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 A few Lattice actions show  a first 
order chiral transition but…..


1.These results are done on fixed N𝝉. Not 
continuum extrapolated. 

2. They use unimproved actions which have large 
cut-off effects, means the calculations are done 
away from the continuum. 

3. The order of the transition can change if 
calculations are done close to continuum.

Transition in the chiral limit( )?mu = md = 0
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Pisarski, Wilczek, PRD 29 (1984) 

Work from Pisarski and Wilczek suggests 
that the chiral transition ( , ) 

belongs to the  universality class if 

  is still broken at   . [MPL, AL, 
AGN….]
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O(4)
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Possible Solutions:
1.Verify with actions which allows us to do the calculations close to the continuum 

i.e. with improved actions.[See talk by A. Lahiri] 
2. Simulation with imaginary chemical potential.

Order of the transition in the chiral limit( )?mu = md = 0
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Phase diagram in the     planeiμB

Phase diagram,   at physical value, mu, md mπ ∼ 135 MeV

Free energy and the universal functions for second order transition  
near the critical point can be written as,[ , , ]t → 0 h → 0 t = (T − Tc)/Tc

f = b−dfs(bytt, byhh, b−1Nσ) + fns ,

M = ⟨ | Im L |⟩ =
∂f
∂h

h→0

∼ N−β/ν
σ fh(zf )

zf = z0tN1/ν
σ

χh =
∂2f
∂h2

h→0

∼ Nγ/ν
σ fχ(zf )

B4 ∼ fB(zf )
In our case 𝛽,𝜈,𝛼 and 𝛾 are Z(2) critical exponents
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M = AMN−β/ν
σ fG,L(zf )

χM = A2
MN γ/ν

σ fχ,L(zf ) + χreg(t)

B4 = fB,L(zf ) +
d

N3
σ

,  
  are non-universal parameters.   

zf ≡ z0tN1/ν
σ t = (T − Tc)/Tc

Tc, z0, AM

-d Ising model Universal Scaling functions3

Lattice Size = N3
σ × 4

Scaling analysis at physical values of mu, md
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• Order parameter and its susceptibility shows good agreement with the expected 
finite size  scaling  functions. 

• RW transition remains  for , No sign of first order!!
Z(2)

Z(2) mπ ≥ 40 MeV

Fate of the RW transition in the chiral limit( )mu, md → 0

Claudio Bonati,arXiv:1807.02106 [hep-lat]Consistent with:
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Chiral phase transition in the chiral limit( )mu, md → 0
• The definition of order parameter and its susceptibility of chiral 

phase transition, , 

, 

 ,                               

  is the HISQ Dirac operator for quark flavors, . 

• For , ,  ,  and  will follow the finite 
size behaviour of d,  model. 

• For, , influence of additional  for any value of 
 on the  and  ??

Δls =
2ms

f4
k

(⟨ψ̄ ψ⟩l −
ml

ms
⟨ψ̄ ψ⟩s)

⟨ψ̄ ψ⟩l = (⟨ψ̄ ψ⟩u + ⟨ψ̄ ψ⟩d)/2 ⟨ψ̄ ψ⟩f =
1
4

1
N3

σNτ
⟨TrM−1

f ⟩

χdis =
1
4

m2
s

N3
σNτ

(⟨(TrM−1
l )2⟩ − ⟨TrM−1

l ⟩2)/f 4
K

Mf f = u, d, s

iμB/T ≠ π mu, md → 0 Δls χdisc
3 O(N)

iμB/T = π Z(2)
mu, md Δls χdisc
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• Behaviour of   is consistent with 
the order parameter in  models. 
The temperature derivative of  
suggests that it will have an infinite 
slope in the infinite volume. 

• However, volume dependence of  
is consistent with the specific heat of 

 transition.  In that sense   
could also be an energy like 
observable for the RW transition.

