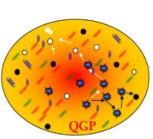


Transport properties of the hot and dense QGP

Olga Soloveva*, Pierre Moreau, Lucia Oliva, Taesoo Song, Elena Bratkovskaya In collaboration with David Fuseau, Joerg Aichelin

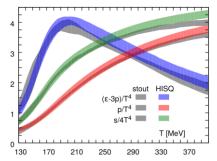
IGFAE XXXII International Workshop on HEP "Hot problems of Strong interactions" November 12 2020



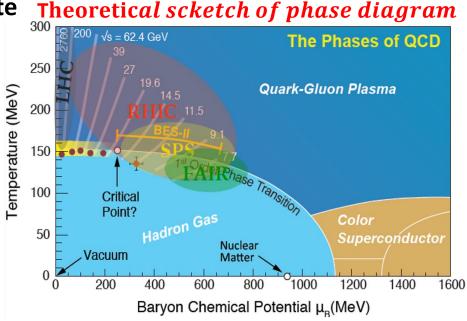
Motivation: QGP at finite baryon density

Explore the QCD phase diagram at finite temperature and chemical potential through heavy-ion collisions

- Available information:
 - Experimental data at SPS, BES at RHIC
 - Lattice QCD calculations



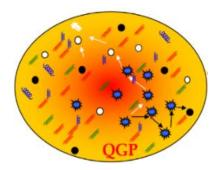
EoS



How to learn about degrees-of-freedom of QGP? ->

HIC simulations – transport models

Transport models need an input for the partonic phase: cross-sections, masses,...



QGP in equilibrium: DQPM and PNJL

Transport coefficients at finite T and μ_B

- 1.) crossover (DQPM model)
- 2.) CEP and 1st order phase transition (PNJL model)

Transport coefficients of QGP: model predictions

Hydrodynamical model

$$\Delta T^{\mu\nu} = \eta \left(D^{\mu} u^{\nu} + D^{\nu} u^{\mu} + \frac{2}{3} \Delta^{\mu\nu} \partial_{\rho} u^{\rho} \right) - \zeta \Delta^{\mu\nu} \partial_{\rho} u^{\rho}$$

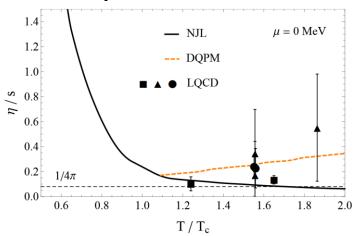
input for hydro simulations

Shear viscosity to entropy density ratio is extremely small QGP is the most ideal liquid!

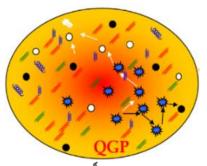
Meson gas Data -IE 1 RHIC -0.5 1.0 -1.0 0.5 0.0 (T-T_)/T_

R.A. Lacey, A. Taranenko, PoS CFRNC 2006 (2006) 021

Model predictions:



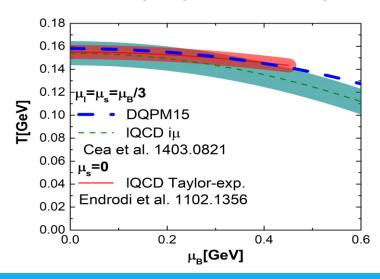
Different models using the same EoS can have completely different transport coefficients!



QGP in equilibrium:

Dynamical QuasiParticle Model (DQPM)

DQPM: consider the effects of the nonperturbative nature of the strongly interacting quark-gluon plasma (sQGP) constituents (vs. pQCD models)



Dynamical QuasiParticle Model (DQPM)

ω [GeV]

