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Sigma Model

Long before the invension of QCD in 1960, sigma 
model was introduced by Gell-Mann und Levy

 The name -Modell is that of the field, which was σ
presented by Julian Schwinger, a spinless mesonic 
scalar .σ

Il NuovoCimento 16, 705 (1960)

Ann. Phys. 2(407), 1957

in time-like chira form

The Lagrangian density
in coordination

In QFT, a non-linear -Model describes a scalar field  (Minkowski-space M σ Σ
differentiable Mapping), which takes values from a non-linear Manifold to a 
target manifold T. It is with Riemannschen Metrik g furnished.
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Sigma Model
 Sigma model describes a physical system with the Langrangian

 Mapping or Skalar gij defines whether this is linear or non-linear. 

 The fields ϕi provide a general Mapping from a spacetime basic distributor, 

which is known as world sheet, to a Riemanian Manifold target distributor 
of scalar, which are distinguishable from each other of connected through 
internal symmetries.

 Sigma-Model with a Manifold, through which a real line exists, which 
parameterizes  target and target space, gives a fundamental example on 
GFT in 1D.  

 Sigma Model is a prototype of spontaneous symmetry breaking, where the 
three broken axial generators for pions, which are the manifestations of the 
chiral symmetry breaking. 

Wedge Produkt
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Why Linear-Sigma Model?
 LSM could be an economic alternative to QCD lattice simulations. 

 No supercomputers are neeeed, conventional PCs and simple algorithms and 
programming techniques would be enough.

 Finite magnetic and electric fields and finite isospin asymmetry could be integrated in. 

 Various symmetry breaking scenarios could be easily studied, for instance different 
properties of strong interactions chould be investigated

 thermodynamics and EoS of Hadron and 
Parton,

 chiral phase structure and meson masses 
(16 pseudoscalar, scalar, vector and axial 
vector)

 transport and conductivity coefficients of 
QCD mater.



DoF in Linear Sigma Model
 This low-energy model has generators Ta=λa/2, where λa are Gell-Mann 

Matrices and real classical field; O(4)

 The chiral symmetry is explicitly broken through 3×3-Matrixfield H=Taha, 

where ha are external Fields.

 Under the chiral transformation SU(2)L×SU(2)R, LΦ→ + R, Φ σa gets a finite 

vacuum expectation values, which also causes chiral symmetry breaking to  
SU(2)L×SU(2)R SU(2)→ L+R.

 The vacuum expectation values play the role of order parameters of phase 
transition. 

 This leads to massive Sigma-particles und zu light oder even massless 
Goldstone-Bosons, the Pions.

 The original DoF are spissless scalar Sigma σa field and triplet-pseudoscalar 

Fields πa (π+N interactions).

 LSM breaks axiale anomaly  U(1), at quantum level

 LSM: explicit symmetry breaking for non-vanishing quartk masses

 LSM: Spontaneous symmetry breaking through chiral condensate  <qq>



DoF: Mesons + Quarks
 QCD as theory of strong interactions has the following properties

 (i) Asymptotic Freedom (ii) Confinement.

 (iii) hidden spontaneous breaking of chiral Symmetry.

 Birse and Banerjee suggested in 1985 a model for nucleons and delta 
particles, which represents the strong QCD forces as chiral SU(2)LxSU(2)R-

symmetry and assures a role separation between these forces.

 This symmetry is responsible for the binding of quarks in hadrons und for 
the forces, which cause an absolute limitation, i.e. short range. 

 This leads to a linear sigma-model, which describes the interactions of 
quarks with sigma- and pion-mesons. 

 The constituent quarks gain mass, for instance mq=gfπ, where g and fπ are 

the coupling and die pion decay constants. 

 Accordingly, fermions could be integrated either as nucleons or as quarks.

 It was shown, that the chiral field transformation shows the same behaviour as that of 

the quark condensates, namely the -oσ rder parameter for chiral QCD phase-transition.
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DoF: Mesons + Quarks + Gluons
 Similar to PNJL, Polyakov-Quark-Meson (PQM) was suggested

 B.-J. Schaefer, M. Wagner, J. Wambach, Phys. Rev. D81 (2010) 074013

  → combination of chiral linear -model with Polyakov-loopsσ

 The thermal expectation values of colored Wilson-loops in time dimension 
reads

 where P(x) are the matix-values of the Polyakov-loop parameter in the basic 
representation of SU(Nc)-group; similar to the temporal vectorfeeld A0

 where P is order of the path integral und =1/T is the inverse Temperatur.β

  is finite for high temperatures;  that Φ
of the deconfined phase, und vanishing 
for low temperatures in the confined 
and central symmetry phase
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Polyakov Loops: Deconfinement & color DoF

 Gluonic DoF are depending on Polyakov-Variables phi und phi* and 
accordingly of the color DoF. 

 All are based wilson-loops, for which the various parameters could be 
dermined from lattice QCD simulations. 

 Polyakov-loop potential and its conjugate are

 The Polyakov loops could be represented as matrices in color space

                                        and              Gauge-Polyakov

 Matrices of the Polyakov loops can be given as diagonal representation.

