (as well as its anomalous breaking) [12]. The eLSM has been used
to study the pseudoscalar glueball [13–17], the first excited pseudoscalar glueball [18, 19],
and hybrids [20]. Moreover, the connection and compatibility with chiral perturbation the-
ory [21], as well as the extention to charmed mesons [22–29] and the inclusion of baryons in
the so-called mirror assignment [30,31] were performed.

In the present study, we extend the eLSM to hybrids by constructing the chiral multiplet
for hybrid nonets with J PC = 1−+ and J PC = 1+− and determine the interaction terms which
satisfy chiral symmetry. Consequently, the spontaneous symmetry breaking is responsible for
mass differences between the 1+− crypto-exotic hybrids and the lower-lying 1−+. We work out
the masses of vector and pseudovector hybrid mesons.

2 Hybrid mesons in the chiral model

In this section, we enlarge the eLSM Lagrangian by including hybrid mesons in the case of
N f = 3

Lwith hybrids
eLSM = LeLSM +L hybrid

eLSM , (1)

where LeLSM is the standard of the eLSM Lagrangain, which are constructed under chiral and
dilatation symmetries, as well as their explicit and spontaneous breaking features (for more
details see Refs. [11]).
We introduce the hybrids in the eLSM as:

L hybrid
eLSM = L hybrid-quadratic

eLSM +L hybrid-linear
eLSM

= L hybrid-kin
eLSM +L hybrid-mass

eLSM +L hybrid-linear
eLSM , (2)

where the L hybrid-kin
eLSM and L hybrid-linear

eLSM terms are described in details in Ref. [20]. The masses
of hybrids can be extracted from the following mass term

L hybrid-mass
eLSM =mhy b,2

1
G2

G2
0

Tr
�

Lhy b,2
µ + Rhy b,2

µ

�

+ Tr
�

∆hy b
�

Lhy b,2
µ + Rhy b,2

µ

��

+
hhy b

1

2
Tr(Φ†Φ)Tr

�

Lhy b,2
µ + Rhy b,2

µ

�

+ hhy b
2 Tr[

�

�

�Lhy b
µ Φ

�

�

�

2
+
�

�

�ΦRhy b
µ

�

�

�

2
]

+ 2hny b
3 Tr(Lhy b

µ ΦRhy b,µΦ†) , (3)

which satisfies both chiral and dilatation invariance. G is the dilaton field and G0 its vacuum’s
expectation value. The multiplet of the scalar and pseudoscalar mesons, Φ, is defined as

Φ= S + iP =
1
p

2







σN+a0
0p

2
a+0 K+S

a−0
σN−a0

0p
2

K0
S

K−S K̄0
S σS






+ i

1
p

2







ηN+π0
p

2
π+ K+

π−
ηN−π0
p

2
K0

K− K̄0 ηS






, (4)

and transforms under chiral transformations UL(3)× UR(3): Φ → ULΦU†
R, where UL and UR

are U(3), under parity Φ→ Φ† and under charge conjugation Φ→ Φt .

014.2

https://scipost.org
https://scipost.org/SciPostPhysProc.6.014


SciPost Phys. Proc. 6, 014 (2022)

(i) The scalar fields are {a0(1450), K∗0(1430),σN ,σS} with quantum number J PC = 0++ [9],
and lie above 1 GeV [11], where the non-strange bare field σN ≡

�

�ūu+ d̄d
�

/
p

2 corresponds
predominantly to the resonance f0(1370) and the bare field σS ≡ |s̄s〉 predominantly to
f0(1500). Finally, in the eLSM the state f0(1710) is predominantly a scalar glueball, see details
in Ref. [12]. (ii) The pseudoscalar fields are {π, K ,η,η′} with quantum numbers J PC = 0−+

[9], where η and η′ arise via the mixing η= ηN cosθp +ηS sinθp, η′ = −ηN sinθp +ηS cosθp
with θp ' −44.6◦ [11].
We now turn to the right-handed and left-handed, Rhy b

µ and Lhy b
µ , combinations of exotic hy-

brid states, which combine the vector fields in the hybrid sector Πhy b,µ
i j with the pseudovector

fileds in the hybrid sector Bhy b,µ
i j .

The hybrid sector Πhy b,µ
i j is vector currents with one additional gluon with quantum numbers

J PC = 1−+, and is given by

Π
hy b,µ
i j =

1
p

2
q̄ jG

µνγνqi = Π
hy b,µ =

1
p

2









η
hy b
1,N +π

hy b,0
1p

2
π

hy b+
1 Khy b+

1

π
hy b−
1

η
hy b
1,N +π

hy b,0
1p

2
Khy b,0

1

Khy b,−
1 K̄hy b,0

1 η
hy b
1,S









µ

, (5)

where the gluonic field tensor Gµν is equal to ∂ µAν−∂ µAν− gQC D[Aµ, Aν], and Πhy b,µ contains
{π(1600), K1(?), η1(?), η1(?)}which only the isovector member corresponds to a physical res-
onance at the present. The exotic hybrid field π1 is assigned to π1(1600), (the details of this
assignment are given in Ref. [32]). There are not yet candidates for the other members of the
nonet, but we shall estimate their masses in Sec. 3.
The pseudovector fields, Bhy b,µ

i j in the hybrid sector, after including the gluon field, with quan-

tum numbers J PC = 1+−, is written as

Bhy b,µ
i j =

1
p

2
q̄ jG

µνγ5γνqi = Bhy b,µ =
1
p

2









hhy b
1N ,B+bhy b,0

1p
2

bhy b,+
1 Khy b+

1,B

bhy b,+
1

hhy b
1N ,B−bhy b,0

1p
2

Khy b0
1,B

Khy b−
1,B K̄hy b0

1,B hhy b
1S,B









µ

. (6)

The nonet Bhy b,µ
i j has not yet any experimental candidate. So, all fields

{b1(?), K1,B(?), h1(?), h1(?)} are unkown yet. In the lattice calculation of Ref. [7], an up-
per limit of about 2.4 GeV is reported, but lattice simulation still used a quite large pion mass.
We estimate the mass of the bhy b

1 state, the chiral partner of π1, to a value of about (or even-
tually somewhat larger than) 2 GeV. For definiteness, we shall assign it to an hypothetical state
b1(2000?) state. The other member masses of the pseudovector crypto-exotic nonet follow as
a consequence of this assumption. One can obtain the right-handed and left-handed currents
as follows

Rhy b
µ = Πhy b,µ − Bhy b,µ

i j and Lhy b
µ = Πhy b,µ + Bhy b,µ

i j

and transform as Rhy b
µ → URRhy b

µ U†
R and Lhy b

µ → UL Lhy b
µ U†

L and under parity as Rhy b
µ → Lµ, hy b

and Lhy b
µ → Rµ, hy b as well as under C as Rhy b

µ → Lhy b,µ,t and Lhy b
µ → Rhy b,µ,t . See Ref. [20]

for more details and discussions.
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3 Masses of hybrids

Masses of hybrids can be calculated from the expression (3) by taking into account that the
multiplet of the scalar and pseudoscalar fields, Φ, has a nonzero condensate or vacuum’s ex-
pectation value. Consequently, the spontaneous symmetry breaking is reflected from that con-
densate. Especially relevant is the term hny b

3 which generates a mass difference between the
1−+ and 1+− hybrids, after shifting the latter masses upwards (see Ref. [20]). Note, the second
term breaks explicitly flavor symmetry (direct contribution to the masses due to nonzero bare
quark masses):

∆hy b = diag{δhy b
N ,δhy b

N ,δhy b
S }. (7)

After a straightforward calculation, the (squared) masses of the 1−+ exotic hybrid mesons
and the (squared) masses of the cryptoexotic pseudovector hybrid states were obtained as seen
in Ref. [20]. Consequently, one can get the (exact) relations as

m2
bhy b

1

−m2
π1
= −2hhy b

3 φ2
N (8)

m2
Khy b

1,B

−m2
K1
= −
p

2φNφShhy b
3 (9)

m2
hhy b

1S

−m2
η1,S
= −hhy b

3 φ2
S . (10)

As seen in Eqs. (8-10), the parameter hhy b
3 is the only parameter responsible for the mass split-

ting of the hybrid chiral partners. After fixing all the parameters that appear in the Lagrangian
(3) and the square masses equations (see details in Ref. [20]), we obtain the following results
( shown in Table 1) for the masses of the vector and pseudovector hybrid mesons:

Table 1: Masses of the exotic J PC = 1−+ and J PC = 1+− hybrid mesons.

Resonance Mass[MeV ]
Π

hy b
1 1600 [input using π1(1600)] []
η

hy b
1,N 1660

η
hy b
1,S 1751

Khy b
1 1707

bhy b
1 2000 [input set as an estimate]

hhy b
1N ,B 2000

Khy b
1,B 2063

hhy b
1S,B 2126

4 Conclusion

We have enlarged a chiral model, the so-called eLSM, in the case of N f = 3 by including the
hybrid state, the lightest hybrid nonet with J PC = 1−+ and of its chiral partner with J PC = 1+−,
into a chiral multiplet. The eLSM implements the global chiral U(N f )r × U(N f )l symmetry
and the symmetries of QCD: the discrete T, P, and C symmetries. The global chiral symmetry is
broken in several ways: explicitly through non-vanishing quark masses, spontaneously due to
the chiral condensate, and at the quantum level due to the chiral anomaly. To our knowledge,
this is the first time that a model was constructed, which contains vector and pseudovector
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hybrid mesons. The resonance πhy b
1 is assigned to π1(1600) (with mass 1660+15

−11 MeV) and

bhy b
1 is set to 2 GeV. The masses of the other hybrid states are computed and their results are

reported in Table 1. Note that our model predicts the mass of the state ηhy b
1 to be the same

as πhy b
1 ≡ π(1600) because of the small mixing of the nonstrange-strange quarks, which is

in agreement with the homochiral nature of the chiral multiplet. Moreover, the calculation
and the results of the decay widths of the lightest vector and pseudovector hybrid mesons are
presented in Ref. [20].
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Abstract

I discuss the masses of chiral partners in the context of chiral symmetry restoration at
finite temperature. Using the Nambu–Jona-Lasinio model I first remind the usual situa-
tion where two mesons of opposed parity become degenerate above the chiral transition
temperature. Then I consider an effective theory for D mesons where the positive parity
companion presents a “double pole structure”. In this case three different masses need
to be analyzed as functions of the temperature. I suggest a possible restoration pattern
at high temperatures when the back-reaction of the quark condensate is incorporated.
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1 Introduction

For N f flavors of quarks with nearly zero current masses, the QCD Lagrangian presents an
approximate chiral symmetry SUL(N f )× SUR(N f ), which is spontaneously broken in vacuum
down to SUV (N f ). Then, the effective masses of low-energy excitations with negative and pos-
itive parities (π and σ/ f0(500), respectively) become splitted. Nevertheless it is accepted that
the presence of a medium can restore the chiral symmetry at high temperatures or densities
following a phase transition, which can be of first-, second-order or a crossover.

In this contribution I focus on chiral symmetry restoration at finite temperature, reflected
in a partial degeneration of chiral partner masses for T > Tc , where Tc is the transition tem-
perature. In QCD with physical quarks, the chiral transition at vanishing net-baryon density
is known to be an analytic transition [1]. Different lattice-QCD calculations at finite tem-
perature show this degeneracy for the screening masses of mesonic excitations with different
spins [2,3].

In Ref. [4] I classified different effective field theories (EFTs) of QCD according to the nature
of the chiral partners. These could be either fundamental degrees of freedom—represented by
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quantum fields in the effective action—or generated dynamically via a few-body (e.g. Bethe-
Salpeter) equation. In both cases the temperature modifies the propagation of the particles
incorporating corrections to their masses. In the former case the fundamental states acquire
quasiparticle properties in the medium, while in the second case the emergent collective exci-
tations have a temperature-dependent pole mass, due to thermal corrections in the few-body
equation. The classification introduced in Ref. [4] is summarized in Table 1 for theπ/σ system.

Table 1: Different models/effective theories where the chiral partners π(J P = 0−)
andσ(J P = 0+) can be both fundamental degrees of freedom, dynamically generated
states, or a hybrid scenario with one fundamental and one emergent state.

J P = 0−
J P = 0+

Fundamental d.o.f. Dynamical d.o.f.

Fundamental d.o.f.

Linear σ model
[5], [6], [7] Chiral perturbation theory

Quark-meson model [8], [9]
[10], [11]

Dynamical d.o.f. -

Nambu–Jona-Lasinio model
[12], [13]

Polyakov–NJL model
[14], [15]

I first review the case where both chiral companions are generated dynamically. Thus the
π and σ are described by collective mesonic excitations emerging out of the quark-antiquark
attractive interaction. For this goal I focus on the Nambu–Jona-Lasinio (NJL) model of inter-
acting massive quarks in Sec. 2. Then I consider a novel case where one of the chiral partners
is a dynamically generated state, but presents a “two-pole structure”. This is exemplified by
the positive parity D∗0(2300) resonance (chiral partner of the D meson). As a function of the
temperature, the evolution of its pole mass was considered in Refs. [16, 17]. This case is dis-
cussed in Sec. 3, where I conjecture on the possible chiral restoration pattern for three states
when the transition temperature is approached. Conclusions are given in Sec. 4.

2 Two chiral partners: Nambu–Jona-Lasinio model

I start by reviewing the common situation with two chiral companions. In particular I cover
the case where both states are emerging out of the Bethe-Salpeter equation for the quark-
antiquark scattering. For this goal I use the NJL model [12,18]which describes the low-energy
interaction of quarks and antiquarks.