The QGP phase is described in terms of interacting quasiparticles:

quarks and gluons with Lorentzian spectral functions:

$$\rho_{j}(\omega, \mathbf{p}) = \frac{\gamma_{j}}{\tilde{E}_{j}} \left(\frac{1}{(\omega - \tilde{E}_{j})^{2} + \gamma_{j}^{2}} - \frac{1}{(\omega + \tilde{E}_{j})^{2} + \gamma_{j}^{2}} \right)$$

$$\equiv \frac{4\omega\gamma_{j}}{(\omega^{2} - \mathbf{p}^{2} - M_{i}^{2})^{2} + 4\gamma_{j}^{2}\omega^{2}}$$

Resummed properties of the quasiparticles are specified by scalar complex self-energies:

- ightharpoonup Real part of the self-energy: thermal mass (M_g , M_q)
- \triangleright Imaginary part of the self-energy: interaction width of partons (γ_q, γ_q)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

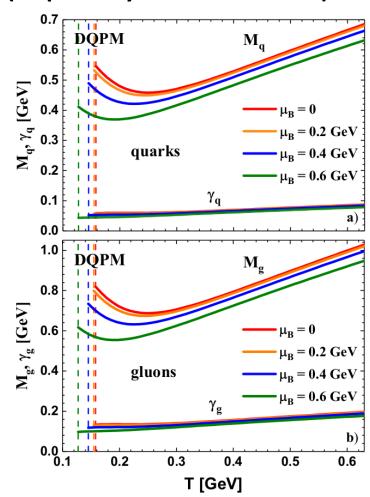
Parton properties

Modeling of the quark/gluon masses and widths (inspired by HTL calculations)

$$M_{q(\bar{q})}^{2}(T, \mu_{B}) = \frac{N_{c}^{2} - 1}{8N_{c}} g^{2}(T, \mu_{B}) \left(T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right)$$
$$\gamma_{q,g}(T, \mu_{B}) = \frac{c_{A,F}}{3} \frac{g^{2}(T, \mu_{B})T}{8\pi} \ln \left(\frac{2c}{g^{2}(T, \mu_{B})} + 1\right)$$

- > Only one parameter (c = 14.4) + (T, μ_B) dependent coupling constant to determine
 from lattice results
- Entropy and baryon density in the quasiparticle limit (G. Baym 1998, Blaizot et al. 2001)

$$s^{DQPM}(\Pi, \Delta, S_q, \Sigma), n_B^{DQPM}(\Pi, \Delta, S_q, \Sigma)$$



Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM coupling constant

 $ightarrow \,$ Input: entropy density as a f(T , $\mu_B=0$)

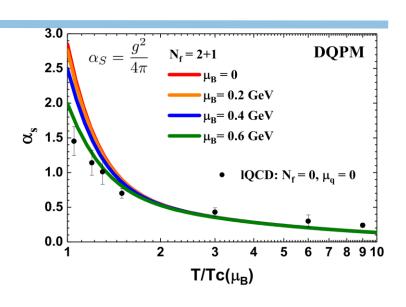
$$g^{2}(s/s_{SB}) = d ((s/s_{SB})^{e} - 1)^{f}$$

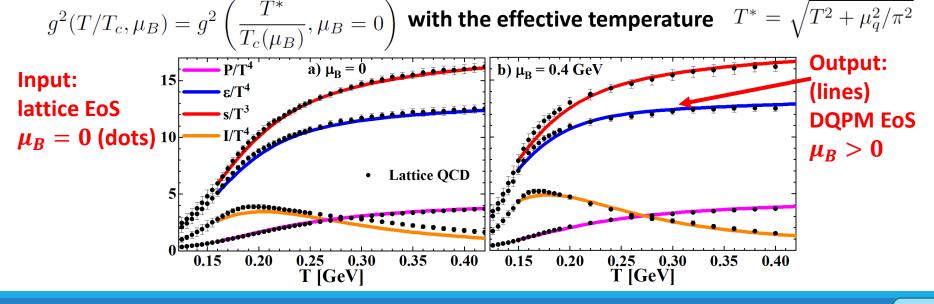
$$s_{SB}^{QCD} = 19/9\pi^{2}T^{3}$$

$$s^{DQPM}(\Pi, \Delta, S_{q}, \Sigma) = s^{lattice}$$

fit S from QP to S from IQCD → fix the model parameters

ightarrow Scaling hypothesis at finite $\mu_{B}~pprox 3\mu_{q}$





Relaxation Time Approximation

Boltzmann equation
$$f_a = f_a^{
m eq} \left(1 + \phi_a
ight)$$

$$\frac{df_a^{\text{eq}}}{dt} = \mathcal{C}_a = -\frac{f_a^{\text{eq}}\phi_a}{\tau_a}$$

