Introduction	Lifetimes	Decays	Conclusion

Doubly Heavy Baryons: Lifetimes and Some Weak Decays

A. V. Luchinsky

IHEP, Protvino, Russia

November 13, 2020

Introduction	Lifetimes	Decays	Conclusion
00	0000000	0000000	

Content

2 Lifetimes

- 3π
- 4π
- 5π

Introduction	Lifetimes	Decays	Conclusion
●0	0000000	0000000	00
Introduction			

• $(Q_1Q_2)q$ — a laboratory to study h.q. interactions

Introduction	Lifetimes	Decays	Conclusion
●0	0000000	0000000	00
Introduction			

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:

Introduction ●O	Lifetimes 0000000	Decays 0000000	Conclusion 00
lutus du stisu			
Introduction			

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:
 - Masses, Production, Decays

Introduction	Lifetimes	Decays	Conclusion
●0	0000000	0000000	00
Introduction			

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:
 - Masses, Production, Decays
- Ξ_{cc}^{++} observed: with good mass, bad τ

Introduction	Lifetimes	Decays	Conclusion
●0	0000000	0000000	00
Introduction			

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:
 - Masses, Production, Decays
- Ξ_{cc}^{++} observed: with good mass, bad τ
 - TODO: Update the model parameters

Introduction ●0	Lifetimes 0000000	Decays 0000000	Conclusion 00
Introduction			

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:
 - Masses, Production, Decays
- Ξ_{cc}^{++} observed: with good mass, bad au
 - TODO: Update the model parameters
 - TODO: lifetime predictions

Introduction	Lifetimes	Decays	Conclusion
●○	0000000	0000000	00
1			

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:
 - Masses, Production, Decays
- Ξ_{cc}^{++} observed: with good mass, bad au
 - TODO: Update the model parameters
 - TODO: lifetime predictions
- B_c is visible $\Rightarrow \Xi_{bc}$ could be detected too

•0		
1		

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:
 - Masses, Production, Decays
- Ξ_{cc}^{++} observed: with good mass, bad au
 - TODO: Update the model parameters
 - TODO: lifetime predictions
- B_c is visible $\Rightarrow \Xi_{bc}$ could be detected too
 - TODO: Decays

Introduction ●0	Lifetimes 0000000	Decays 0000000	Conclusion 00
Intro duction			

- $(Q_1Q_2)q$ a laboratory to study h.q. interactions
- Nicely studied theoretically:

ΠΠΓΟΠΠΟΠ

- Masses, Production, Decays
- Ξ_{cc}^{++} observed: with good mass, bad au
 - TODO: Update the model parameters
 - TODO: lifetime predictions
- B_c is visible $\Rightarrow \Xi_{bc}$ could be detected too
 - TODO: Decays

•
$$\Xi_{bc} \rightarrow \Xi_{cc} + \mathcal{R}$$
, $\mathcal{R} = 2\pi, 3\pi, \dots$

Introduction	Lifetimes	Decays	Conclusion
O•	0000000	0000000	00
Doubly Heavy	Baryons		

Nice theoretical predictions for

• Masses: S.S. Gershtein et al, YF63,334(2000), V.V. Kiselev et al, Phys.Rev.D66, 034030 (2002)

Introduction ⊙●	Lifetimes 0000000	Decays 0000000	Conclusion 00
Doubly Heavy	y Baryons		

Nice theoretical predictions for

- Masses: S.S. Gershtein et al, YF63,334(2000), V.V. Kiselev et al, Phys.Rev.D66, 034030 (2002)
- Production A. V. Berezhnoy et al, Yad.Fiz.59,909(1996), V. V. Braguta et al, hep-ph/0005149

Introduction	Lifetimes	Decays	Conclusion
O	0000000	0000000	00
Doubly Heavy	Baryons		

Nice theoretical predictions for

- Masses: S.S. Gershtein et al, YF63,334(2000), V.V. Kiselev et al, Phys.Rev.D66, 034030 (2002)
- Production A. V. Berezhnoy et al, Yad.Fiz.59,909(1996), V. V. Braguta et al, hep-ph/0005149
- Decays: A. I. Onishchenko, arXiv:hep-ph/0006271, A. V. Berezhnoy et al Phys. Rev. D 98 (2018)

