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Elementary particle matter:

Matter in extreme conditions reveals its constituents

New era for matter in extreme conditions:
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Elementary particle matter:

Matter in extreme conditions reveals its constituents

New era for matter in extreme conditions:

LHC Run 3-4, HL-LHC, FAIR, NICA, . . . LIGO+Virgo, NICER, eXTP, . . .
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Hot quark matter in Nuclear Collisions:

Transition to hot quark matter around ε ∼ 500MeV/fm3.

The big question:

Is there cold quark matter inside neutron stars?
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Quark matter in nuclear collisions
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Borsanyi et al PLB 730 (2014)

No true phase transition, but the the asymptotics understood in
terms of hadronic and partonic calculations

For ε & 500 MeV/fm3, matter resembles nearly conformal quark
matter:

γ ≡ d log p

d log ε
∼ 1, p/T 4 ∼ #d.o.f , c2s . 1/3

Also many others 〈ψ̄ψ〉, PL, correlators
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Quark matter in nuclear collisions

Measurement of energy flow gives estimate of density reached in
heavy-ion collisions

ε ∼ dE⊥
dη

/(volume of the collision system)

Energy densities in the region of where EoS is roughly confromal

ε� 500MeV/fm3

Burden of proof: how do we know that the matter is thermalized

hydrodynamics, thermal EM radiation, jet quenching,. . .

AK, Zhu, PRL 115 (2015), . . .

How to repeat this logic with neutron stars?
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Challenge:

No lattice simulations available due to the sign problem

Reliable information only at low and high density limits

No direct measurement of energy density inside the star

Access only to global properties of stars, masses, radii,
deformabilities, etc.
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Structure

Competition:

Gravity tries to pull the star into a black hole

dP

dr
= −Gε(r)M(r)

r2

[
1 +

P (r)

ε(r)

] [
1 +

4πr3P (r)

M(r)

] [
1− 2GM(r)

r

]−1
dM

dr
= 4πr2ε(r)

Pressure of strong interactions resists the gravity

ε(P )

Astrophysical observations of macroscopic properties of neutron
stars can be used to

constrain the EoS where we don’t know in from 1st principles
indirectly inform about the central densities
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Outline

What we know about the equation of state?

What can we say about the energy densities of the cores of
neutron stars?

What does that imply about the state of matter inside neutron
stars?
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Equation of state:
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Outer crust:

Lattice of nuclei in electron sea

As µ increases, more neutron rich elements become favourable

Inner crust:

Neutron gas + Z + e

NN interactions become important around n ∼ n0 ≈ 0.16/fm3

Negele & Vautherin Nucl.Phys. A207 (1973) 298-320; Baym et al. Nucl.Phys. A207 (1973) 298-320;
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Equation of state:
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At low densities nuclear EFTs: Challenges at saturation density
Relativistic Weinberg EFT, includes 3N, 4N, uncertainties from the low-energy constants dominate

Tews et al. PRL. 110 (2013)

Hebeler et al. ApJ 773 (2013)
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Equation of state:
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Free quarks

At high densities: αs(µB) ≈ 0, free fermi gas of quarks
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Higher order corrections:

P (µB) ∼
∫

d3p

(2π)4
E(p)θ(µq − E(p))

NLO:

Interactions cause corrections to disp. rel.:

E2(p) ∼ p2 + g2µ2

P (µB) ∼ Pfree(1 + c1g
2)

NNLO:

Corrections to E2(p) ∼ p2 + g2µ2 + g4µ2.

p ∼ gµ contribute at
∫
d3pp ∼ g4µ4.

Order-1 mod. to disp. rel. ⇒ non-perturbative
Integral over scales gives a log:

P (µB) ∼ Pfree

(
1 + c1g

2 + c2g
4 + c′2g

4 log
[gµ
µ

]
+ . . .