 $\frac{df_a^{\rm eq}}{dt} = \mathcal{C}_a = -\frac{f_a^{\rm eq}\phi_a}{\tau_a}$ RTA: system equilibrates within the relax time τ , Express collisional Integral via τ and f_a

Relaxation times:

$$\frac{1 + d_a f_a^{\text{eq}}}{\tau_a(E_a^*)} = \sum_{bcd} \frac{1}{1 + \delta_{ab}} \int d\Gamma_b^* d\Gamma_c^* d\Gamma_d^* W(a,b|c,d) f_b^{\text{eq}} \left(1 + d_c f_c^{\text{eq}}\right) \left(1 + d_d f_d^{\text{eq}}\right) + (\text{cd}), \text{ (bc)}$$

$$T^{\mu\nu} = -Pg^{\mu\nu} + wu^{\mu}u^{\nu} + \Delta T^{\mu\nu} \quad J_B^{\mu} = n_B u^{\mu} + \Delta J_B^{\mu}$$

$$\Delta T^{\mu\nu} = \eta \left(D^{\mu} u^{\nu} + D^{\nu} u^{\mu} + \frac{2}{3} \Delta^{\mu\nu} \partial_{\rho} u^{\rho} \right) - \zeta \Delta^{\mu\nu} \partial_{\rho} u^{\rho}$$

$$\Delta J^{\mu}_{B} = \lambda \left(\frac{n_{B} T}{w} \right)^{2} D^{\mu} \left(\frac{\mu_{B}}{T} \right) \qquad \text{hydrodynamics}$$

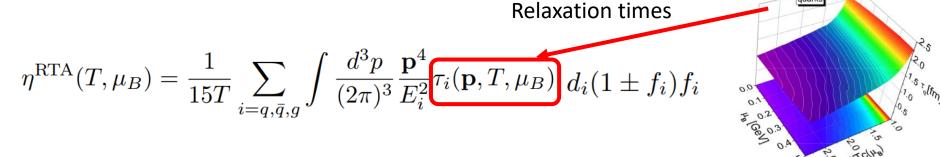
Energy-momentum tensor and baryon diffusion current can be expressed using fa: $T^{\mu\nu}(f_a, m_{a,a}), J^{\mu}_{B}(f_a, m_{a,a})$

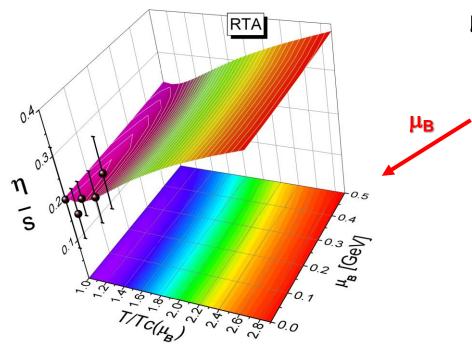
Obtain the transport coefficients using conservation laws, and 1a:

$$\begin{cases} \partial_{\mu} J_{B}^{\mu} = 0 \\ \partial_{\mu} T^{\mu\nu} = 0 \end{cases} \xrightarrow{\eta^{\text{RTA}}(T, \mu_{B})} = \frac{1}{15T} \sum_{i=q, \bar{q}, g} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\mathbf{p}^{4}}{E_{i}^{2}} \tau_{i}(\mathbf{p}, T, \mu_{B}) \\ d_{i}(1 \pm f_{i}) f_{i} \end{cases}$$

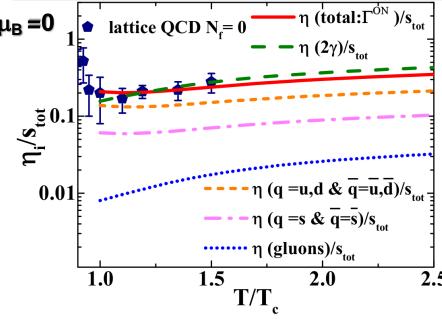
P. Chakraborty and J. I. Kapusta, PRC 83,014906 (2011).