Introduction	Lifetimes	Decays	Conclusion
○●	0000000	0000000	00
Doubly Heavy	Baryons		

Nice theoretical predictions for

- Masses: S.S. Gershtein et al, YF63,334(2000), V.V. Kiselev et al, Phys.Rev.D66, 034030 (2002)
- Production A. V. Berezhnoy et al, Yad.Fiz.59,909(1996), V. V. Braguta et al, hep-ph/0005149
- Decays: A. I. Onishchenko, arXiv:hep-ph/0006271, A. V. Berezhnoy et al Phys. Rev. D 98 (2018)
- Lifetimes: M. Karliner et al, r, Phys.Rev.D90, 094007 (2014), A. Likhoded et al, YF 81, 737 (2018)

Introduction 00		Lifetimes ●000000	Decays 0000000	Conclusion 00

Total width within OPE

$$\Gamma_{\Xi_{cc}} = \frac{1}{2M_{\Xi_{cc}}} \langle \Xi_{cc}^{\diamond} | \mathcal{T} | \Xi_{cc}^{\diamond} \rangle$$
$$\langle \Xi_{cc} | \Xi_{cc} \rangle = 2EV$$

$$\mathcal{T} = \mathrm{Im} m \int d^4 x \, \{ \mathrm{T} H_{eff}(x) H_{eff}(0) \}$$

where H_{eff} is the standard effective hamiltonian describing the low energy weak interactions of initial quarks with the decay products. For the transition of *c*-quark, *u*-quark and the quarks $q_{1,2}$ with the charge -1/3, the lagrangian has the form

$$H_{eff} = \frac{G_F}{2\sqrt{2}} V_{uq_1} V_{cq_1}^* [C_+(\mu)O_+ + C_-(\mu)O_-] + h.c.$$

where V is the matrix of mixing between the charged currents, and

$$O_{\pm} = [\bar{q}_{1\alpha}\gamma_{\nu}(1-\gamma_{5})c_{\beta}][\bar{u}_{\gamma}\gamma^{\nu}(1-\gamma_{5})q_{2\delta}](\delta_{\alpha\beta}\delta_{\gamma\delta} \pm \delta_{\alpha\delta}\delta_{\gamma\beta}),$$

 α,β are color states of quarks and

$$C_{+} = \left[\frac{\alpha_{s}(M_{W})}{\alpha_{s}(\mu)}\right]^{\frac{6}{33-2n_{f}}}, \quad C_{-} = \left[\frac{\alpha_{s}(M_{W})}{\alpha_{s}(\mu)}\right]^{\frac{-12}{33-2n_{f}}}$$

where n_f is the number of flavors.

・ロト・西ト・ヨト・ヨー もくの

Introduction	Lifetimes	Decays	Conclusion
00	o●ooooo	0000000	

OPE for the transition operator ${\cal T}$

Main features:

- $\bar{c}c$ spectator decays of *c*-quarks;
- no operators of dimension 4 contribute;
- the only operator of dimension 5 ;
- Pauli interference (operators of dimension
 6) essentially contribute to Ξ⁺⁺_{cc} life time;
- weak scattering (operators of dimension
 6) essentially contribute to Ξ⁺_{cc} life time.

Spectator contribution:

Pauli interference:

Weak scattering:

< ロ > < 同 > < 回 > < 回 >

Introduction	Lifetimes	Decays	Conclusion
00	00●0000	0000000	00
Ξ_{cc}^{++} , Ξ_{cc}^{+} lifetimes			