Δls
O(N)

Δls

χdisc

Z(2) Δls
χt =

∂2f
∂t2

h→0

∼ Nα/ν
σ fc(zf )



Outline

Bigger Picture : Understand the thermodynamics at the QCD 
crossover, Study the QCD phase diagram, Indication on the 

location of the critical point…..
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
B
2 

B
4 

S
2 

S
4 

Q
2 

Q
4 

I
2 

I
4 

B,f
2 

B,f
4

⌃ 0.015(4) -0.001(3) 0.018(3) 0.001(3) 0.027(4) 0.004(5) 0.023(3) 0.004(4) 0.012(2) 0.000(2)
� 0.016(5) 0.002(6) 0.015(4) 0.007(5) 0.031(4) 0.011(9) 0.028(3) 0.006(6) 0.012(3) 0.000(4)
Average 0.016(6) 0.001(7) 0.017(5) 0.004(6) 0.029(6) 0.008(1) 0.026(4) 0.005(7) 0.012(4) 0.000(4)

Table 1: Continuum-extrapolated values of second- (X
2 ) and fourth-order (X

4 ) Taylor coe�cients, defined in Eq. (8), of pseudo-critical
temperature Tc(µX=B,Q,S,I) obtained from the chiral order parameter ⌃(T, µX) and the disconnected chiral susceptibility �(T, µX). Also

listed are the continuum-extrapolated values of B,f
2 and B,f

4 for thermal conditions resembling the freeze-out stage of relativistic heavy-ion
collisions, i.e., µQ(T, µB) and µS(T, µB) fixed by strangeness-neutrality and isospin-imbalance of the colliding heavy-ions. The last row is
obtained from unweighted average of the first two rows.

expressions for s1,3(T ) and q1,3(T ) were obtained in terms
of the Taylor coe�cients of the pressure. Explicit expres-
sions for s1,3(T ) and q1,3(T ) can be found in Ref. [24]. By
Taylor expanding ⌃(T, µB , µQ, µS) (�(T, µB , µQ, µS)) in

powers of µi
Bµ

j
Qµ

k
S (i + j + k  4) and by using the ex-

pansions for µQ,S(T, µB), we obtained the expansions for
⌃(T, µB) (�(T, µB)) up to O(µ4

B). As before, by invoking

Eq. (9), expressions were obtained for B,f
2,4 .

Continuum-extrapolated results for B,f
2 and 

B,f
4 are

given in Tab. 1. 
B,f
2 came out to be same as B

2 and 
S
2

within errors, and 
B,f
4 was found to be consistent with

zero. On our N⌧=8 lattices, where we analyzed half a
million gauge configurations at all T , we also computed
µ
6
B corrections to the chiral observables. The order-by-

order µB corrections to � are shown in Fig. 3 (top-right)
at µB=300 MeV and for nS = 0, nQ = 0.4nB . In the
vicinity of T f

c (µB), di↵erence between µ
4
B and µ

2
B correc-

tions are clearly significant; but µ6
B and µ

4
B corrections are

consistent within our errors. This shows that up to µ
4
B the

expansion of T f
c (µB) is controlled till µB . 2Tc(0). The

phase boundary of QCD for nS = 0, nQ = 0.4nB is shown
in Fig. 4; also shown are the chemical freeze-out points
extracted from heavy-ion collision experiments at various
collision energies [5, 34], the line of constant energy density
✏(T, µB) = ✏(Tc(0), 0) = 0.42(6) GeV/fm3 [24], and the
line of constant entropy density s(T, µB) = s(Tc(0), 0) =
3.7(5) fm�3 [24].

5. Discussions and summary

The value of Tc(0) reported in this work compares quite
well with the previous results from the HotQCD collab-
orations [6, 17], but the present result is about 6 times
more accurate than the previous continuum-extrapolated
result [6]. Compared to that of Ref. [6], use of 100-500
times more gauge configurations for N⌧ = 6, 8, 12 in the
present study resulted in the 6 times more accurate de-
termination of the continuum-extrapolated Tc(0). Our
present value of Tc(0) also is compatible with the chiral
pseudo-critical temperatures reported by other groups [35,
36]. It is pertinent to note that all our calculations were
carried out within a finite-size box of about 5 fm3 in the
vicinity of Tc(0); finite-size corrections might increase the
value of Tc(0) by an amount commensurate to our present
error on that quantity [37]. B