The minimal NJL Lagrangian contains two flavors (u and d) of quarks interacting locally
in both scalar and pseudoscalar spin channels with the same coupling G,

LNJL =
∑

l=u,d

ψ̄l(i/∂ −m0l)ψl

+ G
∑

a

∑

i jkl

�

(ψ̄i iγ5 τ
a
i jψ j) (ψ̄k iγ5 τ

a
klψl) + (ψ̄i I τa

i jψ j) (ψ̄k I τa
klψl)

�

, (1)

where the quark field is labeled with flavor indices i, j, k, l = {u, d}, τa (a = 1,2, 3) are the
flavor generators of SU f (2) algebra, and I is the 4x4 unit matrix of Dirac space.

The bare quark masses m0l are dressed by the effects of interactions. At mean-field level
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these are given by the quark condensate [15,19],

mi = mi0 − 4G〈ψ̄iψi〉 . (2)

This condensate acts as an order parameter of the chiral transition, when considered a
function of the temperature. Using the imaginary-time formalism it reads,

〈ψ̄iψi〉= Nc trγ
∑

n

∫

q

1

/q−mi
, (3)

where Nc = 3, trγ denotes the trace in Dirac space, and
∑

n

∫

q is the Matsubara summation
followed by the 3-momentum integration. Notice that qµ = (iωn,q).

The transition to the chirally-restored phase at high temperature is not only signalled by
the quark condensate but also by the quark mass (2). Both are shown in the left panel of
Fig. 1 as functions of the temperature. I used the parameter set of the N f = 2 NJL model given
in [20].
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Figure 1: Left: Quark mass (blue) and quark condensate (red) as functions of the
temperature of the 2-flavor NJL model within the mean-field approximation. Right:
Diagrammatic solution of the T -matrix equation (6) in terms of the quark-antiquark
interaction vertex of the NJL model G (represented by the black circles).

Mesonic states can be generated after solving the Bethe-Salpeter equation for the quark-
antiquark scattering. It is given within the random-phase approximation using the imaginary
time formalism [12,15]. Suppressing unnecessary flavor indices, the equation reads,

T (p) = G + G Π(p) T (p) , (4)

where p = (iνm,p), and the quark-antiquark propagator is also calculated at finite temperature
as,

Π(iνm,p) = −
∑

n

∫

k
trγ
�

Ω̄ S (iωn,k) Ω S (iωn − iνm,k− p)
�

, (5)

where S denote (anti)quark dressed propagators, and Ω contains (apart from flavor and color
factors) the two possible Dirac structures iγ5 and I, needed to generate pseudoscalar and scalar
meson excitations. The quark-antiquark propagator provides a non-trivial analytical structure
to the final scattering amplitude T (p). The solution of the two-body equation (4) reads

T (p) = G
1− G Π(p)

, (6)
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where the external Matsubara frequency iνm is eventually extended to the entire complex
energy plane z. A diagrammatic version of this equation is given in the right panel of Fig. 1.
Notice that the denominator can accommodate poles in different regions of the complex plane
signalling the generation of bound and scattering states.

For example, in the J P = 0− channel in vacuum and at low temperatures, the pion excita-
tion emerges in the real axis as a quark-antiquark bound state. This is seen in the left panel of
Fig. 2 for T = 25 MeV, where the first Riemann surface of T (p) is plotted.
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Figure 2: Left: π pole in the complex energy plane of the first Riemann surface at
T = 25 MeV. Middle: No pole in the complex energy plane of the first Riemann
surface at T = 250 MeV. Right: π pole after analytic continuation to the second
Riemann surface at T = 250 MeV.

At high temperatures the quark mass decreases, see Fig. 1, and the pion mass starts to
increase becoming a resonant state with a thermal decay width. It is natural that no such
solution can be obtained without an analytic continuation to the second Riemann sheet of
T (p) (see middle panel of Fig. 2). Previous studies in the NJL model avoided this analytic
continuation by introducing some ad hoc approximations or assuming a quasiparticle picture
even when the decay width is of the same order as the pion mass. However it is not difficult
to perform the required analytic continuation of the quark-antiquark propagator above the
two-quark mass threshold. For a complex value of the energy z,

ΠI I(z,p; T ) = ΠI(z,p; T )− 2iImΠI(z,p; T ) for Re z > 2mq(T ) . (7)

After this analytic continuation, the T matrix in the second Riemann surface acquires a
pole with finite imaginary part as seen in the right panel of Fig. 2. The pion generated as
T = 250 MeV is interpreted as a resonant state.

A plot of the π and σ masses (real parts of their pole positions) as functions of the tem-
perature is given in Fig. 3. Their large splitting at low temperatures vanishes around T = 250
MeV, where chiral symmetry is effective restored. The imaginary part of the poles—interpreted
as thermal decay half width—is represented as a band around the masses. This decay prob-
ability into quarks become also equal in both sectors at high temperatures, pointing to a full
degeneracy of the spectral shapes in this region. Chiral symmetry is restored for states not
originally present in the effective Lagrangian.

3 Three chiral companions: Covariant chiral EFT

Now I turn to a case belonging to the class of the upper right corner of Table 1. Here the
negative parity state is part of the initial degrees of freedom, while the positive parity com-
panion is generated via a two-body equation. The novel feature is that the emergent state
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Figure 3: π (red solid line) and σ (blue dashed line) masses as functions of the
temperature, below and above the chiral phase transition (signalled by the quark
condensate in black line). The decay width is plotted as a band around the masses.

is not identified with a single pole of the scattering amplitude, but it consists of a “two-pole
structure”. The example is taken from charmed mesons at finite temperature, as presented
in Refs. [16, 17]. Three chiral states are found in the nonstrange sector S = 0 corresponding
to the D and D∗0(2300) partners, while in the strange sector S = 1 one finds the usual parity
doublet with the Ds and D∗s0(2317) mesons.

Open charm mesons can be studied with an EFT approach implementing a combination
of chiral and heavy-quark symmetry in a covariant way [21–24]. Details of the effective La-
grangian can be found in the recent [17] (and references therein), where both heavy (D, Ds)
and light (π, K , K̄ ,η) ground states are the fundamental degrees of freedom. The EFT pro-
vides the tree-level amplitudes for heavy-light meson scattering. At leading order [23, 25]
(see also [16,17] for next-to-leading order results),

V (k, k3→ k1, k2) =
C0

4 f 2
π

�

(k+ k3)
2 − (k− k2)

2
�

, (8)

where C0 are known isospin coefficients, and fπ is the pion decay constant. Eq. (8) includes
all possible elastic and inelastic channels (given by a corresponding C0).

The s−wave projected amplitudes from (8) can be incorporated into a Bethe-Salpeter
equation—similar to the one in the NJL model in Eq. (4)—to calculate the resumed (and uni-
tary) scattering amplitudes T . Applying the “on-shell factorization” method [26] to simplify
the equation one gets,

T (s) = V (s) + V (s) G2(s) T (s) , (9)

where the two-meson propagator G2(s) plays the same role of the quark-antiquark propagator
in the NJL model (5). The formal solution is also similar to Eq. (6),

T (s) = V (s)
1− V (s)G2(s)

, (10)

but in this case it is fully given in a coupled-channel approach (see details in [16,17]).
Looking for poles of Eq. (10) in the complex energy plane of the different channels, one

finds the dynamically-generated states. In vacuum, the poles in the S = 0 channel are shown
in the left and middle panels of Fig. 4 and correspond to the D∗0(2300), the chiral partner of
the D meson. In the S = 1 channel one finds the pole on the right panel of Fig.4 which is
identified with the very narrow D∗s0(2317), the chiral companion of the Ds.
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Figure 4: Generated poles at T = 0 in the heavy-light meson system. Left: Lower
pole of the D∗0(2300) resonance. Middle: Higher pole of the D∗0(2300) resonance.
Right: Pole of the D∗s0(2317) bound state. Figure taken from [4].

Both poles in the left and middle panels correspond to the physical resonance D∗0(2300).
It is known that this state consists of a “two-pole structure” [27, 28], where both poles share
the same quantum numbers and can interfere at the real energy (physical) line. Nonetheless
they couple with different strength to the possible decay channels [17].

Focusing on the masses of these states (together with those of the ground states, D and Ds)
one can extend the T -matrix equation (10) to finite temperature. This has been performed in
Refs. [16] using the imaginary time formalism. It is important to mention that self-consistency
is required at finite temperature as the thermal corrections to the meson propagators need to
be introduced in the T -matrix equation.

The resulting thermal masses are given in Fig. 5 as functions of the temperature. The
left panel shows the S = 0 case with the ground state and the two poles of the D∗0(2300)
resonance. The right plot contains the S = 1 case with the Ds and the D∗s0(2317). Solid lines in
Fig. 5 represent the results containing the only effect of the pion in the heavy-meson dressing,
while the dashed lines account for the additional K , K̄ contribution. Due to the Boltzmann
suppression the kaonic contribution is very small even at T = 150 MeV.

Figure 5: Thermal masses of chiral partners in the D-meson sector. Left: S = 0
channel with the D meson and the D∗0(2300) resonance (double pole). Right: S = 1
channel with the Ds meson and the D∗s0(2317) bound state. Figure taken from [16].

There is a general mass dropping with temperature which, in relative terms, is very small
ca. ∼ 2% of their vacuum values. Given such a tiny mass reduction even at the highest
temperature, and the fact the EFT cannot be applicable beyond it [16], one concludes that no
mass degeneracy is expected from the accounting of the thermal effects alone. It is also not
possible to conclude the precise restoration pattern between the two poles of the D∗0(2300)
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resonance, as both follow in parallel a reduction of ∆m ∼ −10 MeV at T = 150 MeV. In
Ref. [17] we studied the case where the pion mass receives a thermal correction—due to
interactions with other light mesons—but no significant different picture was obtained.

From the study of the NJL model (and also other EFTs) it is clear that the effect of the
thermal chiral condensate—whose decrease is a manifestation of the approach to the chiral
transition—is a key ingredient to account for the mass degeneracy. In the current approxima-
tion such an effect does not appear, and the model does not know about any phase transition
at high temperature.

The reduction of the chiral condensate seen in lattice-QCD calculations should affect the
pseudo-Goldstone bosons properties. At low temperatures, where chiral perturbation theory
is applicable, this effect can be seen at the level of the Gell-Mann–Oakes–Renner relation at
finite temperature [29,30]. In particular, fπ(T ) acquires a reduction when the temperature is
increased toward the transition temperature [29,30],

fπ(T )
fπ,0

' 1−
T2

12 f 2
π,0

(11)

according to chiral perturbation theory at leading order (and also linear sigma model [6]).
As a simple calculation to gauge the dependence of fπ on the charmed mesons masses, I

apply a reduction to this parameter from its vacuum value to the vacuum calculation of the
T -matrix equation (10) [4]. This isolates the effect of fπ, as pure thermal effects played a
small role in the meson masses (cf. Fig 5).

In the right panel of Fig. 6 I present the masses of the two chiral partners in the S = 1
channel as a function of fπ/ fπ(T = 0). The (input) mass of the Ds is kept fixed, but the
modification of fπ produces a bound state with a sizable mass reduction approaching closely
to its chiral partner, as expected. In the left plot I show the location of the poles in the complex
energy plane for the S = 0 case. The ground state (triangle) is fixed, and both poles (lower
pole in circles, higher pole in squares) get a reduction of their masses (real part), but a much
stronger decrease of their widths (imaginary part), when fπ takes 60% of its vacuum value.
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Figure 6: Pole positions of the meson charm states as functions of fπ, when it is
reduced with respect to its vacuum value. Left: (J , S) = (0, 0) channel where the
“two-pole structure” of the D∗0(2300) is generated. Right: (J , S) = (0,1) sector where
the bound state D∗s0(2317) appears.

As described in Ref. [4], the additional account for the reduction of the ground states
(specially the pion mass) gives an extra decrease of all generated masses of ∆m∼ −100 MeV.
In particular, the lower pole of the D∗0(2300) gets bound (moving to the first Riemann surface)
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and becoming very close to the D-meson mass, while the higher-pole mass lies still ∼ 200
MeV above them. This preliminary result—albeit rather simplified—points to a sequential
degeneracy pattern in which the lower pole first becomes degenerate with the ground state,
and only at higher temperatures the upper pole joins them.

4 Conclusion

In this contribution I have considered the mass degeneracy of chiral partners at high tempera-
tures, where chiral symmetry is expected to be partially restored. I have described two effective
models, the Nambu-Jona-Lasinio model for quarks and a covariant chiral EFT incorporating
heavy-quark symmetry for D mesons.

In the first case, both chiral partners (π and σ) are dynamically generated, with masses
modified by the temperature. On the other hand, the chiral model contains the negative parity
state as fundamental degree of freedom, while the positive parity is dynamically generated.
Other options can be classified according to Table 1. In both models the generated states follow
from the solution of a two-body equation: the Bethe-Salpeter equation in the NJL model, and
the T -matrix equation in the chiral EFT.

In the NJL model the masses of the two chiral partners can be followed below and above
the transition temperature and the degeneracy is clearly observed above Tc . In the covariant
chiral EFT three different states [a double pole structure D∗0(2300) plus the ground state D]
appear in the (J , S) = (0, 0) channel. Unfortunately this model is applicable below Tc and no
definite information above chiral degeneracy can be obtained in the self-consistent calculation.