$$\begin{split} \mathcal{T}^{\left(\Xi_{cc}^{++}\right)} &= 2(\mathcal{T}_{35c} + \mathcal{T}_{\mathrm{PI},u\bar{d}}^{c}), \qquad \mathcal{T}^{\left(\Xi_{cc}^{+}\right)} = 2(\mathcal{T}_{35c} + \mathcal{T}_{\mathrm{WS},cd}), \\ \mathcal{T}_{\mathrm{PI},u\bar{d}}^{c} &= -\frac{G_{F}^{2}}{4\pi} m_{c}^{2} \left(1 - \frac{m_{u}}{m_{c}}\right)^{2} \times \\ &\left\{ \left[G_{1}(z_{-})(\bar{c}c)_{V-A}^{ii}(\bar{u}u)_{V-A}^{ji} + G_{2}(z_{-})(\bar{c}c)_{A}^{ii}(\bar{u}u)_{V-A}^{ji}\right] \left[F_{3} + \frac{1}{3}(1 - k^{\frac{1}{2}})F_{4}\right] + \\ &\left[G_{1}(z_{-})(\bar{c}c)_{V-A}^{ij}(\bar{u}u)_{V-A}^{ji} + G_{2}(z_{-})(\bar{c}c)_{A}^{ij}(\bar{u}u)_{V-A}^{ji}\right] k^{\frac{1}{2}}F_{4}\right\}, \\ \mathcal{T}_{\mathrm{WS},cd} &= \frac{G_{F}^{2}}{4\pi} m_{c}^{2} \left(1 + \frac{m_{d}}{m_{c}}\right)^{2} (1 - z_{+})^{2} \left[(F_{6} + \frac{1}{3}(1 - k^{\frac{1}{2}})F_{5})(\bar{c}c)_{V-A}^{ij}(\bar{d}d)_{V-A}^{ij} + \\ &k^{\frac{1}{2}}F_{5}(\bar{c}c)_{V-A}^{ij}(\bar{d}d)_{V-A}^{ij}\right], \\ F_{1,3} &= (C_{+} \mp C_{-})^{2}, \qquad F_{2,4} = 5C_{+}^{2} + C_{-}^{2} \pm 6C_{+}C_{-}, \qquad F_{5,6} = C_{+}^{2} \mp C_{-}^{2}, \\ G_{1}(z) &= \frac{(1 - z)^{2}}{2} - \frac{(1 - z)^{3}}{4}, \qquad G_{2}(z) = \frac{(1 - z)^{2}}{2} - \frac{(1 - z)^{3}}{3}, \\ z_{-} &= \frac{m_{s}^{2}}{(m_{c} - m_{u})^{2}}, \qquad z_{+} &= \frac{m_{s}^{2}}{(m_{c} + m_{d})^{2}} \\ (\bar{c}c)_{V-A}^{ij}(\bar{q}q)_{V-A}^{ij} = -(\bar{c}c)_{V-A}^{ij}(\bar{q}q)_{V-A}^{ij} = 12(m_{c} + m_{q})|\Psi(0)|^{2} \end{split}$$

Introduction	Lifetimes	Decays	Conclusion
	0000000		

Model parameters and life time estimation

m_c , m_q , $M(\Xi_{cc}^{++})$, $M(\Xi_{cc}^{+})$, T and $\psi_{dd}(0)$

- $m_c = 1.6 \text{ GeV}$ the pole *c*-quark mass (lifetime and semileptonic decays of D^0 meson).
- T = 0.4 GeV the kinetic energy of diquark and light quark (potential models).
- $M(\Xi_{cc}^{++}) \approx M(\Xi_{cc}^{+}) \approx 3.56 \text{ GeV} \text{mean values (PM and SR)}.$

•
$$\psi_{dd}(0) = 0.17 \text{ GeV}^{3/2}$$

$$au(\Xi_{cc}^{++}) = 0.48 \text{ ps}$$
 $au(\Xi_{cc}^{+}) = 0.12 \text{ ps}$

Experimental value:

$$\tau(\Xi_{cc}^{++}) = 0.256^{+0.025}_{-0.023}(\text{stat}) \pm 0.014(\text{syst}) \,\text{ps}$$