2 determined in the present

work is about a factor 2 larger than that reported previ-
ously in Ref. [38]. Our present value of B

2 also is about
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nB
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B
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s

freeze-out: STAR
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Figure 4: The phase boundary of 2 + 1 flavor QCD, with the con-
straints nS = 0 and nQ = 0.4nB , is compared with the line of

constant energy density ✏ = 0.42(6) GeV/fm3 and the line of con-
stant entropy density s = 3.7(5) fm�3 [24] in the T -µB plane. Also,
shown are the chemical freeze-out parameters extracted from grand
canonical ensemble based fits to hadron yields within 0-10% central-
ity class for the ALICE [5] experiment and 0-5% centrality class for
the STAR [34] experiment.

a factor 2 larger than the 
B
2 estimated using the curva-

ture of the chiral critical temperature along the light quark
chemical potential directions [19], but is consistent, within
errors, with the same reported in Ref. [39]. In contrast
to Ref. [19], Ref. [39] used the much improved HISQ dis-
cretization. This clearly suggests that the discrepancy be-
tween the present result and that estimated from Ref. [19]
arises mostly due to the use of improved HISQ discretiza-
tion in the present study. On the other hand, B

2 reported
in this work is, within errors, compatible with those ob-
tained in more recent works of Refs. [36, 40–42], obtained
from analytic continuations from purely imaginary µB . It
is also similar with that obtained in Ref. [22] from Tay-
lor expansion of chiral order parameter for µB > 0, µQ=0
and µS=µB/3, in contrast to our choice of µB > 0 and
µQ=µS=0. Our value of 

B,f
2 is quite similar to that

reported in Ref. [43], determined from analytic contin-
uations from purely imaginary µ. Moreover, the phase
boundary in the T -µI plane that can be obtained using our

I
2,4 is quite similar to that determined in Ref. [44] from

lattice QCD computations performed directly at µI > 0,
µB=µS=0.

6

Tc(μB) = Tpc,0 1 − κ2 ( μB

Tpc,0 )
2

+ κ4 ( μB

Tpc,0 )
4

  , Tpc,0 = 156.5(1.5) MeV κ2 = 0.12(4) κ4 ∼ 0.0

ϵ = 0.42(6) GeV/fm3 s = 3.7(5)fm−3

Curvature of the pseudo-critical line from LQCD

A. Bazavov et al, Phys.Lett.B 795 (2019) 15

HotQCD Collaboration • ALICE Freeze-out 
Temperature, . 

• Thermodynamics of hot 
hadron gas at . 

• Curvature of the pseudo-
critical line is consistent with 
freeze-out line of STAR 
except for the

 point.       

• Location of the critical point
 ??

Tf = Tpc,0

T ≤ Tpc,0

s = 200 GeV

[μB/T ]cep ≥ 2
See Other talk of LQCD,DS… method for 

detailed comparison



LQCD and Hadron Resonance Gas
• In lattice QCD calculations,  generates two constraints 

between second order cumulants,
 

• HRG respects these constraints upto ,despite of the fact 
that  reflect in the hadron masses.

mu = md

χS
2 = 2χQS

11 − χBS
11 , χB

2 = 2χBQ
11 − χBS

11

1 %
mu ≠ md

11

Comparing conserved charge fluctuations.... 5
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Fig. 3. Continuum extrapolated results for 2nd order cumulant ratios.

the non-interacting gas values when using an excluded volume of size r ⇠
0.5 fm radius for all baryons. The influence on strangeness fluctuations is
much smaller, i.e. about 8%, as these are dominated by mesons. We show
results for the QM-HRG with excluded volume e↵ects for baryons (EV-
HRG) in Fig. 1. It is apparent that the hadronic interaction considered
here is not su�cient to describe the QCD data. They rather tend to worsen
the agreement between HRG and QCD calculations achieved by introducing
additional strange baryon resonances.

