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Fundamental prediction from the structure of QCD: 
Due to asymptotic freedom, at high enough energy 
densities one enters the deconfined phase, with 
quarks and gluons as the degrees of freedom
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?



Underlying challenge with 
NSs: Can we determine the 
properties of cold & dense 
QCD matter using only first 
principles field theory tools 
and robust observational 
data on neutron stars?
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Link between micro and macro
from GR (non-rotating TOV-eqs.):

Ozel et al., ApJ 820 (2016)



Clear need for a systematic and model-independent 
approach to the microphysics of neutron stars



NS matter EoS – robust theoretical limits
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Low-density behavior of EoS well known from nuclear 
theory side. Challenges begin close to saturation density:
• At 1.1𝑛𝑠, current errors in Chiral Effective Theory EoS ±24% -

mostly due to uncertainties in effective theory parameters
• State-of-the-art EoS NNNLO in chiral perturbation theory power 

counting [Tews et al., PRL 110 (2013), Hebeler et al., ApJ 772 (2013)]
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Asymptotic freedom of QCD ⇒ High-density limit from a 
non-interacting theory. However,…
• For practical applications, need to know also how rapidly this limit 

is approached
• At interesting densities (1 − 10)𝑛𝑠 system clearly strongly 

coupled and no nonperturbative methods available
7



State-of-the-art in pQCD: three loops at 𝑚𝑞 ≠ 0; towards

four loops at 𝑚𝑞 = 0 [Kurkela, Romatschke, Vuorinen, PRD 81 (2009); Gorda, 

Kurkela, Romatschke, Säppi, AV, PRL 121 (2018);...]

• Uncertainty in the result at ±24% level around 40𝑛𝑠
• Main source of uncertainty: renormalization scale dependence
• Pairing contributions to EoS subdominant at perturbative densities
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Conclusion: Sizable no man’s land extending from outer 
core to densities not realized inside physical neutron stars

Options: Use models, novel nonperturbative techniques, 
or interpolate between the limits using observational data
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What do we know from observations?
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By now, two accurate 
Shapiro delay 
measurements of two-
solar-mass stars:
Demorest et al., Nature 467 (2010)
Antoniadis et al., Science 340 
(2013)

∴ 𝑀max > 2𝑀⊙
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Fig: J. Lattimer



Radius measurements more problematic, but progress
through observation of X-ray emission: 
• Cooling of thermonuclear X-ray bursts provide radii to 

~ ± 400m [Nättilä et al., Astronomy & Astrophysics 608 (2017), …]

• Pulse profiling (NICER) has provided a robust radius 
measurem. for one NS so far [Raaijmakers et al., Astr.J.Lett. 887 (2019)]
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Gravitational wave breakthrough: 
First observed NS merger by LIGO & 
Virgo in 2017 (any many since then)

Three types of potential inputs:
1) Tidal deformabilities of the NSs 

during inspiral – good measure   
of stellar compactness

2) EM signatures – present if no 
immediate collapse to a BH

3) Ringdown pattern – sensitive to 
EoS (also at 𝑇 ≠ 0), but freq. 
too high for LIGO/Virgo

13LIGO and Virgo collaborations, PRL 119 (2017), PRL 121 (2018)



Tidal deformability: How large of a quadrupolar moment
a star’s gravitational field develops due to an external
quadrupolar field

𝑄𝑖𝑗 = −Λℰ𝑖𝑗

Substantial effect on observed GW waveform during 
inspiral phase

Tidal deformability: How large of a quadrupolar moment
a star’s gravitational field develops due to an external
quadrupolar field

𝑄𝑖𝑗 = −Λℰ𝑖𝑗

14Read et al., PRD 88 (2013)



Tidal deformability: How large of a quadrupolar moment
a star’s gravitational field develops due to an external
quadrupolar field

𝑄𝑖𝑗 = −Λℰ𝑖𝑗

LIGO & Virgo bound 70 < Λ(1.4𝑀⊙) < 580 at 90% 
credence using low spin prior [LIGO and Virgo, PRL 121 (2018)]
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Interpolation – or how to optimally 
combine theoretical and observational 

insights
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Allow all possible EoS 
behaviors by interpolating it 
over the no man’s land using 
one’s favorite (often 
piecewise) basis functions

Require:
1) Smooth matching to 

nuclear and quark 
matter EoSs

2) Continuity of 𝑝 and 𝑛 –
with at most one 
exception (1st order 
transition)

3) Subluminality
4) Optional: astrophysical 

constraints
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[Kurkela et al., ApJ 789 (2014)]



Using polytropes, generate en-
semble of 200.000 viable EoSs.