イロト 不得 トイヨト イヨト 二日

Quarks' masses for meson and baryon could be different

 $m_c = 1.694 \pm 0.03 \,\mathrm{GeV}$ 0.7 0.25 0.6 0.3 0.5 r,ps 0.4 음 0.2 0. 0.3 0.10 0.2 0.1 0.05 0 1 0.00 0.0 1.3 1.4 1.5 1.6 17 1.8 1.9 2.0 0.1 0.2 0.3 0.4 0.5 0.0026 0.0028 0.0030 0.0032 0.0034 0.0036 14d1(0)12, GeV3 mc, GeV m₂, GeV $\tau(\Xi_{cc}^{++}) = 0.26 \pm 0.03 \,\mathrm{ps}, \qquad \tau(\Xi_{cc}^{+}) = 0.14 \pm 0.01 \mathrm{ps}, \quad \tau(\Omega_{cc}^{+}) = 0.19 \pm 0.01 \,\mathrm{ps}$ Ω_{cc}^{+} 10 8 F, ps⁻¹ 00. 1.3 1.4 15 1.6 1.8 1.9 2.0 1.3 14 15 1.6 1.7 18 1.9 2.0 1.3 1.4 1.5 1.6 1.8 1.9 2.0 m. GeV mc. GeV

Introduction	Lifetimes	Decays	Conclusion
00	00000●0	0000000	00

Dependence on parameter values: Ξ_{bc} , Ω_{bc}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ∽のへの

Introduction	Lifetimes	Decays	Conclusion
	000000		

Why lifetimes are very important

The contributions of different terms to the life time essentially depend on baryon composition (40-50%).

The lifetimes of doubly heavy baryons

baryon	au, ps	baryon	au, ps	baryon	au, ps
Ξ_{cc}^{++}	0.26 ± 0.03	Ξ_{bc}^+	0.23 ± 0.01	\equiv^{0}_{bb}	0.82 ± 0.01
Ξ_{cc}^+	0.14 ± 0.01	Ξ_{bc}^{0}	0.22 ± 0.01	Ξ_{bb}^{-}	0.84 ± 0.01
Ω_{cc}^+	0.19 ± 0.02	Ω_{bc}^{0}	0.17 ± 0.01	Ω_{bb}^{-}	0.84 ± 0.01

The strong splitting of lifetimes contributions of nonspectator terms, especially in the presence of charmed quark:

$$\begin{aligned} \tau[\Xi_{cc}^{++}] &> \tau[\Omega_{cc}^{+}] &> \tau[\Xi_{cc}^{+}], \\ \tau[\Xi_{bc}^{+}] &> \tau[\Xi_{bc}^{0}] &> \tau[\Omega_{bc}^{0}], \\ \tau[\Xi_{bb}^{-}] &\approx \tau[\Omega_{bb}^{-}] &> \tau[\Xi_{bb}^{0}]. \end{aligned}$$

Introduction 00	Lifetimes 0000000	Decays ●000000	Conclusion 00
$\Xi^+_{bc} o \Xi^{++}_c$: [Decay Vertex an	d Form Factors	
		W C C C C C C C C C C C C C C C C C C C	
		P_2 B_2 ark B_2	
$\mathcal{M} = \frac{G_F V}{V}$	$\frac{CKM}{\sqrt{2}}H^{\mu}\epsilon^{(\mathcal{R})}_{\mu},$		

$$\begin{aligned} H_{\mu} &= \bar{u} \left(P_{1} \right) \left[G_{1}^{V} \left(q^{2} \right) \gamma_{\mu} + v_{1\mu} G_{2}^{V} \left(q^{2} \right) + v_{2\mu} G_{3}^{V} \left(q^{2} \right) \right] u \left(P_{2} \right) + \\ &+ \bar{u} \left(P_{1} \right) \gamma_{5} \left[G_{1}^{A} \left(q^{2} \right) \gamma_{\mu} + v_{1\mu} G_{2}^{A} \left(q^{2} \right) + v_{2\mu} G_{3}^{A} \left(q^{2} \right) \right] u \left(P_{2} \right), \end{aligned}$$

- Form Factors: Potential Models, Light Front, etc
- $\epsilon_{\mu}^{(\mathcal{R})}$: Resonance model, spectral functions, τ decays

Introduction	Lifetimes	Decays	Conclusion
00	0000000	o●ooooo	

 $\Xi_{bc}^+
ightarrow \Xi_c^{++}$: Decay Vertex and For, Factors

- On_00: A. I. Onishchenko, arXiv:hep-ph/0006271
- W_17: W. Wang et al, arXiv:1707.02834 [hep-ph]
- H_20 X.-H. Hu et al, arXiv:2001.06375 [hep-ph]