2.2. Charge correlations and constraints on second order cumulants

In Fig. 2 we show QCD results for correlations among conserved charge
fluctuations and compare with HRG model calculations as discussed above
for the 2nd order cumulants of conserved charge fluctuations. The general
picture is the same. Additional strange baryon resonances seem to be needed
to improve agreement between HRG model calculations for BS-correlations
and corresponding QCD results, and the inclusion of repulsive interactions
among baryons through excluded volume e↵ects seems to deteriorate this
agreement. Also shown in Fig. 2 is the result of a S-matrix calculation [6]
that takes into account resonance decays in the �++ $ N

⇤
⇡ channel (see

also Appendix C). As can be seen, similar to excluded volume model calcu-
lations this leads to a reduction of correlations between net baryon-number
and electric charge. The contribution of doubly charged �++ resonances
thus seems to be suppressed.

The three conserved charges, (B,Q, S), give rise to 6 second order cumu-
lants of charge fluctuations and cross-correlations. In the isospin symmetric
limit of degenerate up and down quark masses, which usually is used in lat-
tice QCD calculations, only 4 of these cumulants are independent as isospin
symmetry imposes the two constraints

�
S

2 = 2�QS

11 � �
BS

11 , �
B

2 = 2�BQ

11 � �
BS

11 . (3)

This gives rise to three independent cumulant ratios, for instance the set of
three ratios of second order cumulants shown in Fig. 3. In Table 1 we give

The three independent second order ratios

arXiv:2011.02812 [hep-lat]
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Comparing conserved charge fluctuations.... 5

 0.1

 0.15

 0.2

 0.25

 0.3

 130  140  150  160  170  180

HotQCD prelim
inary

-χ11
BS / χ2

S

T [MeV]

cont. extr.
Nτ = 6

 8

12

16

PDG-HRG

QM-HRG

EV-HRG

 0.1

 0.15

 0.2

 0.25

 0.3

 130  140  150  160  170  180
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 130  140  150  160  170  180

HotQCD prelim
inary

χ2
B/χ11

QS

T [MeV]

cont. extr.
Nτ = 6

8

12

16

PDG-HRG

QM-HRG

EV-HRG

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 130  140  150  160  170  180

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 130  140  150  160  170  180

HotQCD prelim
inary

χ11
BQ / χ2

Q

T [MeV]

cont. extr.
Nτ = 6

 8

12

16

S-matrix

PDG-HRG

QM-HRG

EV-HRG

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 130  140  150  160  170  180

Fig. 3. Continuum extrapolated results for 2nd order cumulant ratios.

the non-interacting gas values when using an excluded volume of size r ⇠
0.5 fm radius for all baryons. The influence on strangeness fluctuations is
much smaller, i.e. about 8%, as these are dominated by mesons. We show
results for the QM-HRG with excluded volume e↵ects for baryons (EV-
HRG) in Fig. 1. It is apparent that the hadronic interaction considered
here is not su�cient to describe the QCD data. They rather tend to worsen
the agreement between HRG and QCD calculations achieved by introducing
additional strange baryon resonances.

2.2. Charge correlations and constraints on second order cumulants

In Fig. 2 we show QCD results for correlations among conserved charge
fluctuations and compare with HRG model calculations as discussed above
for the 2nd order cumulants of conserved charge fluctuations. The general
picture is the same. Additional strange baryon resonances seem to be needed
to improve agreement between HRG model calculations for BS-correlations
and corresponding QCD results, and the inclusion of repulsive interactions
among baryons through excluded volume e↵ects seems to deteriorate this
agreement. Also shown in Fig. 2 is the result of a S-matrix calculation [6]
that takes into account resonance decays in the �++ $ N

⇤
⇡ channel (see

also Appendix C). As can be seen, similar to excluded volume model calcu-
lations this leads to a reduction of correlations between net baryon-number
and electric charge. The contribution of doubly charged �++ resonances
thus seems to be suppressed.