 Die coupling with the Qaurks is given by covariant derivative.

 where Aμ=δ 0μ A0 are limited by the chiral Limits 



PLSM: SU(3) Langrangian

 For Nf=3 quark flavor and Nc=3 color DoF, where the suarks are coupled 

to the Polyakov-loop dynamics, 

 where                   has                     symmetry

 a) For Quarks: 

 b) For Mesons:

 where  is 3x3-matrix including the nonet-Meson states  ϕ

 c) Polyakov-loop dynamics:

 where

 Dμ, , ,  and g are covariant derivative, Lorentz-Index, chiral spinoren or Yukawa-coupling μ γ μ
constants.  are Dirac-Spinor fields for quark flavors f=[u, d, s]ψ

Phys. Rev. D 62, 085008 (2000).



PLSM: Approximation: MFA

 All fields are takes as constants in space and imaginary time directions.

 Averaged fields are defined as

 MFA drastically reduces the higher to lower dimension, so that the 
dynamics of the system is adjusted according to the „averaged fields“. 

 Then the dynamics is accordingly 
described, similar to single cells with 
an averaged status, which varies 
with the time. 

It is assumed that every cell in the entire space selects its next state regardless 
of the probabilities that are determined by the average state of the system.



PLSM: Approximation: MFA



PLSM: Approximation: MFA

In thermal equilibrium, the grand-canonical distribution function 
can be defined by a path integral over the quark, antiquark and 
meson field, which contains the chemical potential

      where μ
f
 is the chemical potential of f-ten Quarks, and



PLSM: Approximation: Optimum perturbation theory (OPT)

 The basic idea of OPT becomes clear when we expand the chiral 
Lagrangian from which we see that even analytical non-intrusive 
calculations become accessible that go beyond what MFA would achieve.

 where  is a mass parameter, that could be determined from a suitable η
variation process and L0( ) is density of free Lagrangian, in which  is η η
included. 

 The implementation from OPT to PLSM thus apparently goes hand in hand 
with an expansion with regard to the arbitrary parameter .δ

 In PLSM:



PLSM: Approximation: Optimum perturbation theory (OPT)

 When using OPT to evaluate the free energy F of the PLSM, non-
disruptive analytical calculations are made possible by a rule known as 
the principle of minimum sensitivity (PMS).

 PMS dictates that F can be minimized to the variations of  at  = 1.η δ

 The expected value of  is related to the sigma fields f and the color η σ
degrees of freedom Nc at .η∼σ

 A global minimization should also be carried out for the order parameters



PLSM: SU(2)  SU(3)  SU(4)→ →
 The thermodynamic Potential reads

                        Polyakov      Mesons       Quarks

 For example, for SU(4): 



PLSM: SU(2)  SU(3)  SU(4)→ →



PLSM: SU(4) Thermodynamics



PLSM: SU(3) Thermodynamics



PLSM: SU(3) Thermodynamics



PLSM: SU(3) Thermodynamics



PLSM: SU(3) at finite Isospin-Asymmetry

 The explicit symmetry breaking, H = Ta ha, where ha are nine parameters 
of the explicit symmetry breaking in SU (3).

 As a result, the diagonal components of the symmetry generators h0, h3, 
h8 are finite.

 In addition, the mesonic field Φ is a (3 × 3) matrix for meson states.

 where σ
a
 and π

a
 are scalar and pseudo-scalar fields, respectively.

 In the vacuum state with U (1) anomaly and due to the spontaneous 
symmetry breaking, the expected values of the mesonic fields <Φ> and 
their conjugates with the quantum numbers of the vacuum are generated.

This leads to an exact vanishing mean value of π
a
 and to ensure the 

finite mean value of σ
a
, which corresponds to the diagonal generators 

U (3) as,                                                where



PLSM: SU(3) at finite Isospin-Asymmetry
 On the other hand, σ

3
  breaks the isospin asymmetry SU (2) and the 

potential for purely mesonic contributions in SU (Nf) can be written as

 where the coefficients are given as 

 The explicit symmetry breaking terms h
0
, h

3
 und h

8
 can be determined by 

minimizing the potential to tree level.

For example: h
0
 and h

8
 can be determined from the partially conserved 

axial current relationships (PCAC) 

J. T. Lenaghan, D. H. Rischke, and J. Schaffner-Bielich, Phys.Rev.D62, 085008 (2000).



PLSM:

For h
0 
and h

8



PLSM: SU(3) at finite Isospin-Asymmetry

From this, the explicit symmetry breaking expression h
3
 can be derived 

from 

 where                                     and […]1/2 =m
a0

  We get 

 With orthogonal base transformation, the condensates can be converted 
from the original base σ

0
, σ

3
 and σ

8
 into pure Up- (σ

u
), Down- (σ

d
) or 

strange (σ
s
) quark aroma bases

Phys.Rev.D62, 085008 (2000).



PLSM: SU(3) at finite Isospin-Asymmetry

  



PLSM: SU(3) at finite Isospin-Asymmetry

  



PLSM: SU(3) at finite Isospin-Asymmetry
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PLSM: SU(3) at finite Isospin-Asymmetry

  



PLSM: SU(3) at finite Isospin-Asymmetry

  



PLSM: SU(3) at finite Isospin-Asymmetry

  



Results and Conclusions

 LSM: Mesons  Mesons + Quarks + Ployakov-loops→

 PLSM: SU(2)  SU(3)  SU(4) → →

 PLSM: finite T, μb, eB and I3

 PLSM: 16 Meson states at finite T, μb, eB

 PLSM: Viscosity und conductivity at finite T, μb, eB

 PLSM: QCD Thermodynamics and higher fluctuations

 PLSM: QCD Phase-diagram at finite μb, eB and I3



Thank You!
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