Introduction	Lifetimes	Decays	Conclusion
2π			00
$\pi^+\pi^-$			

$$W^ \rho^ k_2$$
 π^0

$$\begin{split} \epsilon_{\mu}^{(\rho)} &\sim (k_1 - k_2)_{\mu} \hat{D}_{\rho} \left(q^2\right) \\ D_{\rho} \left(q^2\right) &= \frac{m_{\rho}^2}{m_{\rho}^2 - q^2 - im_{\rho} \Gamma_{\rho}(q^2)} \\ \Gamma_{\rho}(q^2) &= \left(\frac{1 - 4m_{\pi}^2/q^2}{1 - 4m_{\pi}^2/m_{\rho}^2}\right)^{3/2} \Gamma_{\rho}^{(exp)}. \end{split}$$

Introduction 00	Lifetimes 0000000	Decays	Conclusion 00
2π			
$\pi^+\pi^-$			

Introduction	Lifetimes	Decays	Conclusion
		000000	
2π			
$\pi^+\pi^-$			

 $\Lambda = \Lambda$

Introduction 00	Lifetimes 0000000	Decays ○○○●○○○	Conclusion 00
3π			
$\pi^{-}\pi^{-}\pi^{+}$			

$$\epsilon_{\mu}^{(3\pi)} \sim D_{a_1} \hat{D}_{
ho} \left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}
ight] (k_1 - k_2)^{
u}$$
 $D_{a_1} \left(q^2
ight) = rac{m_{a_1}^2}{m_{a_1}^2 - q^2 + i m_{a_1} \Gamma_{a_1}(q^2)}$

Introduction 00	Lifetimes 0000000	Decays	Conclusion 00
3π			
+			

П

 $\pi \pi$

≣ • ଼ < ୍ 15 / 20

Introduction 00	Lifetimes 0000000	Decays 0000000	Conclusion 00
3π			

 π

 π π

Introduction 00	Lifetimes 0000000	Decays ○○○●○○○	Conclusion 00
3π			
$\pi^{-}\pi^{-}\pi^{+}$			

Introduction 00	Lifetimes 0000000	Decays ○○○○●○○	Conclusion
4π			
$\pi^-\pi^-\pi^+\pi^0-\omega$			

$$\epsilon_{\mu}^{(4\pi,b_{1})}\sim D_{b_{1}}D_{\omega}D_{
ho}e_{\mu
ulpha}q_{123}^{
u}q_{12}^{lpha}\left(q_{1}-q_{2}
ight)^{eta}$$

	[On_00]	[W_17]	[H_20]
$\operatorname{Br}[\Xi_{bc}^{+} \to \Xi_{cc}^{++} + (4\pi)_{\omega}], \%$	0.31	0.07	0.08

Introduction 00	Lifetimes 0000000	Decays ○○○○●○○	Conclusion 00
4π			
$\pi^{-}\pi^{-}\pi^{+}\pi^{0} - \omega$			

≣ ∽ < (~ 16 / 20

Introduction 00	Lifetimes 0000000	Decays ○○○○●○○	Conclusion 00
4π			
$\pi^-\pi^-\pi^+\pi^0-\omega$			

Introduction 00	Lifetimes 0000000	Decays 0000000	Conclusion 00
4π			
$\pi^-\pi^-\pi^+\pi^0$ — ω			

≣ ∽ < (~ 16 / 20

イロト イロト イヨト イヨト

Introduction 00	Lifetimes 0000000	Decays 0000000	Conclusion
4π			
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}$ — w			

Introduction 00	Lifetimes 0000000	Decays 0000000	Conclusion 00
4π			
$\pi^{-}\pi^{-}\pi^{+}\pi^{0} - a_{1}$			

$$\epsilon \sim D_{a_1} D_f D_
ho \left[g_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight] (k_3 - k_4)^
u$$