The three conserved charges, (B,Q, S), give rise to 6 second order cumu-
lants of charge fluctuations and cross-correlations. In the isospin symmetric
limit of degenerate up and down quark masses, which usually is used in lat-
tice QCD calculations, only 4 of these cumulants are independent as isospin
symmetry imposes the two constraints

�
S

2 = 2�QS

11 � �
BS

11 , �
B

2 = 2�BQ

11 � �
BS

11 . (3)

This gives rise to three independent cumulant ratios, for instance the set of
three ratios of second order cumulants shown in Fig. 3. In Table 1 we give

The three independent second order ratios

−(χBS
11 /χS

2 )Tpc
= 0.241(4)

(χB
2 /χS

2 )Tpc
= 0.417(18)

χB
2

χS
2

=
1
2

χB
2

χQS
11 (1 +

χBS
11

χS
2 )

( χ B
2 /χQS

11 )Tpc
= 1.10(4) ( χ BQ

11 /χQ
2 )Tpc = 0.059(14)

LQCD and Hadron Resonance Gas

Any second order cumulant ratio can be obtained using these three 
ratios
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 from Strange BaryonsμS /μB
Particle yield ratios from Thermal models,

log
B̄
B

= −
2μB

T
+

μS

T
ΔS +

μQ

T
ΔQ

μQ/μB ≪ 1

log
B̄
B

= −
2μB

T
+

μS

T
ΔS ≡ − μB/T(2 − μs/μBΔS)

Strange hadron production in Au+Au collisions at  √SNN= 7.7, 11.5, 19.6, 27, and 39 GeV, STAR 
Collaboration: J. Adam et. al, arXiv:1906.03732 
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14 is consistent with strange baryon freeze out at or close to crossover line!!μS /μB

  Mapping  LQCD to Experiment in the pseudo-critical line
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, has to  come close to  at 

 

μS /μB 0.25
s = 200GeV

    has 
been used as a proxy 
for  for plotting 

the  STAR data.
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12 = χp

1 /χp
2
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12

D. Bollweg et al, 
arXiv:2010.15501
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Nu Xu Wroclaw, 2020

Inconsistent with a freeze-out temperature, 
. Tf = 165 MeV

STAR OLD

  Mapping  LQCD to Experiment in the pseudo-critical line

χP
4

χP
2

≃
χB

4

χB
2 STAR

= 0.9(2)

χB
4

χB
2 Tpc

= 0.69(5)

HotQCD collaboration, arXiv:2001.08530 [hep-lat]

6 Jishnu Goswami

�
BS
11 /�

S
2 �

B
2 /�

QS

11 �
BQ

11 /�
Q

2

-0.241(4) 1.10(4) 0.059(14)

Table 1. Continuum extrapolated results for three independent ratios of 2nd order
cumulants at the pseudo-critical temperature Tpc.

results for continuum extrapolations of these three ratios at the pseudo-
critical temperature, Tpc = 156.5(1.5) MeV, for the chiral transition in (2+
1)-flavor QCD. Note, for instance, that due to the first constraint in Eq. 3,
the ratio �

B
2 /�

S
2 shown in Fig. 1 (right) is related to the two ratios �BS

11 /�
S
2

and �
B
2 /�

QS

11 shown in Fig. 3 and given in Table 1 at Tpc,

�
B
2

�
S
2

=
1

2

�
B
2

�
QS

11

 

1 +
�
BS
11

�
S
2

!

, (4)

and (�B
2 /�

S
2 )Tpc

= 0.417(18).

3. Fourth order cumulants of conserved charge fluctuations and
correlations

In a non-interacting HRG (PDG-HRG or QM-HRG) ratios of cumulants
involving net baryon-number fluctuations that di↵er only by an even number
of derivatives with respect to the baryon chemical potential are unity, e.g.
for fourth order cumulants �

B
4 /�

B
2 = �

BS
31 /�

BS
11 = �

BQ

31 /�
BQ

11 = 1. This
reflects that all known hadrons with non-zero baryon number have |B| = 1.
This, of course, does not hold in QCD at high temperatures where quarks
carry non-integer baryon number. As a consequence the above ratios are
all found to be smaller than unity in lattice QCD calculations. They are
shown in Fig. 4.