When the thermal dependence of fπ is accounted for, it is seen that both poles move sub-
stantially in the complex energy plane becoming more bound and less massive. I showed how
the lower pole approaches the ground state when fπ is 60% of its vacuum value, while the
higher pole still remains more massive. This points toward a sequential degeneracy pattern of
the chiral symmetry restoration [4]. If such pattern is supported by a more rigorous calcula-
tion, its experimental verification could be attempted in heavy-ion collisions at high energies.
One would need to reconstruct the D∗0(2300) resonance into different s−wave decay modes,
Dπ and DsK̄ , as the two poles couple with different strength to each of these final states (lower
pole to the former, and higher pole to the latter [17]).
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(German Research Foundation) grant numbers 411563442 (Hot Heavy Mesons) and 315477589
- TRR 211 (Strong-interaction matter under extreme conditions).

References
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Abstract

Interesting lattice QCD simulations at high temperature in QCD and particular truncated
studies have shown the emergence of an unexpected group symmetry, so called chiral-
spin. However this is not a symmetry of the QCD action for free quarks, which makes
unclear the transition to deconfinement at high temperature in QCD. Therefore we try
to redefine this group so that is a symmetry of free quark action and it is consistent with
the presence of deconfinement in QCD.
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1 Introduction

Recent lattice QCD calculations [1–4] have shown that exists a phase in QCD at high tem-
perature where matter becomes chiralspin symmetric (denoted as stringy fluid in [1–4]). The
chiralspin group, or SU(2)CS , is quite peculiar. Indeed, it is not a symmetry of the free quark
action, which makes it not so compatible with the regime of deconfinement in QCD. However,
from the other hand lattice QCD truncated studies [5–7] (where in section 2 we will explain
in what they consist), have pointed out that SU(2)CS appears together with the emergence of
chiral but also axial symmetry. The compromise for this, is having SU(2)CS at T > Tc (with
Tc the chiral phase transition temperature), where U(1)A is approximately restored, but not
at too high temperature since QCD goes in the phase of deconfinement, where quarks interact
more weakly (quark-gluon plasma). Lattice QCD studies therefore found SU(2)CS as an ap-
proximate symmetry in the range Tc−3Tc . Nevertheless, the mechanism on how the transition
to this chiralspin symmetry regime occurs and then vanishes is not completely clear. Moreover
the fact that from truncated studies SU(2)CS is present together with chiral and axial symmetry
but differently from them, SU(2)CS is not a symmetry of free massless quark action, leads to
a veil of mystery on it.

Therefore in this proceeding we propose to construct a new type of chiralspin group in
euclidean space-time (in section 3), which we denote as SU(2)PCS (we name it P-chiralspin
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group) that is a symmetry of the free massless quark action and that can possibly explain
the truncated studies results [1–4] and consequently solving the issues previously mentioned
with SU(2)CS regarding deconfinement. For doing this, we study temporal correlators where
the space coordinates are kept fixed and then we see that a possible mass degeneracy which
could be driven by the presence of a chiralspin symmetry can be also perfectly explained by
the P-chiralspin one (look section 4). This, as has been done for SU(2)CS symmetry, gives also
consequences at high temperature QCD, where the presence of P-chiralspin can be plausible,
even at non-zero chemical potential. However lattice studies on this direction are extremely
important for having an indication that this hypothesis is correct. We also give in section 3
a constraint on the gauge field properties in order to have such SU(2)PCS symmetry in case a
gauge interaction is introduced.

2 Chiralspin group

The chiralspin group, or SU(2)CS , is defined in euclidean space-time by the following genera-
tors [8],

Σn = {γ4, iγ5γ4,−γ5}, (1)

where γ4,5 are the usual gamma matrices. It is easy to show that they form an su(2) algebra,
because [Σn,Σm] = 2iεnmkΣk, Σ†

n = Σn and Tr(Σn) = 0, for all n = 1, 2,3. The SU(2)CS
transformations for quark fields ψ and ψ̄ are

ψ(x)→ exp(iαnΣn)ψ(x), ψ̄(x)→ ψ̄(x)γ4 exp(−iαnΣn)γ4, (2)

where the 2nd transformation has been taken thinking to the minkowskian version of ψ
(namely ψ̄M = ψ

†
Mγ4). It is interesting to observe that since γ5 is one of the generators of

SU(2)CS , then U(1)A ⊂ SU(2)CS . Therefore having SU(2)CS symmetry implies the axial sym-
metry as well. The transformations (2), has been used for explaining the large mass degener-
acy in the hadron spectrum coming from the truncated studies on lattice QCD simulations. Let
us remind what these kind of studies are. For simplicity we take mesons (for baryons the argu-
ment is totally the same) and we start from a generic meson observable OΓ (x) = ψ̄(x)Γψ(x).
Here Γ is a matrix acting on the space of Dirac and flavor (but eventually also color) indices
and therefore it specifies the quantum numbers of the meson in consideration. We take other
3 observables substituting Γ → ΓΣn (n= 1, 2,3). Then the following correlators

CX (t) =
∑

x

〈OX (x)ŌX (y)〉, (3)

with X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3}, y = (0, 0) and x = (x , t), are all connected via SU(2)CS and they
are in general different at zero temperature in QCD. For practical purposes, in lattice QCD is
convenient to rewrite (3) in terms of the quark propagator D−1, inverse of the Dirac operator
D. In this situation, Eq. (3) becomes

CX (t) =
∑

x

〈Tr(X D−1(x , x))Tr(γ4X †γ4D−1(y, y))− Tr(D−1(x , y)γ4X †γ4D−1(y, x)X )〉, (4)

where the first term is called disconnected and the second is the connected one, while the trace
Tr(·) is over Dirac, flavor and color indices. The truncated studies of Refs. [5–7] consist in
substituting in (4) the quark propagator with a new one as follow

D−1→ D−1
(Λ) = D−1 −

∑

λl :|λl |<Λ

1
λl
|λl〉〈λl |, (5)
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where λl and |λl〉 are eigenvalues and eigenvectors of D and Λ > 0 is some parameter to be
tuned. Therefore in (5) the lowest eigenmodes of D are manually removed in D−1 and the
result is considering the truncated quark propagator D−1

(Λ). From the correlators (4), one can
get the hadron masses, exploiting that at large t we have CX (t) ∼ exp(−mX t). It has been
observed that after substitution (5) in (4) and for Λ up to ∼ 180 MeV at least, such exponen-
tial decay behavior still persists. We can denote the new correlator as C (Λ)X (t) and we there-

fore have C (Λ)X (t) ∼ exp(−m(Λ)X t) for large t. Now, while all mX s for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3}
are in general all different, however after removing ∼ 10 eigenmodes (which corresponds to
Λ ∼ 65 MeV ) and restricting on gauge configurations with zero topological charge Q top = 0,

then the masses m(Λ)X s get all degenerate. This means that we are in presence of the SU(2)CS
symmetry. Therefore also U(1)A ⊂ SU(2)CS is restored. In reality this is nor the only observed
thing. There is also a further hadron mass degeneration due to the restoration of chiral sym-
metry SU(NF )L × SU(NF )R, which has been explained by the group SU(2NF ), that contains
SU(NF )L × SU(NF )R × SU(2)CS as subgroup [5–8].

This suggests us to speculate that SU(2)CS should emerge in a regime where at least these
conditions are satisfied: 1) Gauge configurations with Q top = 0 are dominant; 2) the lowest
eigenmodes of D are suppressed; 3) Chiral and axial symmetries emerge. A physical regime of
QCD where at least approximately these conditions are satisfied is at high temperature above
chiral phase transition Tc , as L. Glozman in [9, 10] suggested. Indeed, the lattice results of
Refs. [1–4] have shown that in the range of temperatures Tc − 3Tc , the SU(2)CS symmetry
appears in hadron correlators. However for T > 3Tc this symmetry vanishes. The reason
is evident. QCD at high temperature approaches to a theory of weakly interacting quarks
(deconfinement), but as we explain in the next section SU(2)CS is not a symmetry of free
quark action and therefore not compatible with such regime. Nevertheless, in the range of
temperature Tc − 3Tc we can assume that quarks are still strongly interacting and therefore
the presence of SU(2)CS is well reasonable.

3 New chiralspin group definition

The chiralspin group as has been defined in Eq. (2), presents some interesting aspects. In-
deed, in contrast with chiral and axial group, SU(2)CS is not a symmetry of free massless
quark action SF =

∫

d4 x ψ̄(x)γµ∂µψ(x). This fact can be explained writing a general ele-
ment U = exp(iαnΣn), with U ∈ SU(2)CS , as product of three U(1) matrices belonging to the
groups U(1)A ⊂ SU(2)CS (generated by γ5) and U(1)4 ⊂ SU(2)CS (generated by γ4, see (1)).
This can always be done for whatever element in SU(2)CS . Namely U = Uβ1

A Uβ2
4 Uβ3

A , where

U
β1,3

A = exp(−iβ1,3γ5) ∈ U(1)A and Uβ2
4 = exp(iβ2γ4) ∈ U(1)4. Now as shown in Refs. [11,12],

while U(1)A is a symmetry of free massless quark action, U(1)4 is the part of SU(2)CS which
is not a symmetry of SF , because

∫

d4 x ψ̄(x)γi∂iψ(x), for i = 1,2, 3 is not U(1)4 invariant.
The problem is now that at first, since SU(2)CS is not a symmetry of the action of free quarks,
then it is not clear from where it comes from. Secondly, if at high temperature QCD looks to
approach in the deconfinement then we can ask on why SU(2)CS shouldn’t be compatible with
it. Third, we can still ask ourself, if we are really sure that there are not other ways (another
chiralspin definition) which also can explain the mass degeneration of the truncated studies.

Therefore here we will try to redefine U(1)4 and consequently SU(2)CS in order to make
SF invariant. The solution that we came up in Refs. [11,12] exploits the parity transformation
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for spinors. In formulae we define in substitution of U(1)4 these other group transformations

U(1)P : ψ(x)→
∞
∑

n=0

(iα)n

n!
ψ(x)P

n
, ψ̄(x)→

∞
∑

n=0

(−iα)n

n!
ψ̄(x)P

n
, (6)

whereψ(x)P
n
= γn

4ψ(P
n x) and ψ̄(x)P

n
= ψ̄(Pn x)γn

4 with P = diag(−1,−1,−1, 1) the parity
matrix, so P x = (−x , x4). Now, using that γ2k

4 = 1, ∀k, we can expand (6) as

U(1)P : ψ(x)→ cos(α)ψ(x) + i sin(α)γ4ψ(P x), ψ̄(x)→ cos(α)ψ̄(x)− i sin(α)ψ̄(P x)γ4.
(7)

As we can see the definition of U(1)P transformations is pretty similar to U(1)4, with
the difference that a parity transformation is applied to the term proportional to γ4. As
shown in Ref. [12], U(1)P is now a symmetry of SF while U(1)4 ⊂ SU(2)CS is not. There-
fore U(1)P is more suitable to construct a new type of chiralspin group which is a symme-
try of the free massless action, that includes the subgroup U(1)A. For this aim, we define
ψ±(x) = (ψ(x) ± ψ(P x))/2 and ψ̄±(x) = (ψ̄(x) ± ψ̄(P x))/2 and then we introduce the
fields

Ψ(x) =

�

ψ+(x)
ψ−(x)

�

, Ψ̄(x) =
�

ψ̄+(x) ψ̄−(x)
�

. (8)

Directly from (7), U(1)P transformations forΨ and Ψ̄ read asΨ(x)→ exp(iα(σ3⊗γ4))Ψ(x)
and Ψ̄(x)→ Ψ̄(x)γ4 exp(−iα(σ3 ⊗ γ4))γ4, where σ3 = diag(1,−1) acts in the 2-dimensional
space defined in (8). The U(1)A transformations for Ψ and Ψ̄ can be obtained in the same
way from the transformations of ψ and ψ̄. We obtain that Ψ(x)→ exp(iα(−1⊗γ5))Ψ(x) and
Ψ̄(x)→ Ψ̄(x)γ4 exp(−iα(−1⊗ γ5))γ4. Now taking the generators

ΣP
n = {σ3 ⊗ γ4,σ3 ⊗ iγ5γ4,−1⊗ γ5}, (9)

where we defined ΣP
2 = iΣP

1 Σ
P
3 , we see that they are all traceless, hermitian and satisfy

the su(2) algebra relation [ΣP
n ,ΣP

m] = 2iεnmkΣ
P
k . From these new generators, we define the

SU(2)PCS (or let say P-chiralspin) group transformations as

Ψ(x)→ exp(iαnΣ
P
n )Ψ(x), Ψ̄(x)→ Ψ̄(x)γ4 exp(−iαnΣ

P
n )γ4 , (10)

where for different parameters αn = {α1,α2,α3}, we can get the axial transformations, U(1)A,
and U(1)P transformations in (7).

This group is now different from SU(2)CS , but the transformations (10) coincide with the
ones in (2), when we apply them on the spinorsψ and ψ̄ calculated in the point x (t) = (0, x4).
Because in this case P x (t) = x (t) and consequently ψ−(x (t)) = 0 and ψ+(x (t)) = ψ(x (t))
by definition (the same apply for ψ̄±(x (t))). Moreover also U(1)P ⊂ SU(2)PCS coincide with
U(1)4 ⊂ SU(2)CS in the point x (t), since from (7),ψ(P x (t)) =ψ(x (t)) and ψ̄(P x (t)) = ψ̄(x (t)).

However, while SF is P-chiralspin symmetric, the introduction of a gauge interaction in
the action Sint = i

∫

d4 x ψ̄(x)γµAµ(x)ψ(x) breaks explicitly SU(2)PCS , in particular its sub-
group U(1)P of (7). As shown in [11], gauge configurations with non zero topological charge
Q top 6= 0 (as instantons) break explicitly SU(2)PCS . Hence we need to restrict in the zero
topological sector, and in that case a sufficient condition for the gauge field structure is given
as A4(x) = A4(P x) and Ai(x) = −Ai(P x), for i = 1,2, 3, which makes Sint invariant under
SU(2)PCS .

