Inhomogeneous phases in strongly interacting matter Discussion Session

Michael Buballa

TU Darmstadt

XXXII International (ONLINE) Workshop on High Energy Physics "Hot problems of Strong Interactions" November 11, 2020

- Are there any robust experimental signatures that could reveal the presence of an inhomogeneous phase (inside a neutron star?) independently of the details of the order parameter texture? What observables would one need to calculate to make such an experimental test possible?
- What are the long-term prospects for detecting an inhomogeneous phase on the lattice, in QCD or a QCD-like theory free of the sign problem?

- Do we expect that inhomogeneous phases exist in QCD?
- Which QCD-inspired models close to QCD (i.e. in 3+1D, with finite number of colors/flavors), but simpler (e.g. without sign problem, suited for lattice field theory studies) are promising with respect to the existence of inhomogeneous phases?

Martin J. Steil

Inhomogeneous chiral condensates within the Functional Renormalisation Group – Discussion points and questions

- Explicit treatment of inhomogeneous phases in the FRG framework by means of special ansatz functions
 - o Computations beyond the CDW/the chiral limit might not be possible/feasible?!
 - Diagonalization for GN/kink solution with suited unitary matrices (constructed from eigen vector spectrum)?
 - o Extension beyond LPA (LPA', LPA'+Y, LA, ...) with the CDW is possible
 - o Full numerical solution of the LPA flow eq. for the CDW is challenging
 - Momentum integrals
 - Solution of the FRG flow eq. as an advection-diffusion eq.
 - Exponential scaling in the (deep) IR
 - 1+1 grid in \$q\$ and \$\rho\$
- Bottom up parameter fitting for low energy models (fitting observables in the FRG is more challenging than expected in LPA
 - Consistency checks of the inhomogeneous phase fail when employing naive BC parameter fitting scheme (usually used for LPA computations in MF and beyond)
 - Improved parameter fitting schemes based on the mesonic two-point functions evaluated on the LPA/MF flow for the pole masses and renormalized pion decay constant are necessary
 - Spatial/3D FRG regulators violate Poincare-invariance in vacuum: especially
 problematic for pole masses => further investigation of possible effects in the phase
 diagram required?!
- RG consistency is an important aspect for the phase diagram of low energy effective models
 - o Implementation on MF level is trivial
 - Implementation on full FRG level is more involved since 'integrating up' the flow direction from small k to larger ones is not possible => boundary value problem/shooting method
 - Allows for a controlled recovery of standard MF (no-sea approximation) in the FRG frame work
- RG consistent eMFA results for the inhomogeneous CDW phase diagram of the two flavour QM model in the chiral limit using improved parameter fitting schemes (RP or RP*)
 - In qualitative agreement with existing eMFA results for low temperatures
 - Splitting of Lifshitz and critical point => probably one mayor remnant of the explicit Poincare-invariance/SO(4) violation caused by the spatial regulators!?
- FRG based stability analysis of the homogeneous ground state as an alternative approach for the study of inhomogeneous chiral condensates (not discussed in this talk)
 - Does not rely on a specific ansatz for the inhomogeneous chiral condensate(s): is based on computations in the homogeneous phase
 - Technically much easier/cheaper then explicit computations in the inhomogeneous phase
 - More general since no ansatz is required
 - Explicit statements about the inhomogeneous window are impossible -> only statements about the stability of the homogeneous ground state are possible

Can we investigate inhomogeneous chiral phases directly within QCD?

- Can we improve on this?
- ▶ Is there a chance to study inhomogeneous phases in lattice QCD?
 - by novel approaches to finite μ ?
 - by a clever choice of parameters?

▶ 1D inhomogeneous solutions in GN and NJL:

homogeneous matter decays into domain-wall solitons

- ► If it was 3D: Hadronization!
 - $(\rightarrow \text{ revisit chiral solitons! [Alkofer, Reinhardt, Weigel; Goeke; Ripka; ...]}$
- Crossover (de-)confinement transition at low T, $\mu \neq 0$?

- Questions directly related to the talks
- Questions which have not yet been raised