At low temperatures the deviations from unity follow a trend also present
in HRG model calculations that incorporate excluded volume e↵ects. This
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Fig. 4. Ratios of some fourth and second order cumulants.

χB
4

χB
2 T=165MeV

= 0.50(2)



16

Radius of Convergence from higher order cumulants
Many 8-th order cumulants turn negative 

for . 
Which indicates that the limiting 

singularity of the Taylor series lies in the 
complex plane. 

T ∼ (130 − 145) MeV
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No, critical point , T > 140 MeV

Consistent with the claim that , Tcep < Tc ∼ 132 MeV

  

16                                                  F. Karsch,  CPOD 2018 F. Karsch,  CPOD 2018 

Critical behavior and higher order cumulants Critical behavior and higher order cumulants 

many 8th order cumulants turn negative for

plausible scenario:

What about , μB /T ??
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Resummation of Taylor series
χB

2 (T, μB) = χB
2 +

1
2!

χB
4 μ2

B +
1
4!

χB
6 μ4

B +
1
6!

χB
8 μ6

B . . . . .

  

27                                                  F. Karsch,  CPOD 2018 F. Karsch,  CPOD 2018 

– – agreement between HRG and QCD will start to deteriorate for T>150 MeVagreement between HRG and QCD will start to deteriorate for T>150 MeV

– – net baryon-number fluctuations in QCD always smaller than in HRG fornet baryon-number fluctuations in QCD always smaller than in HRG for
      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  

No, critical point , , T > 140 MeV (μB /T ) < 2

°2 °1 0 1 2
Re µB

°2

°1

0

1

2

Im
µ

B

χB
2 =

∑
l=0,1

X2lμ2l
B

1 + ∑
m=1,2

Y2mμ2m
BHow do these poles move to the 

real axis  when ,  ??T ∼ Tcep
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RW end point remains as Z(2) second order for . Nature 
of the chiral transition in the RW plane favours 2nd order(O(N)).

RW transition and chiral phase transition may coincide in the chiral 
limit ??

The pseudo-critical line calculated in LQCD is consistent with the 
STAR freeze-out line and ALICE freeze-out temperature at .

Qualitative features of  order cumulants of conserved charge 
fluctuations and correlations, calculated in lattice QCD, are reasonably 
well described by non-interacting HRG models up to the pseudo-
critical temperature for the QCD transition.

Higher order cumulants cannot be understood from HRG models and 
they will play a crucial role in the determination of .

mπ ≥ 40 MeV

μB = 0

2nd

(μB)cep
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S̄μS /T − μB/T ≡
1
2

log[ X̄
X ]

primal
= − atanh[RX

12], Where, X is any Baryon

In a Non-interacting HRG,
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A simple exercise, 
 if X (anti)baryon with Strange number S decay into (anti)proton at large , 

 

  

μB

p
X

= exp[ |S |μS]G(T ),
p̄
X̄

= exp[ − |S |μS]G′ (T )



•  

•  

•  , 

,  

•  

• where, 

P(T, ⃗μ )
T4

=
1

VT3
ln𝒵QCD =

∞

∑
i,j,k=0

1
i!j!k!

χBQS
ijk μi

Bμj
Qμk

S

χX
ijk =

∂i+j+kP/T4

∂(μX /T )i,j,k
μX=0

, X = B, Q, S

χijk
μX

=
∞

∑
i,j,k=0

1
i!j!k!

χBQS
ijk μi

Bμj
Qμk

S

nQ/nB = r, nS = 0, ⇒ , μQ = f(μB), μS = g(μB) r = 0.4 for Au+Au

χijk
μX

=
∞

∑
i,j,k=0

1
i!j!k!

χBQS
ijk μi

B f(μB) jg(μB)k

f(μB) =
∞

∑
n=0

qnμ2n+1
B , g(μB) =

∞

∑
n=0

snμ2n+1
B

Calculation Details

Cumulants at zero chemical 
potential

Strangeness neutrality condition
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