Therefore we conclude saying that SU(2)PCS solves the first two problems which we men-
tioned at the beginning of this section. The reason is because, since it is a symmetry of the free
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massless quark action then, it is compatible with the possibility of deconfinement in QCD. Nev-
ertheless it remains to see if SU(2)PCS can explain the same mass degeneration of the truncated
studies, originally explained by SU(2)CS . We see this point in the next section.

4 Correlators

As we have done in section 2, here we concentrate on mesons, but for baryons the argument
does not change much as outlined in Refs. [11, 12]. Besides Eq. (3), another way of getting
meson masses is to fix for example the space x = 0 and consider the correlators

CX (0, t) = 〈OX (0, t)ŌX (0, 0)〉, (11)

with OX (0, t) = ψ̄(0, t)Xψ(0, 0) and ŌX (0, 0) = ψ̄(0, 0)γ4X †γ4ψ(0, 0). For large t, we still
have the exponential decay with the meson mass mX , i.e. CX (0, t)∼ exp(−mX t) and it can be
evaluated by computation of the quark propagator as in (4), since we can rewrite (11) as

CX (0, t) = 〈Tr(X D−1(0, t;0, t))Tr(γ4X †γ4D−1(0, 0;0, 0))

− Tr(D−1(0, t;0, 0)γ4X †γ4D−1(0, 0;0, t)X )〉.
(12)

As we have seen in section 2, the presence of SU(2)CS comes from the fact that the mX s
for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} are all equal. However we have also observed that SU(2)CS and
SU(2)PCS transformations when applied on ψ(0, t) and ψ̄(0, t), are the same.

Consequently this also applies on the two observables OX (0, t) and ŌX (0, 0), which trans-
form in the same way under SU(2)CS and SU(2)PCS . Therefore the correlators CX (0, t) in (11)
for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} can be connected by SU(2)CS or SU(2)PCS . We can’t distinguish
them. Moreover, since from CX (0, t) we can still get the masses mX s, if we see that they are
the same, then this can come from SU(2)CS or SU(2)PCS symmetry. Hence even in this case, we
can’t distinguish which type of symmetry is responsible for that. This is why SU(2)PCS can be
also suitable for explaining the mass degeneration in the truncated studies. This line of thought
can be easily extended for whatever hadron, baryons too. Repeating the same argument of
section 2 and Refs. [9,10], we can not therefore exclude that P-chiralspin symmetry is present
at high temperature QCD and this line of research would deserve more investigation.

We have said in the previous section (and proved in Refs. [11,12]) that SU(2)PCS is a sym-
metry of the free massless quark action. Therefore we expect a degeneration of the correlators
CX (0, t) for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} if we calculate them on the quark propagator in the free
case, see eq. (12). Let us check this. Now the quark propagator for free massless quarks is
simply [13] D−1

f ree(x , y) = γµ(x − y)µ/[2π2(x − y)4]. However it has a pole in (x − y)2 = 0,
and we regularize it considering a parameter ε which after the calculation of CX (0, t) one can
take the limit ε→ 0, which means considering D−1

f ree(x , y)(ε) = γµ(x − y)µ/[2π2(x − y)4+ε].

Taking for example X = Γ and inserting D−1
f ree(x , y)(ε) inside Eq. (12), where in our case x

and y can be (0, t) or (0, 0), then we get that the disconnected term is zero, since in that case
x = y . Using only the connected part we get

CΓ (0, t) f ree = − lim
ε→0
〈Tr(D−1

f ree(0, t;0, 0)(ε)γ4Γ
†γ4D−1

f ree(0, 0;0, t)(ε)Γ )〉=
1

4π4 t6
Tr(Γ †Γ ). (13)

As we observe under substitution Γ → ΓΣn with Σn given in (1), CΓ (0, t) f ree does not change.
Thus CX (0, t) f ree for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} are all equal, because Tr(Γ †Γ ) = Tr((ΣnΓ )†ΓΣn)
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for n = 1,2, 3. Therefore SU(2)PCS in the free massless case is a symmetry of the theory, as
expected to be from Ref. [11].

Let us now move forward. Suppose there is some regime at high temperature where
SU(2)PCS is a symmetry in QCD, then, if we switch on the chemical potential, SU(2)PCS still
remains a symmetry of the theory. This simply comes from the fact that the chemical potential
term in the action, i.e. S(µ) = µ

∫

d4 x ψ̄(x)γ4ψ(x), is SU(2)PCS invariant. Indeed from the
definition of ψ±, ψ̄± and Eq. (8) we have

S(µ) = µ

∫

d4 x (ψ̄+(x)γ4ψ+(x) + ψ̄−(x)γ4ψ−(x)) = µ

∫

d4 x Ψ̄(x)γ4Ψ(x), (14)

where we omitted the terms
∫

d4 x ψ̄±(x)γ4ψ∓(x) because they are zero for parity reasons.
Now S(µ) in (14) is of course invariant under SU(2)PCS transformations given in (10), which is
what we wanted to show.

5 Conclusion

We have seen that the result of truncated studies [5–7], namely the large mass degeneration
coming from the truncation of the quark propagator (5) which has been explained by the
existence of chiralspin SU(2)CS symmetry, can be also described by another group, that we
have called SU(2)PCS , or in words P-chiralspin group.

SU(2)PCS , differently from SU(2)CS , is a symmetry of free massless quark action, as chi-
ral and axial group. This fact makes SU(2)PCS compatible with the high temperature regime of
QCD, where quarks becomes deconfined. Therefore, since lattice QCD results have shown that
SU(2)CS symmetry is present approximately in the range of temperature Tc−3Tc (Tc tempera-
ture of chiral symmetry restoration), we can expect to have SU(2)PCS at high temperature too.
If so, we have shown that such P-chiralspin persists at non-zero chemical potential, because
the chemical potential part of the action is SU(2)PCS invariant. Nevertheless its presence above
Tc in QCD is something to be checked in future works.
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Abstract

It has been suggested that the Landau-gauge gluon propagator has complex singulari-
ties, which invalidates the Källén–Lehmann spectral representation. Since such singu-
larities are beyond the standard formalism of quantum field theory, the reconstruction
of Minkowski propagators from Euclidean propagators has to be carefully examined for
their interpretation. In this talk, we present rigorous results on this reconstruction in
the presence of complex singularities. As a result, the analytically continued Wightman
function is holomorphic in the usual tube, and the Lorentz symmetry and locality are
kept valid. On the other hand, the Wightman function on the Minkowski spacetime is a
non-tempered distribution and violates the positivity condition. Finally, we discuss an
interpretation and implications of complex singularities in quantum theories, arguing
that complex singularities correspond to zero-norm confined states.
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1 Introduction

Correlation functions are essential building blocks of a quantum field theory (QFT), and their
analytic structures provide an insight into the state space. In the last decades, correlation
functions in the Landau gauge have been studied by both lattice and continuum methods
to understand fundamental aspects of quantum chromodynamics (QCD) as well as hadron
phenomenology.

In particular, two-point functions, or propagators, have important information on QFT. For
example, the Källén–Lehmann spectral representation implies the correspondence between
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singularities of a propagator D(k2) and states |Pn〉 non-orthogonal to the state φ(0) |0〉:

D(k2) =

∫ ∞

0

dσ2 ρ(σ
2)

σ2 − k2
, (1)

θ (k0)ρ(k
2) := (2π)3
∑

n

|〈0|φ(0)|Pn〉|2δ4(Pn − k). (2)

Observing an analytic structure would give a valuable hint for understanding fundamental
aspects of QCD, for example, the color confinement.

Therefore, based on the progress in the QCD correlation functions, there has been an in-
creasing interest in analytic structures of the QCD propagators in recent years. Some results
of recent independent approaches, e.g., numerical reconstruction techniques from Euclidean
data [1,2], models of massivelike gluons [5–8], and the ray technique of the Dyson-Schwinger
equation [3, 4], suggest that the Landau-gauge gluon propagator has complex singularities,
which are unusual singularities invalidating the Källén-Lehmann spectral representation.

On the other hand, implications of complex singularities have been less studied. There
are only old works [9–12] discussing this subject heuristically. However, since complex sin-
gularities are beyond the standard formalism of QFT, we need to consider their interpretation
carefully. Hence, we study the rigorous reconstruction of propagators with such singulari-
ties [13,14].

In this presentation, we sketch out the reconstruction of propagators and its consequences
in the presence of complex singularities.

2 Definition and main questions

We point out that complex singularities are defined in terms of Euclidean propagators. There-
fore, the reconstruction procedure from Euclidean field theory to quantum field theory should
be carefully considered. We then pose the main questions addressed in this presentation.

2.1 Definition of complex singularity

For starting a rigorous discussion, an appropriate definition should be provided.
We begin by reviewing how the analytic structures are investigated in the literature. Roughly

speaking, an analytic structure is obtained by an “analytic continuation” from Euclidean data
(Fig. 1). Obviously, there exists a fundamental issue; an analytic continuation from finite data
is not unique. The best thing we can do is a speculative study of an analytic structure using
a model. If we have a model with some theoretical backgrounds, the model propagators can
provide possible analytic structures of the QCD propagators. In this way, the analytic structures
have been examined.

We emphasize that the analytic structure to be obtained is that of an analytically-continued
Euclidean propagator. Therefore, we define complex singularity as singularity off the real axis
in the complex momentum k2

E-plane of an analytically-continued Euclidean propagator.
For technical reasons, we further assume the following properties for complex singularities:

(1) boundedness of complex singularities in |k2
E |, (2) holomorphy of D(k2

E) in a neighborhood
of the real axis except for the timelike (k2

E < 0) singularities, (3) some regularity of the timelike
singularities.

2.2 Main questions

Since complex singularity is a property of the Euclidean propagator, we need a reconstruction
to obtain its interpretation.
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Analytic structure

Euclidean data

“analytic continuation”: need a model

Figure 1: Conceptual picture describing methodology of how an analytic structure is
investigated in the literature. Note that what we examine here is a structure on the
complexified Euclidean momentum plane.

Euclidean
Schwinger functions {Sn}

Minkowski
Wightman functions {Wn}

Relativistic QFT
states and operators

standard:
OS reconstruction

(α) reconstruction S2 → W2

standard: Wightman
reconstruction

(β) a possibility
is discussed

Figure 2: Standard reconstruction procedure and contents of our study (α) and (β).
Taken from [13].

To clarify what we should address, let us briefly summarize how we reconstruct quantum
theories from Euclidean field theories in the standard formalism [15, 16] (Fig. 2). We start
with a set of Euclidean correlation functions, called Schwinger functions. If these Schwinger
functions satisfy the Osterwalder-Schrader (OS) axioms, we can reconstruct the Wightman
functions on the Minkowski spacetime by an analytic continuation, which satisfy the Wightman
axioms. Subsequently, by the Wightman reconstruction, we can obtain a quantum theory
written in terms of states and operators from the Wightman functions.

The natural question here is whether or not we can do the same thing in the presence of
complex singularities. In what follows, we mainly discuss the following two questions corre-
sponding to the arrows (α) and (β) in Fig. 2.

(α) Is it possible to reconstruct a Wightman function W (ξ0, ~ξ) on the Minkowski spacetime
from the Schwinger function? Which conditions of the Wightman/OS axioms are pre-
served/violated?

(β) Does there exist a quantum theory reproducing the reconstructed Wightman function
W (ξ0, ~ξ) as a vacuum expectation value: W (ξ) = 〈0|φ(ξ)φ(0)|0〉? If it exists, what
states cause complex singularities?

We will answer these questions affirmatively [13,14].
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3 Reconstruction of the Wightman function and its general prop-
erties

Let us move on to the first topic (α). We reconstruct the Wightman function W (t, ~x) from
the Schwinger function with complex singularities by identifying the Schwinger function as
imaginary-time data of the Wightman function: S(τ, ~x) =W (−iτ, ~x) (τ > 0).

To answer the question (α), we proved [13,14]:

(A) The reflection positivity is violated for the Schwinger function.

(B) The holomorphy of the Wightman function W (ξ − iη) in the tube R4 − iV+ and the
existence of the boundary value as a distribution are still valid, where V+ denotes the
(open) forward light cone. Thus, we can reconstruct the Wightman function from the
Schwinger function.

(C) The temperedness and the positivity condition are violated for the reconstructed Wight-
man function. The spectral condition is never satisfied since it requires the temperedness
as a prerequisite.

(D) The Lorentz symmetry and spacelike commutativity are kept intact.

Let us see these properties with a simple example: one pair of complex conjugate poles
(e.g., the typical Gribov-Zwanziger fit),

D(k2
E) =

Z
k2

E +M2
+

Z∗

k2
E + (M∗)2

. (3)

Since any complex singularity can be written as a “sum” of complex poles from the Cauchy
integration formula, this example will capture the essential features of complex singularities.
For detailed proofs of these results, see [13].

The Schwinger function in the position space reads

S(~ξ,ξ4) =

∫

d3~k
(2π)3

ei~k·~ξ

�

Z
2E~k

e−E~k|ξ4| +
Z∗

2E∗
~k

e−E∗
~k
|ξ4|
�

, (4)

where E~k =
p

~k2 +M2 is a branch of Re E~k > 0.
(B) We now analytically continue the Wightman function starting from the imaginary-time

data S(~ξ,ξ4) =W (−iξ4, ~ξ). The straightforward integral representation,

W (ξ− iη) =

∫

d3~k
(2π)3

ei~k·(~ξ−i ~η)

�

Z
2E~k

e−iE~k(ξ
0−iη0) +

Z∗

2E∗
~k

e−iE∗
~k
(ξ0−iη0)

�

, (5)

provides a desired analytic continuation to the tube R4 − iV+. Indeed, this expression is holo-
morphic in the tube ξ− iη ∈ R4 − iV+ since the integrand decreases rapidly in |~k| for η ∈ V+.