Assumption here and in the 
following: All stars considered 
main seq. NSs
• Excluded: twin stars [e.g. Alvarez-

Castillo, Blaschke, PRC96 (2017)], strange 

quark stars [e.g. Weber et al., IAU 291 

(2013)]
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[Annala, Gorda, Kurkela, AV, PRL 120 (2018), 
1711.02644]
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[Annala, Gorda, Kurkela, AV, PRL 120 (2018), 
1711.02644]

Using polytropes, generate en-
semble of 200.000 viable EoSs.

Additionally take into account: 
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[Annala, Gorda, Kurkela, AV, PRL 120 (2018), 
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Using polytropes, generate en-
semble of 200.000 viable EoSs.

Additionally take into account: 

• Existence of 2𝑀⊙ NSs ⇒
Very soft EoSs ruled out, 

𝑅 1.4𝑀⊙ ≥ 10km

• Tidal deformability limits ⇒
EoS cannot be overly stiff,

𝑅 1.4𝑀⊙ ≤ 13km

• Accurate R measurements 
(here assuming accurately 
determined mass)
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[Annala, Gorda, Kurkela, AV, PRL 120 (2018), 
1711.02644]



How about quark matter?
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Recent work: Implement interpolation starting from
speed of sound, and classify results in terms of max(𝑐𝑠

2) 

and the latent heat of the deconfinement transition

[Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nature Physics (2020)]
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Recent work: Implement interpolation starting from
speed of sound, and classify results in terms of max(𝑐𝑠

2) 

and the latent heat of the deconfinement transition

[Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nature Physics (2020)]

Interesting because of tension between standard lore in 
nuclear physics and experience from other contexts

𝑐/ 3
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Setting nontrivial upper limits for speed of sound leads to 
increasingly constrained results; contrary to common
lore, even sub-conformal (𝑐𝑠

2 < 1/3) EoSs viable

Low-𝑐𝑠 EoSs suggest two-phase structure of the EoS band
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Comparison with viable NM EoSs and QGP critical region 
strengthens link between bend and deconf. transition

Distinguishing feature between phases: slope 𝛾 ≡
𝑑 ln 𝑝

𝑑 ln 𝜖
≈

1 in nearly conformal QM, ~2.5 in sub-𝑛𝑠 nuclear matter



Obvious questions:
1) Is the two-slope structure only a property of the 

band, or does it persist more differentially – and for 
larger values of max(𝑐𝑠

2)?
2) Where do the centers of NSs with different masses 

lie, i.e. does quark matter exist inside NSs?
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Plan for investigation: 

1) Generate a large (~500.000) ensemble of viable EoSs
with speed-of-sound method, allowing for 1st order 
transitions with arbitrary latent heats ∆𝜖

2) Compare behaviors of three key quantities – 𝛾, 𝑐𝑠
2, 

and 𝑝/𝑝FD – to all viable hadronic EoSs available

3) Identify approximative criterion for the onset of QM 
and quantify conditions for its presence and amount 
inside NSs of different masses
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Approximative criterion 
for the onset of QM 



• In maximal-mass stars, quark core is present in a vast 
majority of stars – and always sizable if max(𝑐𝑠

2) ≲ 0.5

• Purely hadronic NSs possible only if max(𝑐𝑠
2) ≳ 0.7 and

transition first order

✓ If transition a crossover, quark cores inevitable!
36
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Recent simultaneous MR-measurements [1] and limits 
drawn from EM counterparts of GW170817 [2] in 
excellent agreement with low-𝑐𝑠 EoSs
[1] Nättilä et al., Astronomy & Astrophysics 608 (2017)
[2] Margalit and Metzger, Astrophys. Journal 850 (2017); Radice and Dai, Eur. Phys. J. A55 (2019)



Final thoughts
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• How to remedy for the absence of lattice methods at 
high density?
o No single method available everywhere; tools such 

as CET & pQCD useful but in separated regimes

• How to optimally exploit observational info on NSs?
o Model-independent interpolation of the EoS offers 

systematic framework for including observations 

• Do QM cores exist inside NSs, and if so, in which stars?
o For massive enough stars, matter apprears to have 

characteristics resembling QM, but caveats remain
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o Model-independent interpolation of the EoS offers 

systematic framework for including observations 
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