Introduction 00	Lifetimes 0000000	Decays ○○○○○●○	Conclusion 00
4π			
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}$ — a_{1}			

≣ ∽ < ເ~ 17 / 20

Introduction 00	Lifetimes 0000000	Decays ○○○○○●○	Conclusion
4π			
$\pi^{-}\pi^{-}\pi^{+}\pi^{0} - a_{1}$			

$$\epsilon \sim D_{a_1} D_f D_
ho \left[g_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight] (k_3 - k_4)^
u$$

Introduction 00	Lifetimes 0000000	Decays ○○○○○●○	Conclusion 00
4π			
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}$ — a_{1}			

Introduction 00	Lifetimes 0000000	Decays ○○○○○●○	Conclusion 00
4π			
$\pi^-\pi^-\pi^+\pi^0$ — a_1			

$$\epsilon \sim D_{a_1} D_f D_
ho \left[g_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight] (k_3 - k_4)^
u$$

Introduction 00	Lifetimes 0000000	Decays ○○○○○●	Conclusion 00
5π			
$\pi^-\pi^-\pi^-\pi^+\pi^+$			

$$\epsilon \sim D_{a_1} D_{a_1} D_f D_\rho \left[g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right] \left(k_3 - k_4 \right)^{\nu}$$

	[On_00]	[W_17]	[H_20]
$Br[\Xi_{bc}^{+} \to \Xi_{cc}^{++} + 5\pi], \%$	0.33	0.08	0.08

・ロト・西ト・モン・ビー うべの

Introduction 00	Lifetimes 0000000	Decays ○○○○○○●	Conclusion
5π			
$\pi^-\pi^-\pi^-\pi^+\pi^+$			

э

Introduction 00	Lifetimes 0000000	Decays ○○○○○○●	Conclusion
5π			
$\pi^-\pi^-\pi^-\pi^+\pi^+$			

э

Introduction 00	Lifetimes 0000000	Decays ○○○○○○●	Conclusion 00
5π			
$\pi^-\pi^-\pi^-\pi^+\pi^+$			

Introduction 00	Lifetimes 0000000	Decays	Conclusion
5π			
$\pi^-\pi^-\pi^-\pi^+\pi^+$			

Introduction	Lifetimes	Decays	Conclusion
00	0000000	0000000	●○
Conclusion			

• Double Heavy Baryons are well studied theoretically

Introduction	Lifetimes	Decays	Conclusion
00	0000000	0000000	●0
Conclusion			

- Double Heavy Baryons are well studied theoretically
- After observation of the Ξ_{cc} baryon a new chapter started

Introduction	Lifetimes	Decays	Conclusion
00	0000000	0000000	●0
Conclusion			

- Double Heavy Baryons are well studied theoretically
- After observation of the Ξ_{cc} baryon a new chapter started
- Update on the lifetime predictions

Introduction	Lifetimes	Decays	Conclusion
00	0000000	0000000	●0
Canalusian			

- Double Heavy Baryons are well studied theoretically
- After observation of the Ξ_{cc} baryon a new chapter started
- Update on the lifetime predictions
- Analysis of some $\Xi_{bc} \to \Xi_{cc} \mathcal{R}$ decays:

\mathcal{R}	[On_00]	[W_17]	[H_20]
eν _e	6.74	1.58	1.67
2π	1.86	0.45	0.47
3π	1.29	0.31	0.33
$(4\pi)_{a_1}$	1.16	0.28	0.29
$(4\pi)_{b_1}$	0.31	0.07	0.08
5π	0.33	0.08	0.08

Introduction	Lifetimes	Decays	Conclusion
00	0000000	0000000	⊙●
Conclusion			

The presented results were published in

- A.V. Berezhno, A.K. Likhoded, A.V. Luchinsky, Phys.Rev.D 98 (2018) 11, 113004
- A. K. Likhoded1 and A. V. Luchinsky, Yad.Phys. 81 (2018)
- A. S. Gerasimov, A. V. Luchinsky, Phys. Rev. D 100, 073015 (2019)
- A. V. Luchinsky, A. K. Likhoded, Phys. Rev. D 102, 014019 (2020)

Thank you for your attention