We can take the “limit” η→ 0 (η ∈ V+) of (5) as a distribution1:

W (ξ) =

∫

d3~k
(2π)3

ei~k·~ξ

�

Z
2E~k

e−iE~kξ
0
+

Z∗

2E∗
~k

e−iE∗
~k
ξ0

�

. (6)

(C) The Wightman function (6) grows exponentially in ξ0 since E~k is complex. Therefore,
the Wightman function on the Minkowski spacetime violates the temperedness.

1A subtle point here is the integral over ~k, which is just the Fourier transformation and can be defined properly
as a distribution.
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Table 1: Wightman axioms for Wightman functions in the Minkowski spacetime.

[W0] Temperedness violated 7

[W1] Poincaré Symmetry preserved 3

[W2] Spectral Condition violated 7

[W3] Spacelike Commutativity preserved 3

[W4] Positivity violated 7

[W5] Cluster property irrelevant

The violation of positivity can be proved by the nontemperedness. For this, we show

(Positivity)⇒ (Temperedness). (7)

Intuitively, this can be understood as follows.

(i) The positivity of W (ξ) corresponds to the positivity of the sector {φ(x) |0〉}x∈R4 .

(ii) The translational invariance of the two-point function corresponds to the unitarity of the
translation operator U(a) defined on this sector: U(a)φ(x) |0〉 := φ(x + a) |0〉.

These observations lead to a “upper bound” on
|W (a)| = |〈0|φ(0)U(−a)φ(0)|0〉| ≤ |〈0|φ(0)φ(0)|0〉|, which will imply that W (a) is tem-
pered2.

(A) Similarly, the violation of the reflection positivity can be shown by the nontempered-
ness. By repeating a part of the Osterwalder-Schrader reconstruction [15] from Schwinger
functions to Wightman functions, the reflection positivity yields the temperedness of the Wight-
man function.

For the example (4), the violation of the reflection positivity can be easily checked by
observing the non-positivity of

∫

d3 ~ξ S(~ξ,ξ4).
(D) We can show the Lorentz covariance as follows in the use of holomorphy and Euclidean

rotation symmetry. First, the Schwinger function is invariant under Euclidean rotations. Then,
the analytically-continued Wightman function is invariant under infinitesimal Euclidean rota-
tions, so is invariant under its complexified version, namely infinitesimal complex Lorentz
transformations. Therefore, the reconstructed Wightman function is invariant under the re-
stricted Lorentz group in the limit of going to the Minkowski spacetime. One can also explicitly
check the Lorentz invariance of the expression (5) by a contour deformation.

For the case with a single scalar field, the locality, or the spacelike
commutativity [W (ξ) = W (−ξ) for spacelike ξ], is an immediate consequence from the
Lorentz invariance. For general cases, the locality follows from the permutation symmetry
of the Schwinger function and the complex Lorentz covariance of the holomorphic Wightman
function.

So far, we have seen general properties of complex singularities (A) – (D). We can now
answer the question (α).

(α) It is possible to reconstruct the Wightman function, and the Wightman and OS axioms
are summarized in Tables 1 and 2 in the presence of complex singularities.

Let us make some comments on the results.

• The exponential growth of the Wightman function (6) in the limits ξ0 → ±∞ has far-
reaching consequences. This strongly suggests the ill-definedness of the corresponding

2Of course, since W (ξ) is a distribution, the upper bound does not exist. Nevertheless, we can also prove the
claim rigorously in the same spirit.
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Table 2: OS axioms for Schwinger functions in the Euclidean space.

[OS0] Temperedness assumed 3

[OS1] Euclidean Symmetry assumed 3

[OS2] Reflection Positivity violated 7

[OS3] Permutation Symmetry assumed 3

[OS4] Cluster property irrelevant
[OS0’] Laplace transform condition violated (but irrelevant)

S-matrix elements. The states causing complex singularities should be therefore ex-
cluded from the physical sector by some confinement mechanism. Moreover, the time-
ordered propagator cannot be Fourier-transformed because of this exponential growth.
Thus, the simple inverse Wick rotation in the momentum space k2

E → −k2 cannot be
applied in the presence of complex singularities.

• Complex singularities are often discussed to be associated with non-locality in some
literature since they cannot appear in the usual formalism of local QFTs. However, from
(D) the compatibility with the spacelike commutativity, complex singularities themselves
do not necessarily lead to non-locality.

At first glance, from the violation of the temperedness, spectral condition, and positiv-
ity, complex singularities seem to have no interpretation. However, we argue that complex
singularities can appear in indefinite-metric QFTs.

4 Realization in quantum theory

Next, we consider the second question (β). Since complex singularities are supposed to ap-
pear in the gluon propagator in the Landau-gauge Yang-Mills theory, it is natural to consider
indefinite-metric QFTs. An important observation is that complex-energy spectra can appear
in an indefinite-metric state space. States with complex conjugate eigenvalues of a hermitian
Hamiltonian can be realized by zero-norm pairs:

(|E〉 , |E∗〉)

¨

H |E〉= E |E〉 , H |E∗〉= E∗ |E∗〉
〈E|E〉= 〈E∗|E∗〉= 0, 〈E|E∗〉 6= 0

If such a pair exists, it contributes to the Wightman function as,

〈0|φ(t)φ(0)|0〉 ⊃ (〈E∗|E〉)−1e−iE t 〈0|φ(0) |E〉 〈E∗|φ(0) |0〉

+ (〈E|E∗〉)−1e−iE∗ t 〈0|φ(0) |E∗〉 〈E|φ(0) |0〉 .

By preparing a pair (|E〉 , |E∗〉) for each momentum ~p, we can reproduce the Wightman function
reconstructed from a pair of complex poles (6). Since a complex singularity can be basically
expressed by a sum of complex poles, we reach the conclusion [13,14]:

(β) Complex singularities can be realized in indefinite-metric QFTs and correspond to pairs
of zero-norm eigenstates of complex energies.

To obtain a physical theory from an indefinite-metric QFT, we need to construct a physical
state space. A promising way is to use the Kugo-Ojima quartet mechanism [17] by the BRST
symmetry. If this mechanism works well3, the pairs of complex-energy states should be in

3Note, however, that it is highly nontrivial to see whether or not a nilpotent BRST symmetry exists in the Landau
gauge adopted in the numerical works.
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BRST quartets. In this light, it can be said that complex singularities correspond to confined
states. We can also argue that the existence of complex singularities in a propagator of the
gluon-ghost composite operator is a necessary condition for this scenario4 [14].

5 Conclusion

We have examined the reconstruction of propagators and its consequences in the presence
of complex singularities. In conclusion, the existence of complex singularities does not rule
out the possibility to reconstruct a local QFT (with an indefinite metric) although complex
singularities are out of the standard formalism of QFT as shown in Tables 1 and 2.
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Abstract

In covariant gauges, the gluonic mass gap in Yang-Mills theory manifests itself in the ba-
sic observation that the massless pole in the perturbative gluon propagator disappears in
nonperturbative calculations, but the origin of this behavior is not yet fully understood.
We summarize a recent study of the respective dynamics with Dyson-Schwinger equa-
tions in Landau-gauge Yang-Mills theory. We identify the parameter that distinguishes
the massive Yang-Mills regime from the massless decoupling solutions, whose endpoint
is the scaling solution. Similar to the PT-BFM scheme, we find evidence that mass gen-
eration in the transverse sector is triggered by longitudinal massless poles.
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1 Introduction

The origin of mass continues to be one of the outstanding questions in QCD and hadron physics.
While mass generation in the quark sector can be tied to the dynamical breaking of chiral
symmetry, see e.g. [1–4] and references therein, the underlying mechanism in the Yang-Mills
sector of QCD is not yet fully understood. The emergence of a mass gap and the related
question of confinement must be encoded in the n-point correlation functions of pure Yang-
Mills theory, whose basic representative is the gluon propagator

Dµν(Q) =
1

Q2

�

Z(Q2) TµνQ + ξ L(Q2) LµνQ

�

. (1)

Here, TµνQ = δµν −QµQν/Q2 and LµνQ = QµQν/Q2 are the transverse and longitudinal projec-
tion operators with respect to the four-momentum Qµ, ξ is the gauge parameter, and ξ = 0
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Figure 1: DSE solutions for the inverse gluon dressing function 1/Z(Q2) and ghost
dressing function G(Q2), where ‘DC’ denotes decoupling and ‘SC’ scaling [5].

corresponds to Landau gauge. In linear covariant gauges, the longitudinal dressing function
L(Q2) = 1 is trivial due to gauge invariance. The transverse gluon dressing function Z(Q2) is
the quantity of interest in what follows.

The basic feature of gluon mass generation is the disappearance of the massless pole in
the perturbative gluon propagator in nonperturbative calculations, where Z(Q2)/Q2 does not
diverge at the origin. This is a robust outcome of lattice calculations [6–10] and functional
methods such as Dyson-Schwinger equations (DSEs) and the functional renormalization group
(fRG) [11–24]. What happens instead is still an open question, as the propagator could de-
velop poles at timelike momenta, complex conjugate poles, branch cuts, etc. In any case, the
absence of a massless pole implies Z(Q2→ 0) = 0, and therefore 1/Z(Q2) must have a mass-
less singularity at the origin as shown in Fig. 1. But how does this nonperturbative singularity
arise in the first place?

The infrared behavior seen on the lattice corresponds to the massive or decoupling solution
obtained with DSE and fRG calculations in QCD [16–21] and the Curci-Ferrari model [22],
where the gluon propagator freezes out in the infrared and 1/Z(Q2 → 0)∝ 1/Q2. In turn,
the ghost dressing function G(Q2→ 0) becomes constant as shown in Fig. 1. Because 1/Z(Q2)
is the solution of the gluon DSE, which is an exact equation, at least one of the diagrams in the
DSE (cf. Fig. 2) must develop a massless 1/Q2 singularity. In the Pinch-Technique/Background-
Field method (PT-BFM), which allows one to rearrange the diagrams in the DSE according to
gauge invariance, mass generation is triggered by massless longitudinal poles in the three-
gluon vertex [20, 25–27]. Does this also happen in the standard treatment of the DSEs in
Landau gauge?

Moreover, calculations with functional methods also find the scaling solution, where the
n-point correlation functions scale with infrared power laws [11–15]. For the gluon and ghost
dressing functions this entails Z(Q2 → 0) ∝ (Q2)2κ and G(Q2 → 0) ∝ (Q2)−κ with an in-
frared exponent κ ≈ 0.595, which is also plotted in Fig. 1. Here the inverse gluon dressing
diverges slightly faster than a 1/Q2 pole and also the ghost dressing is infrared-divergent. The
scaling solution is consistent with the Kugo-Ojima confinement scenario based on global BRST
symmetry [18, 28], and it leads to a 1/Q4 behavior and thus a linear rise in coordinate space
for the (gauge-dependent) quark-antiquark four-point function [29], whose gauge-invariant
version defines the Wilson loop.

Functional calculations have further revealed a family of decoupling solutions with the
scaling solution as their endpoint [17, 18, 22]. While the scaling solution is not seen on the
lattice, there are indications for different decoupling solutions depending on the gauge-fixing
procedure [30]. It has been speculated that the emergence of a family of solutions may be due
to an additional gauge fixing parameter in Landau gauge [31]. Indeed, there is accumulating
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Figure 2: Coupled Yang-Mills DSEs for the ghost propagator, gluon propagator and
three-gluon vertex.

evidence that all these solutions may be physically equivalent, as physical observables agree
within the systematic error bars: e.g., the Polyakov loop expectation value, which is the order
parameter for center symmetry in Yang-Mills theory, vanishes for scaling and decoupling-type
solutions alike and thus implies confinement for both [32,33]. Moreover, the respective critical
temperature agrees within the error bars for the whole set of scaling and decoupling solutions,
while generally it depends on the mass in massive Yang-Mills theory. This begs the question:
What is the parameter that distinguishes these different types of solutions?

2 Yang-Mills DSEs

To answer these questions, we solve the coupled system of DSEs for the ghost propagator,
gluon propagator and three-gluon vertex in Fig. 2; see Ref. [5] for details of the calculation.
Here, we take all diagrams in the ghost and gluon equations into account, whereas in the three-
gluon vertex DSE we neglect diagrams with two-loop terms and higher n-point functions. In
addition, we restrict ourselves to the leading tensor of the three-gluon vertex in the symmetric
limit, which is a good approximation in Landau gauge [34]. Thus, the quantities we compute
are the gluon dressing Z(Q2), the ghost dressing G(Q2) and the three-gluon vertex dressing
F3g(Q2). The remaining inputs are the ghost-gluon vertex, which is kept at tree level, and
the four-gluon vertex, whose tree-level tensor is multiplied with F4g(Q2) = G(Q2)2/Z(Q2) and
updated dynamically during the iteration. Similar high-quality truncations (also including
higher n-point functions) have been employed in DSE and fRG calculations [21,23].

We emphasize that different truncations do not change the qualitative features we discuss
in the following, which also remain intact when considering only the ghost and gluon DSEs as
in Refs. [12–14]. The Slavnov-Taylor identities (STIs) provide an internal way to quantify the
truncation error, which is about 10% when neglecting the two-loop terms in the gluon DSE
and 3− 4% when solving the full system in Fig. 2.