)
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High-order QCD

P (µB)/Pfree ∼ 1+ c1g
2︸︷︷︸

NLO

+ c2g
4 + c′2g

4 log g︸ ︷︷ ︸
NNLO

+ c′3g
6 log2 g + c′′3g

6 log g + . . .︸ ︷︷ ︸
N3LO

Full NNLO with full mass dependence: AK et al. PRD81 (2010)

Full T -dependence: AK, Vuorinen PRL 117 (2016)

Leading-log N3LO: Gorda, AK, Vuorinen, Romatschke, Säppi, PRL 121 (2018)
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Important technical developments:
Cutting-rule technology to exploit precision-QCD literature
developed for Higgs physics AK et al. PRD81 (2010), Ghisoiu et al. NPB915 (2017)

Effective field theory methods for resummations: classical
non-abelian Vlasov equations Hard-Loop-Theory

AK, Vuorinen PRL 117 (2016)

Gorda, AK, Vuorinen, Romatschke, Säppi, PRL 121 (2018)
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Reliability of N 2LO pQCD:
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Full NNLO with ms 6= 0: AK et al. Phys.Rev. D81 (2010)

g6 log2 g: Gorda, AK, Vuorinen, Romatschke, Säppi, PRL 121 (2018)

P (µB)/Pfree ∼ 1 + c1g
2 + c2g

4 + c′2g
4 log g + c′3g

6 log2 g

Interactions are important!
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Reliability on N 2LO pQCD:
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Coefficients depend on renormalization scale Λ̄

P (µB)/Pfree ∼ 1 + c1g
2[Λ̄] + c2[Λ̄]g4[Λ̄] + c′2[Λ̄]g4[Λ̄] log[g] + c′3g

6 log2 g

Uncertainties through scale variation Λ̄ = Xµq with X = {1, 2, 4}
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Reliability of the errorbars

Dense matter:
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Hot matter:
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Lattice

Finite-T pQCD: Laine & Schröder Phys. Rev. D, 73, 085009

Connection between finite T and µ: AK, Vuorinen PRL 117 (2016)

Lattice: Borsanyi et al. Phys. Lett. B 370 (2014) 99-104
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State of the art in pQCD:
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Interpolation in the intermediate densities:
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In order to model the neutron stars, the EoS can be interpolated
between the two limits See talk of Aleksi Vuorinen tomorrow

Interpolations that are inconsistent observations can be excluded

Existence of 2M� stars
Non-detection of tidal deformation by LIGO/Virgo GW170817
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Quark Matter cores in Neutron Stars?
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Annala, Gorda, AK, Nättilä, Vuorinen, Nature Phys. (2020)

Rapid softening hints to a phase transition to quark matter
ε ∼ 500− 750MeV/fm3,

γnucl & 2.5 vs. γpQCD ∼ 1

γ = d log p
d log ε
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Quark Matter cores in Neutron Stars?

Annala, Gorda, AK, Nättilä, Vuorinen, Nature Phys. (2020)

Speed of sound c2s
Polytropic index γ = d log p

d log ε
number of effective d.o.f: P/Pfree
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Quark Matter cores in Neutron Stars?

Annala, Gorda, AK, Nättilä, Vuorinen, Nature Phys. (2020)

Interpolated EoSs consistent with hadronic models at low densities
but differ at high densities
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Quark Matter cores in Neutron Stars?

Annala, Gorda, AK, Nättilä, Vuorinen, Nature Phys. (2020)

1.4M� stars consistent with hadronic models
Mmax stars inconsistent with hadronic models

Link for 3D video: https://www.nature.com/articles/s41567-020-0914-9
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Quark core in maximally massive NSs
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Annala, Gorda, AK, Nättilä, Vuorinen, Nat. Phys. (2020)

Amount of matter with γ = log p
log ε

< 1.75

Sizeable fraction of the star (25%) may be in the quark phase.

If c2s < 0.4, at least 0.4M� of quark matter.

If no quark matter, collapse to black hole triggered by the phase
transition
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Future:
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Theory

Observations

Combined effort of nuclear physics, QCD, and astrophysical
observations will allow to determine the phase of the neutron star
cores
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Key statements:

The existence of quark matter in heavy-ion collisions is established
not by of a smoking gun signal but by establishing that at energy
densities reached, matter is better described by nearly conformal
partonic matter than hadronic matter.

It may be that in the future such a smoking gun may be found for
neutron stars (strong 1st order transition?)

It is also possible that no such smoking gun exists. Then
existence/non-existence of quark matter can still be established
based on precise information of material properties in the core.
⇒ QCD theory in key role!

Hints pointing to quark matter in maximally massive stars. No
definite answers yet but quark cores should be treated as a
standard scenario
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