To study the origin of mass generation, we decompose the gluon self-energy in the second
row of Fig. 2 in the following overcomplete basis:

Πµν(Q) =∆T (Q
2) (Q2δµν −QµQν) +∆0(Q

2)δµν +∆L(Q
2)QµQν . (2)

This allows us to isolate quadratic divergences, which can only arise in the term ∆0(Q2) due
to the hard momentum cutoff employed in the equations and must be subtracted. The loga-
rithmic divergences in the remaining terms are absorbed in the standard renormalization. The
projection of the gluon DSE onto its Lorentz-invariant components yields

Z(Q2)−1 = ZA+∆T (Q
2) +

∆0(Q2)
Q2

, L(Q2)−1 = 1+ ξ

�

∆L(Q
2) +

∆0(Q2)
Q2

�

(3)
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Figure 3: Gluon self-energy contributions for the decoupling and scaling case [5].

for the transverse and longitudinal dressing functions, where ZA is the gluon renormalization
constant. The STI for the gluon propagator demands that the self-energy must be completely
transverse, which leaves two possible options:

Scenario A: ∆L =∆0 = 0 , Scenario B: ∆L = −
∆0

Q2
. (4)

Thus, ∆L and ∆0 must either vanish identically after removing the quadratic divergences, or
there must be a cancellation between them.

From the resulting self-energy contributions in Fig. 3, one can clearly see that ∆0 is non-
zero. In fact, for the decoupling solutions ∆0 is the term responsible for mass generation as it
enters like 1/Q2. The ghost loop contribution to∆T diverges logarithmically, whereas all other
contributions become constant in the infrared; also∆0 goes to a constant. By contrast, for the
scaling solution both ∆T and ∆0/Q

2 diverge with the same power 1/(Q2)2κ in the infrared
which originates from the ghost loop.

In Scenario A, a nonzero term ∆0 can at best be an artifact, either from the truncation or
from the hard cutoff. One way to proceed is then to replace the dynamically calculated ∆0 by
a constant, which yields a mass term like in massive Yang-Mills theory, and send ∆0 → 0 in
the end. This only leaves the scaling solution (as one can already infer from Fig. 3), however
with an ambiguity in the infrared exponent κ; a similar ambiguity arises when determining κ
analytically [12,13]. Based on these observations, our analysis disfavors Scenario A.

In Scenario B, on the other hand, the longitudinal consistency relation (4) between∆0 and
∆L does not affect the transverse equation and the ∆0/Q

2 term, but it implies that ∆L must
have a massless 1/Q2 pole. From the self-energy in Eq. (2) one infers that this can only happen
if either of the vertices (the ghost-gluon vertex, three-gluon vertex or four-gluon vertex) has
a longitudinal massless pole. How can one find out?

Let us first investigate what distinguishes the scaling and decoupling solutions. Usually
this is implemented by a boundary condition on the ghost: After setting renormalization con-
ditions, the Yang-Mills equations depend on the gluon dressing Z(µ2) at some renormalization
scale µ, the ghost dressing G(ν2), and the coupling g. Without loss of generality one can renor-
malize the ghost at ν2 = 0, so that Z(µ2), G(0) and g enter in the equations. If g and Z(µ2)
are kept fixed and G(0) is varied, this leads to the family of decoupling solutions (G(0) finite)
with the scaling solution as their endpoint (G(0) → ∞). From the viewpoint of renormal-
ization, this is however not completely satisfactory as G(0) should only renormalize the ghost
propagator but not lead to different solutions. This is also seen in fRG computations, e.g. [21],
which are manifestly RG-consistent.
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Figure 4: Solutions for the running coupling and the ghost, gluon and three-gluon
vertex dressing functions at a fixed value of β and varying α. [5].

To this end, one observes that the arbitrariness in the subtraction of the quadratic diver-
gences in ∆0(Q2) may be compensated by a parameter β:

∆0(Q2)
Q2

→
∆0(Q2)−∆0(Q2

0)

Q2
+

g2

4π
G(0)2 β

µ2

Q2
. (5)

This introduces an effective mass term in the equations (the prefactors ensure the correct
renormalization), which therefore depend on an additional parameter β . In Scenario A men-
tioned above, the first term in Eq. (5) is dropped and β is sent to zero in the end, whereas in
Scenario B this term is dynamical and β remains. It also turns out that Z(µ2), G(0) and g are
not actually independent but only appear in the equations through the combination

α=
g2

4π
Z(µ2)G(0)2 ∈ R+ . (6)

This can be seen by redefining Z(Q2) → Z(Q2)/Z(µ2), G(Q2) → G(Q2)/G(0) and perform-
ing the same operations for the three- and four gluon vertex as well as the renormalization
constants. Moreover, when introducing a dimensionless scale x = Q2/(βµ2) and redefining
G(x)→

p
αG(x), the equations for the ghost and gluon dressing functions assume the com-

pact form

G(x)−1 =
1
p
α
+Σ(x)−Σ(0) , Z(x)−1 = 1+Π(x)−Π( 1

β ) . (7)

Here, Σ(x) is the ghost self-energy and Π(x) is the transverse part of the gluon self-energy
in Eq. (3) including the ∆T and ∆0 terms. Only α and β appear explicitly in the equations,
which allows one to study the behavior of the solutions in the (α,β) plane.

018.5

https://scipost.org
https://scipost.org/SciPostPhysProc.6.018


SciPost Phys. Proc. 6, 018 (2022)

B term only
appears here

+ + +

+ + + + + +=

Bethe-Salpeter
amplitude

)2Q(iλ

0.00 0.01 0.02 0.03
0

20

40

60

80

0.00 0.01 0.02 0.03

20

40

60

80

β
√

β
√

α α

c = 0.92

c = 0.86

α

0c

1c

Figure 5: Left: Lines of constant physics in the (α,β) plane [5]. Right: DSE for the
ghost-gluon vertex, which becomes a homogeneous BSE for the longitudinal B term.

Fig. 4 displays the solutions for a fixed value of β and varying 0 < α <∞. The family
of decoupling solutions is characterized by the parameter α, and the scaling solution is the
envelope of the decoupling solutions for α→∞. The running coupling α(x) = Z(x)G(x)2

is renormalization-group invariant; this is the quantity that sets the scale by comparison with
lattice QCD (or, in full QCD, experiment). Note that the running coupling remains finite even
when the parameter α is sent to infinity. The orange bands in Fig. 4 indicate the onset of the
decoupling solutions, which are close to the solutions seen on the lattice: The ghost dressing
is finite in the infrared and the three-gluon vertex has crossed zero but not very far.

Repeating these calculations for general values of (α,β), one can identify lines of constant
physics along which the solutions are identical up to rescaling. This is shown in Fig. 5 and
entails that α and β recombine to two parameters c0 and c1, where c0 only rescales the sys-
tem and c1 is the actual parameter that distinguishes the scaling and decoupling solutions.
Therefore, the family of solutions is due to the presence of the mass term β , or in general ∆0,
which is entirely nonperturbative. The bending of the lines implies that without such a term
(β → 0) only the scaling solution would survive (as in Scenario A); if this term is dynamical,
one obtains the family of decoupling solutions with the scaling solution as its endpoint.

3 Longitudinal singularities

Let us return to the question of longitudinal singularities. The condition ∆L = −∆0/Q
2 re-

quires purely longitudinal poles in either of the vertices appearing in the gluon DSE (Fig. 2).
Such terms do not appear in the equations we solved so far: we employed tree-level tensors for
the ghost-gluon, three-gluon and four-gluon vertices, which should be a good approximation
for the transverse equation for Z(Q2) but cannot provide the full dynamics in the longitudinal
sector. For example, the general ghost-gluon vertex depends on two tensors,

Γ
µ

gh(p,Q) = −i g fabc [(1+ A) pµ + B Qµ] , (8)

where pµ is the outgoing ghost momentum and Qµ the incoming gluon momentum, and the
two dressing functions A and B depend on p2, p ·Q and Q2. The function A is small in Landau
gauge [23], which makes the tree-level tensor (A= B = 0) well-suited for approximations in
the transverse sector. In turn, little is known about B which only enters in the term ∆L .

To determine the longitudinal vertex dressing B, one must solve the DSE for ghost-gluon
vertex shown in Fig. 5. This DSE can be read as an inhomogeneous Bethe-Salpeter equation
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Figure 6: Left: Largest eigenvalue of the homogeneous BSE for the ghost-gluon ver-
tex, which only for the scaling solution α →∞ satisfies λ0 = 1. Right: Sketch of
a possible scenario with massless singularities in the vertices (blue) and the massive
Yang-Mills regime without such singularities (red) [5].

(BSE) for B, and to determine if B has a pole, one can equivalently solve the corresponding
homogeneous BSE: If the lowest-lying eigenvalue λ0(Q2) becomes 1 for some value of Q2, the
vertex must have a longitudinal pole. In particular, if λ0(Q2 = 0) = 1, the ghost-gluon vertex
must have a massless longitudinal pole.

The BSE solution for the eigenvalue λ0(0) is plotted in the left of Fig. 6. One can see that
λ0(0) indeed approaches 1 for α→∞, which means that the ghost-gluon vertex does have a
massless longitudinal pole, however only for the scaling solution. This would imply that only
the scaling solution can satisfy the longitudinal condition (4) needed for gauge consistency.

Obviously this raises the question about the lattice decoupling solutions and the PT-BFM
scheme, where longitudinal massless poles appear in the three-gluon vertex [35,36]. In fact,
it seems quite natural that if the ghost-gluon vertex does have such a pole, it would trigger
longitudinal massless poles in all other correlation functions whose DSEs contain ghost loops,
including the three-gluon vertex DSE in Fig. 2. In principle, the question could be settled by
back-coupling the three-gluon vertex including its full momentum dependence and all its 14
Lorentz tensors, in which case one would arrive at coupled BSEs for the longitudinal sector
of the ghost-gluon, three-gluon, four-gluon vertex etc. This leads to the situation sketched
in the right panel of Fig. 6: The eigenvalue λ0(Q2 = 0) would serve as an order parameter
that distinguishes the massless (QCD-like) solutions from the massive Yang-Mills solutions,
where the region close to the phase transition would be dominated by longitudinal poles in the
three-gluon vertex and the scaling solution corresponds to a ghost dominance. If this picture
were confirmed, it would indeed provide a strong indication that all QCD-like solutions are
physically equivalent and simply generated by different mechanisms.

4 Conclusions

In this work we summarized a recent study of mass generation in Landau-gauge Yang-Mills the-
ory. The corresponding Dyson-Schwinger equations admit a family of solutions characterized
by two parameters. One of them only rescales the solutions, whereas the other distinguishes
the range between a massive Yang-Mills-like regime on one side and the massless decoupling
regime including the scaling solution on the other side. The existence of this family is tied to
the term ∆0, which is nonperturbative and acts as an effective mass term in the equations.

For the Yang-Mills solutions, gauge consistency requires longitudinal massless poles in the
vertices — or phrased differently, the existence of longitudinal massless poles triggers mass
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generation in the transverse sector. We find that the ghost-gluon vertex indeed has such a pole,
which establishes the consistency of the scaling solution. The consistency of the decoupling
solutions requires longitudinal massless poles also in the three-gluon vertex (and possibly other
ones), which is the observation in the PT-BFM scheme. In that case, the eigenvalue of the
longitudinal Bethe-Salpeter equation would act as an order parameter that distinguishes the
massless from the massive Yang-Mills regime. This can be tested in the future and if confirmed,
it would provide further evidence for the decoupling solutions, with the scaling solution as
their endpoint, being physically equivalent.

On a more practical note, calculations such as the one presented herein establish a first
step towards ab-initio calculations of hadron properties with functional methods, which do not
rely on any parameters except those in the QCD Lagrangian and whose only approximations
amount to neglecting higher n-point functions, which makes them systematically improvable.
A recent example is the calculation of the glueball spectrum in Yang-Mills theory, which is in
agreement with lattice QCD calculations [37,38]. An important goal for future studies will be
the extension of such calculations towards full QCD.
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Abstract

We discuss masses, radii, and tidal deformabilities of neutron stars constructed from
the holographic Witten-Sakai-Sugimoto model. Using the same model for crust and core
of the star, we combine our theoretical results with the latest astrophysical data, thus
deriving more stringent constraints than given by the data alone. For instance, our calcu-
lation predicts – independent of the model parameters – an upper limit for the maximal
mass of the star of about 2.46 solar masses and a lower limit of the (dimensionless) tidal
deformability of a 1.4-solar-mass star of about 277.
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1 Introduction

The gauge-gravity duality [1,2] is a powerful non-perturbative tool to understand strongly cou-
pled gauge theories. Based on the holographic principle, it is employed to obtain otherwise
inaccessible strong-coupling results from classical gravity calculations in higher dimensions.
Here we use a certain realization of the gauge-gravity duality, the Witten-Sakai-Sugimoto
model [2–4], to describe cold and dense matter at baryon and isospin densities relevant for
neutron stars.

Neutron stars present a unique laboratory for matter at large, but not asymptotically large,
densities, where first-principle calculations within Quantum Chromodynamics (QCD) are too
difficult within currently available techniques (for recent progress on the lattice see for instance
Refs. [5–7]). The interior of neutron stars is therefore often studied with the help of phe-
nomenological models, effective field theories, or extrapolations of perturbative results, and
the resulting thermodynamic and transport properties can be linked to astrophysical observ-
ables [8,9]. In recent years, an increasing amount of astrophysical data has become available,
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for instance through the detection of gravitational waves from neutron star mergers [10, 11]
and through the NICER mission [12–15]. We shall combine the inferred estimates for mass,
radius, and tidal deformability of neutron stars with our holographic calculation.

The Witten-Sakai-Sugimoto model is the holographic top-down approach – based on type-
IIA string theory – that is closest to real-world QCD. It accounts for chiral and deconfinement
phase transitions, and several candidate phases at high densities can be realized, including a
holographic version of quarkyonic matter [16], which, however, tends to appear at densities
larger than expected in the cores of neutron stars. Here we restrict ourselves to nuclear matter
with two flavors, N f = 2, i.e., hybrid stars with a quark matter core or a quarkyonic core will
not be discussed. We employ the holographic results for the core of the star and, within a
simple approximation, for the crust as well, such that the crust-core transition is determined
dynamically. In this regard, our study goes beyond previous holographic approaches to neutron
stars [17–20] and beyond many field-theoretical studies, where the crust is often obtained from
a separate approach and assumptions about the crust-core transition have to be added by hand.
Different holographic approaches have recently been reviewed and compared in Ref. [21].

Secs. 2 and 3.1 of these proceedings provide a review of the results of Ref. [22]. However,
we significantly enhance these results by combining them more systematically with the astro-
physical data, thus extracting novel predictions for mass, radius, and tidal deformability of the
star in Sec. 3.2.

2 Holographic approach

2.1 Model and approximations

We work within the background geometry of the Witten-Sakai-Sugimoto model that corre-
sponds to the confined phase. The background is given by Nc D4-branes, where Nc corresponds
to the number of colors in the dual gauge theory. The N f D8- and D8-branes, added to describe
left- and right-handed fermions [3,4], are assumed to be maximally separated asymptotically
in a compact extra dimension with radius M−1

KK , such that their embedding in the bulk follows
geodesics. In this version of the model, there are only two parameters: the ’t Hooft coupling
λ and the Kaluza-Klein mass MKK, and we shall discuss our results in this parameter space
systematically (setting Nc = 3, N f = 2). We approximate the Dirac-Born-Infeld part of the
gauge field action on the flavor branes by the Yang-Mills action. The Chern-Simons part of
the action is crucial to implement nonzero baryon number, and we shall introduce baryonic
matter within the "homogeneous ansatz" [23,24]. In this ansatz, the spatial components of the
non-abelian part of the gauge field are assumed to depend only on the holographic (radial)
coordinate, not on the spatial ones. In contrast to an instantonic approach [25, 26], this ap-
proximation is expected to be justified at sufficiently large baryon densities. All our results are
valid at zero temperature. For the details of the theoretical setup see Ref. [27], where it was
shown how to include an isospin chemical potential in the presence of baryonic matter. This
is crucial for the description of realistic neutron star matter. In Ref. [27], pion condensation
was also included and its competition and coexistence with nuclear matter in the phase dia-
gram was investigated. Here we ignore pion condensation for simplicity. We also neglect the
current quark masses (since we only discuss non-strange matter, this is a very good approxi-
mation in our context), whose effect on the phase structure in the present model was studied
in Refs. [16, 28]. The holographic nuclear matter thus constructed shares several properties
with real-world nuclear matter, such as a first-order baryon onset of isospin-symmetric nuclear
matter. A caveat of the approximation arises due to the semi-classical large-Nc treatment of
the baryons. In this treatment, the isospin spectrum is continuous, and neutron and proton
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Figure 1: Left panel: Free energy densities relative to the mixed phase without
Coulomb and surface effects as a function of the neutron chemical potential. The
surface tension is set to Σ= 1 MeV/fm2. Right panel: Corresponding proton fraction
as a function of the spatially averaged baryon density, normalized by the saturation
density of nuclear matter. The star indicates the density and proton fraction in the
center of the most massive star. For both panels, λ = 10, MKK = 949MeV, resulting
in a saturation density n0 ' 0.21 fm−3, somewhat larger than in QCD.

states are not explicitly present. While we can still identify the two isospin components with
the neutron and the proton, the continuous spectrum is responsible for a symmetry energy at
saturation density that is an order of magnitude larger than in the real world. We shall see
momentarily that this results in a very large proton fraction of our neutron star matter.

2.2 Holographic crust

We combine our holographic nuclear matter with a lepton gas made of electrons and muons.
Requiring equilibrium with respect to the electroweak interaction and local charge neutrality
defines the spatially homogeneous matter in the neutron star core. We also allow for a mixed
phase of nuclear matter (plus leptons) and a lepton gas. For the construction of this mixed
phase – which forms the crust of the neutron star – we require global charge neutrality and
assume the interfaces between the two phases to be sharp surfaces. This assumption requires
us to introduce the surface tension of nuclear matter Σ as an additional external parameter.
We assume Σ to be constant throughout the crust and will mostly use Σ = 1MeV/fm2, which
is a realistic value for symmetric nuclear matter at saturation density (roughly the density
of our nuclear matter clusters in the crust, up to the crust-core transition). Moreover, we
employ the Wigner-Seitz approximation and restrict ourselves to the spherical geometry, i.e.,
we only consider spherical bubbles of nuclear matter (with dynamically determined size and
composition) immersed in a lepton gas, as expected for the outer crust of the star. We do
not construct a mixed phase of nuclear matter with pure neutron matter, as expected for the
inner crust. After these simplifications, the holographic equations of motion together with the
neutrality and beta-equilibrium conditions yield the preferred phase for any neutron chemical
potential µn fully dynamically.

We show the results for a certain parameter set in Fig. 1. The left panel compares the free
energy densities of the vacuum, homogeneous nuclear matter, and the mixed phase including
Coulomb and surface effects to the free energy density of the mixed phase without Coulomb
and surface effects. We read off the transitions between the vacuum and the mixed phase
(this will correspond to the surface of the star) and the transition from the mixed phase to
homogeneous nuclear matter (crust-core transition). The right panel shows the correspond-
ing proton fraction xp = np/nB, where np and nB are proton and baryon number densities,
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Figure 2: Left panel: Black curves show the effect of the crust, from no crust at all
(left) through crust with Coulomb and surface effects (middle, surface tension as la-
beled, in units of MeV/fm2) to crust without energy cost (right). For comparison, also
the curves for symmetric nuclear matter and pure neutron matter are shown (blue
and red, both without crust). In this panel, λ = 10, MKK = 949. Right panel: Mass-
radius curves including the crust withΣ= 1MeV/fm2 for different model parameters
λ and MKK (in MeV), as labeled. All curves end at the maximal mass, beyond which
the stars are unstable with respect to radial oscillations.

respectively. We see that our nuclear matter evolves from almost symmetric nuclear matter
to more asymmetric matter as we approach the crust-core transition. Then, in the core of the
star, the proton fraction rises until at ultra-high densities it decreases again. We also see that
the values for xp are close to 0.5 throughout. This indicates that there is a large energy cost
associated with creating isospin-asymmetric matter, which can be attributed to the large-Nc
approximation of our approach. Improving the approach to overcome this unrealistic feature
is an important step for future work.

3 Holographic neutron stars

3.1 Mass-radius curves

The holographic calculation laid out in the previous section provides us with all thermody-
namic quantities. We can thus straightforwardly compute the equation of state, i.e., the pres-
sure as a function of energy density, including the first-order phase transition at the crust-core
boundary, and the corresponding speed of sound. Equation of state and speed of sound are
then used as input for the Tolman-Oppenheimer-Volkoff equations (supplemented by an equa-
tion for the perturbation of the metric due to tidal deformations), which are solved numerically
to extract gravitational mass M , radius R, and tidal deformability Λ for a given central pressure
of the star. Varying the central pressure yields mass-radius relations as presented in Fig. 2. The
left panel of this figure shows the effect of the crust and different surface tensions: ignoring the
crust leads to very small radii, a crust without Coulomb and surface effects yields very large
radii (then the crust is unrealistically large), while Coulomb and surface effects render the
effect of the crust more moderate, resulting in radii between the two extremes. The maximal
mass is almost unaffected by these changes. The left panel also shows the comparison with
pure neutron matter and isospin-symmetric nuclear matter. For the right panel, we have fixed
the surface tension and have varied the model parameters λ and MKK. This panel suggests that
realistic "holographic stars" can be obtained. In particular, masses above 2.1 M�, where M� is
the solar mass, are reached, which is a necessary requirement on account of the observation
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Figure 3: Tidal deformability Λ and radius R for a 1.4-solar-mass star (blue solid)
and a 2.1-solar-mass star (red solid) as a function of the maximal mass Mmax. Here
we have fixed the ’t Hooft coupling λ = 10 and the surface tension Σ = 1MeV/fm2,
and different values of Mmax are obtained by varying the second model parameter
MKK. The horizontal dashed lines indicate the astrophysical constraints for Λ1.4,
R1.4, and R2.1. Beyond the shaded region at least one of the constraints is vio-
lated. As a consequence, for this particular value of the ’t Hooft coupling, we obtain
2.11 M� ® Mmax ® 2.40 M� and new bounds for Λ1.4, R1.4, Λ2.1, R2.1, for instance
288® Λ1.4 ® 580.

of the heaviest known neutron star [29]. We shall confront our results with the other known
constraints in the next subsection and see that indeed all known astrophysical constraints can
be satisfied (in contrast to the simple pointlike approximation of baryons within the same
holographic model [22,30]).

3.2 Combining holographic results with astrophysical constraints

Besides the existence of a 2.1-solar-mass star, we also consider the constraints for the tidal
deformability, 70 < Λ1.4 < 580 [10], and radius, 11.5 km < R1.4 < 14.3 km (putting together
Refs. [12,13]), of a (roughly) 1.4-solar-mass star as well as the radius, 11.4km< R2.1 < 16.3 km
(putting together Refs. [14,15]), of a (roughly) 2.1-solar-mass star. We demonstrate in Fig. 3
how these constraints can be combined with our holographic results to derive more stringent
conditions for mass, radius, and tidal deformability. To obtain this figure, we have fixed the
’t Hooft coupling λ and calculated the properties of 1.4-solar-mass and 2.1-solar-mass stars
and the maximal mass Mmax for different values of MKK. This results in the red and blue solid
curves (the curves for the 2.1 M� star obviously end where the maximal mass drops below
that value). Since the microscopic calculation of homogeneous nuclear matter becomes in-
dependent of MKK in the absence of any additional energy scale, we have ignored the muon
contribution and set the electron mass to zero here and for the following results. (The surface
tension does introduce another energy scale and thus a dependence on MKK, but its effect is
computed without much numerical effort once the main holographic calculation for a given λ
is done.) We now compare the solid curves with the astrophysical constraints, indicated by the
horizontal dashed lines. It turns out that the strongest constraint for the upper limit of Mmax
is the upper limit of Λ1.4 while the strongest constraint for the lower limit of Mmax is the lower
limit of R2.1. This gives the two vertical lines, which define the shaded region. This region, in
turn, gives new upper limits for R1.4, R2.1, and new lower limits for R1.4, Λ1.4 (as well as upper
and lower limits for Λ2.1, for which no constraints are known).

The shaded region also yields an "astrophysically allowed" range for the second model pa-
rameter MKK because each Mmax in Fig. 3 is generated by choosing a value for MKK. Repeating
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Figure 4: Left panel: Allowed range according to the astrophysical constraints in the
λ-MKK plane (doubly logarithmic), obtained by applying the construction of Fig. 3
for each λ. The three symbols mark the parameter pairs from the QCD fits of table 1,
and we use them to define a "QCD window" (red). Right panel: Constraints for the
maximal mass of the neutron star as a function of the ’t Hooft coupling λ. The light
gray band gives the constraint from astrophysical data. The dark gray band and the
red band arise from applying the constraints of the left panel.
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Figure 5: Saturation density of symmetric nuclear matter (left) and corresponding
onset chemical potential (right) as functions of λ for the astrophysically allowed
parameter band, see left panel of Fig. 4, and for the three fits of table 1. The dashed
horizontal lines indicate the real-world values.

this calculation for many values of λ we can thus determine a window in the MKK-λ plane that
satisfies all astrophysical constraints. For most of the λ range we consider, the situation is qual-
itatively the same as in Fig. 3. For very small λ, however, the scenario slightly differs: Instead
of the lower bound for R2.1, the existence of the 2.1-solar-mass star becomes the strongest con-
straint for the lower bound of Mmax; and instead of the upper bound for Λ1.4, the upper bound
for R1.4 becomes the strongest constraint for the upper bound of Mmax. The resulting window
is the gray shaded area in the left panel of Fig. 4. For comparison, we have indicated three par-
ticular parameter choices obtained from fits to QCD vacuum properties (circle and diamond)
and to saturation properties of symmetric nuclear matter (square), as explained in table 1.
We see that these three points do not coincide and none of them lies in the astrophysically
allowed band. Having in mind that the points and the band are constructed to fit properties
of vastly different systems, it is perhaps not surprising that the Witten-Sakai-Sugimoto model,
at least in the simple version employed here, cannot account for all of them simultaneously.
To get some further idea of the extent by which the properties of nuclear matter are violated,
we have plotted the saturation density n0 and the onset chemical potential µ0 for the astro-
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Table 1: Fits of the model parameters to vacuum properties (pion decay constant and
rho meson mass [3,4], first row, QCD string tension and rho meson mass [31], second
row), and to nuclear saturation properties (saturation density n0 = 0.153 fm−3 and
onset chemical potential µ0 = 922.7MeV of symmetric nuclear matter, third row, this
work).

fit to λ MKK Figs. 4, 5

fπ, mρ 16.63 949MeV •
σ, mρ 12.55 949MeV �
n0, µ0 7.09 1000MeV �
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Figure 6: Same as right panel of Fig. 4, but for radius and deformability of 1.4-solar-
mass and 2.1-solar-mass stars.

physically allowed band and the three separate fits in Fig. 5. If we are more modest and do
not require to fit "everything" with a single parameter set but at least keep the QCD properties
approximately correct, it is useful to define a "QCD window", given by the fits to the vacuum
and nuclear matter: MKK ' (949−1000)MeV and λ' 7−17. We have indicated this window
as a red rectangle in the left panel of Fig. 4.

In the right panel of this figure and in Fig. 6 we collect the constraints for all λ obtained
from the construction of Fig. 3. Constraints from astrophysical data alone are shown by a
light gray band (obviously independent of the microscopic model parameter λ). The panel
for the deformability Λ2.1 does not have such a band because there is no data available from
a neutron star merger with a star of that mass. The dark gray bands are the more stringent
constraints obtained by combining the data with the results of the model. They allow us to
read off predictions of the model that are completely general, i.e., with no assumptions about
the model parameters λ and MKK (for a fixed value of the surface tension in the crust). We
have collected these predictions in table 2. For the "parameter-independent" bounds we have
used the upper or lower limits of the bands visible in the plots. In all cases, perhaps with
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Table 2: Constraints obtained by combining the holographic results with astrophysi-
cal data for maximal mass as well as radius and tidal deformability for 1.4-solar-mass
and 2.1-solar-mass stars. Parameter-independent bounds are valid for any model pa-
rameters λ, MKK, while the QCD window defined by table 1 and Fig. 4 gives tighter
bounds. Parentheses indicate that our model does not further restrict the astrophys-
ical data used here.

parameter independent QCD window
lower bound upper bound lower bound upper bound

Mmax [M�] (2.1) 2.46 2.11 2.40
R1.4 [km] 11.9 (14.3) 12.4 14.1
R2.1 [km] (11.4) 13.7 (11.4) 13.7
Λ1.4 277 (580) 286 (580)
Λ2.1 9.13 49.3 10.1 43.7

the exception of Λ2.1, the shapes of the bands suggest that these are the general bounds even
beyond the shown λ regime. Our predictions can further be refined by focusing on the QCD
window, which is shown in each panel as a red band (cut off at the boundaries of the light
gray band). The steepness of the red bands indicate that the observables are very sensitive
to variations in λ. The refined constraints are then obtained from the intersections of the red
bands with the dark gray bands (more precisely the upper or lower corner of the intersection,
depending on whether we obtain an upper or lower limit). These values are also collected in
table 2. For instance, we find as a general prediction of the model that neutron stars cannot be
heavier than 2.46 solar masses, while if we are interested to approximately reproduce vacuum
and nuclear matter properties at the same time, this upper limit can be lowered to 2.40 solar
masses. Similarly, for any parameter values the tidal deformability of a 1.4-solar-mass star
cannot be lower than 277, the QCD window further narrows this down to a lower limit of
about 286.

4 Conclusion

We have employed a holographic description of zero-temperature, high-density nuclear matter
and used this single, top-down formalism to construct neutron stars. In particular, since our
holographic nuclear matter is allowed to become isospin asymmetric, we were able to account
for electroweak equilibrium and electric charge neutrality, and we have constructed a mixed
phase of nuclear matter and a lepton gas to include the crust of the star fully dynamically.
We have demonstrated that the model can reproduce realistic neutron stars, and we have
combined our microscopic results with the latest astrophysical data to derive constraints for
mass, radius, and tidal deformability of the star.

Improvements of the holographic model are necessary for more reliable predictions, most
notably a refined approximation regarding the isospin spectrum is highly desired. More straight-
forward improvements of the present calculation would be the construction of an inner crust
as a mixed phase of pure neutron matter and nearly symmetric nuclear matter, taking into
account different geometrical structures in the crust and the crust-core transition region, and
computing the surface tension dynamically within the model. Other extensions are the inclu-
sion of strangeness (and a nonzero strange quark mass), pion condensation, nonzero temper-
ature effects, a magnetic field, and the phase transition to a chirally restored phase. Most of
these ingredients have been developed already within the given model and have to be com-
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bined and possibly improved for neutron star applications. It would also be interesting to use
the model to compute transport properties, as recently done in the context of dense matter
within different holographic setups [32,33].
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Abstract

We discuss the prediction of critical behavior of lattice observables in SU(2) and SU(3)
gauge theories. We show that feed-forward neural network, trained on the lattice con-
figurations of gauge fields as input data, finds correlations with the target observable,
which is also true in the critical region where the neural network has not been trained.
We have verified that the neural network constructs a gauge-invariant function and this
property does not change over the entire range of the parameter space.
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1 Introduction

The low-energy physics of strong interactions cannot be addressed analytically because of
the strong coupling, which makes perturbative approaches, usually used in the high-energy
region, unreliable. For that reason, all existing calculations in the non-perturbative domain
are based on effective low-energy models or sophisticated numerical methods involving the
Monte Carlo (MC) algorithms. The MC simulations are reasonably reliable to address various
thermodynamic properties of quantum chromodynamics (QCD) from the first principles. In the
physically relevant domain of parameters, the numerical simulations are very computationally
expensive and thus require powerful supercomputers.

In addition, the Monte Carlo methods cannot be applied to the interesting region of the
QCD phase diagram at finite baryon chemical potential, thus calling for the development of
alternative approaches aimed, in particular, at the investigation of the quark-gluon plasma at
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finite density. A promising way to extend the MC techniques involves the machine learning
(ML) methods used nowadays to address various problems in physics [1,2].

Our work discusses an example of the potentially helpful combination of the machine learn-
ing techniques with the standard MC methods. In the context of lattice field theory, the synergy
of these two approaches remains largely unexplored. The use of machine learning methods
is mainly reduced to (i) the investigation of the ability of neural networks to predict lattice
observables in non-perturbative domains of parameters and (ii) generate lattice field config-
urations as an alternative to the generally accepted Monte Carlo approach. In our paper, we
address the question of the critical behavior of lattice observables in SU(2) and SU(3) gauge
theories with the ML techniques that respect the gauge-invariant structure of the theory.

2 Machine learning

The use of machine learning methods in lattice QCD is reduced to solving several problems:
regression problem, classification problem and simulation problem.

Simulations of configurations in lattice QCD are often computationally expensive, that
complicates the process of accumulating statistical data. Modern machine learning techniques
can provide opportunities to improve simulation speed. One can build neural network to
simulate lattice configurations and after training this approach require less computer power
and time than common methods to simulate lattice configurations [3,4].

In case of searching for new physics we try to solve regression or classification problem
where neural network trains to reconstruct certain observables from a given information of
Monte Carlo configurations corresponding to some set of lattice parameters. A well-trained
neural network is subsequently able to predict the value of the observable from data that was
previously unknown to it [5,6]

But, generally accepted ML methods aimed to solving various problems in the field of
computer vision are not suitable for solving problems in the field of gluodynamics, since lattice
data is another kind of data that is fundamentally different from classical images. In order
to use machine learning in LQCD, it is necessary either to take into account the properties of
lattice data within the neural networks itself or transform the lattice data to a more convenient
form. The construction of neural networks consistent with the local symmetry and the matrix
origin of the lattice data is still an active topic of discussion in the current literature [7,8].

3 Lattice Simulations

In this work, we carry out simulations of non-Abelian Yang-Mills gauge theory in lattice regu-
larization with two and three colors. We use Wilson discretization of action

S[U] = β
∑

P

�

1−
1
N

Re [Tr UP]
�

, (1)

where β is theory parameter that correspond to lattice gauge coupling, N defined number
of colors and UP = Ux ,µUx+µ̂,νU†

x+ν̂,µU†
x ,ν is plaquette variable which build from original link

variables Ux ,µ ∈ SU(N). Wilson action is formulated in the Euclidean spacetime on the lattice
with the volume N3

s ×Nt . We are used periodic boundary conditions in all directions. For study
dependence from lattice volume we use Nt = 2, 4 and Ns = 8,16, 32. The partition function
of our system is defined with the formula

Z =

∫

dU e−S[U] . (2)
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There are two phases of this theory: confinement and deconfinement. Confinement corre-
sponds to small values of the coupling constant β , deconfinement to high values. In the case of
two-color gluodynamics, these two phases are separated by a second-order phase transition.
In the case of N ≥ 3, a first-order phase transition is observed.

The well-known order parameter of the deconfinement phase transition is the Polyakov
loop. In the lattice calculations, it is convenient to identify the bulk Polyakov loop:

L =
1

N3
s N

¬∑

x

Tr
Nt−1
∏

t=0

Ux ,t;4

¶

, (3)

where the sum goes over all spatial sites x of the lattice.

4 Neural network architecture and training process

We are trying to find such an architecture of a neural network that could catch correlations with
a targeted observable (Polykov loop) and display its properties. In this section, we describe
the machine-learning algorithm which includes building of the architecture and training of
the neural network. The training points for SU(2) and SU(3) gauge theories are set at the
lattice coupling constants β = βSU(2) = 4 and β = βSU(3) = 10, respectively. Both these points
correspond to a deep weak-coupling regime.

The values βSU(2) and βSU(3) were chosen by us because explicit calculations of the Polyakov
loop are still possible at these points with the support of Monte Carlo calculations. In another
turn, these points correspond to the region where the Polyakov loop has a nonzero behavior,
which is important for a qualitative training process. It is also well known that in this region
the Polyakov loop has several vacuum states, depending on the theory. As we will show, based
on this information the neural network does not need more knowledge to reconstruct the
behavior of the predicted order parameter.

Referring to the problem described above, in order to build a neural network architecture,
we need to transform the input multidimensional lattice data in the most convenient way. In
this project we propose to use the vector representation of matrices, however, in the case of
SU(2) gauge fields, we use only 4 components, since the rest of the matrix components are
highly correlated. The vector representation is the following for SU(2) matrix:

U=

�

u11 u12
u21 u22

�

≡
�

a1 + ia2 a3 + ia4
−a3 + ia4 a1 − ia2

�

→







a1
a2
a3
a4






, (4)

where a1 = Re(u11), a2 = Im(u11), a3 = Re(u12), and a4 = Im(u12). In the case of the SU(3)
theory, the full set of matrix values is used.

After preparing the input data, we have an input lattice tensor with the following shape
(Nt , Ns, Ns, Ns, Dim, U). The last dimension of this tensor is the elements of the matrix in
the corresponding vector form. Dim is the index of µ-direction for the matrix Uµ(x), the
indices Ns and Nt represent the number of sites in the lattice configuration for the spatial and
temporal direction. Also worth noting that we use 3D convolution layers and for that reason
we reshape the input lattice data to 4D where the last dimension correspond to the channels of
neural network. The first two spatial directions are merged because element U[x][y] can be
represented as U[y ∗Ns + x] by cost of locality. The last two dimensions can also merged into
one, since we are interested in correlations between matrices located in neighboring links. As
result the architecture of the neural network are the following sequence of layers: convolution,
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relu activation, average pooling, flatten and dense layer. Using different sizes of lattice data
requires new architectures to be built, as it turned out, an increase in the temporal direction
in the input data requires an additional convolution-relu sequence. The final architecture of
neural networks are presented in the Table 1.

Table 1: Neural network architectures for various size of input configurations.

InputData(Nt = 2, N2
s , Ns, Uµ) InputData(Nt = 4, N2

s , Ns, Uµ)
Conv3D + ReLU Conv3D + ReLU + Conv3D + ReLU

AveragePooling3D + Flatten AveragePooling3D + Flatten
Dense Dense

Before starting the training process, we generate 9000 configurations with different param-
eters Ns and Nt at one fixed coupling constant βSU(2) or βSU(3). During the training process, we
also guarantee that the data from each vacuum state will be used in the same proportion. For
prediction the Polykov loop we generate other 100 configurations at points with β ≤ βSU(2)
or β ≤ βSU(3). In SU(3) case the Polyakov loop becomes complex number, here we predict
the real and imaginary parts separately. We choose the mean squared error (MSE) as a loss
function. The neural network parameters’ optimization algorithm is Adam-method.

As a result, we built and trained a neural network that can predict the behavior of the
Polyakov loop in the β < βSU(N) region based on the knowledge from only one β point. In Fig-
ure 1 we demonstrate the effectiveness of a neural network algorithm for qualitative prediction
of the order parameter over the entire range of the coupling constant.
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Figure 1: Prediction of neural network on a sample by sample basis of SU(3) 323×4
configurations, where β values were used in the range from 4 to 7 with a step of 0.2.

Another important aspect of this prediction is the verification of the invariance of a given
observable with respect to gauge transformations. For this check, we completely change the
configuration using a set of different uniformly distributed SU(2) or SU(3) matrices respec-
tively. We do several changes and make a prediction for each step for the already changed
configuration. In Figure 2, we demonstrate the result for such a test for the case of the SU(2)
theory and lattice size equal to Nt = 4, Ns = 16.
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Figure 2: Gauge invariant behavior of numerically constructed Polykov loop at differ-
ent phases of SU(2) theory as function of uniformly distributed global random gauge
transformation step.

5 Conclusion

We demonstrate that the machine-learning algorithms allow us to restore, using the data from
an unphysical point of the lattice parameter space, the gauge-invariant order parameter appli-
cable to the whole physical critical region of the theory. In other words, our neural network is
able to the physical order parameter relevant to the numerically costly critical regime of the
model after a training procedure at a set of lattice field configurations that were generated by
fast Monte Carlo methods at a single unphysical point outside of the continuum limit of the
lattice model.

We also demonstrated that the classical feed-forward neural network could be used to
restore simple observables and predict their properties in the critical region of the theory. Our
work potentially implies that the ML techniques can predict other, more complex observables
and thus be applied to the regions which are unreachable to the standard MC methods. In
addition, we demonstrated how the non-gauge-invariant architecture of the deep learning
model may produce gauge-invariants solutions within statistical uncertainties.
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