Transport coefficients: shear viscosity



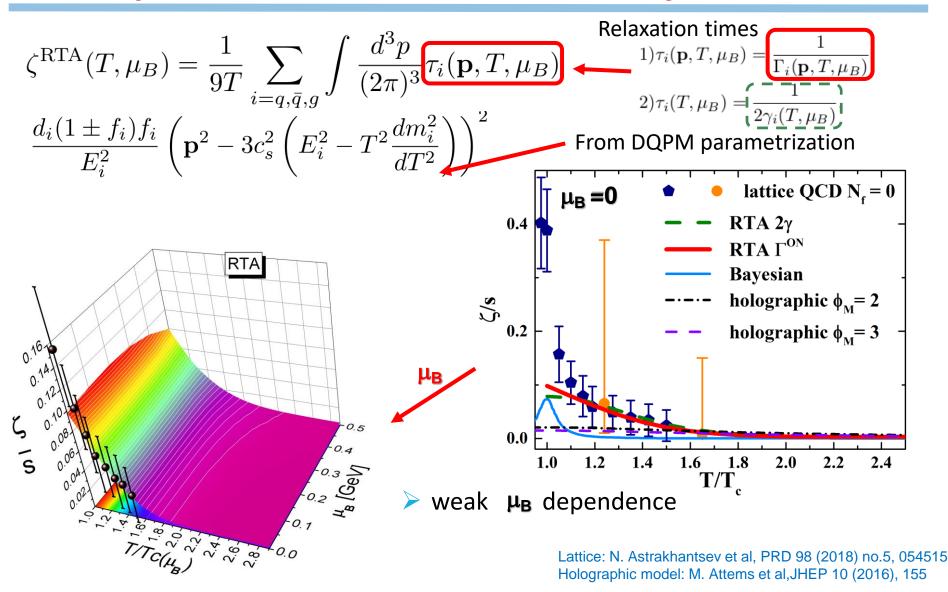


Lattice: N. Astrakhantsev, V. Braguta, A. Kotov JHEP 1704 (2017) 101



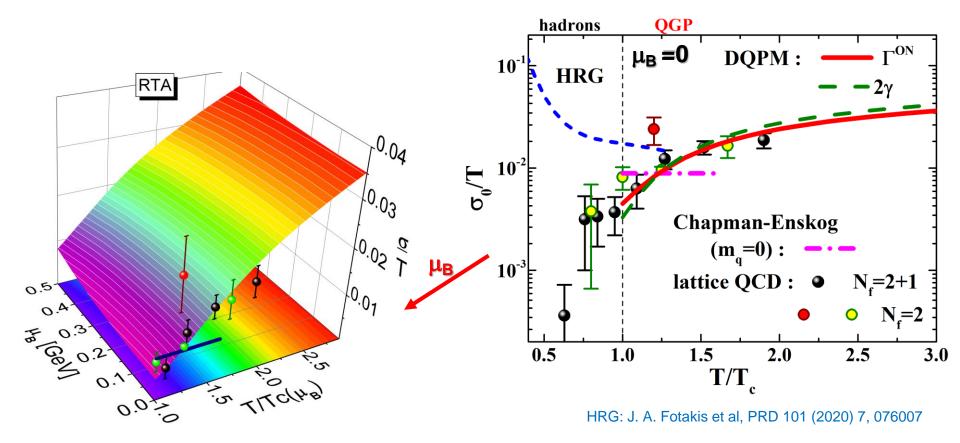
Main contribution comes from light quarks and anti-quarks

Transport coefficients: bulk viscosity



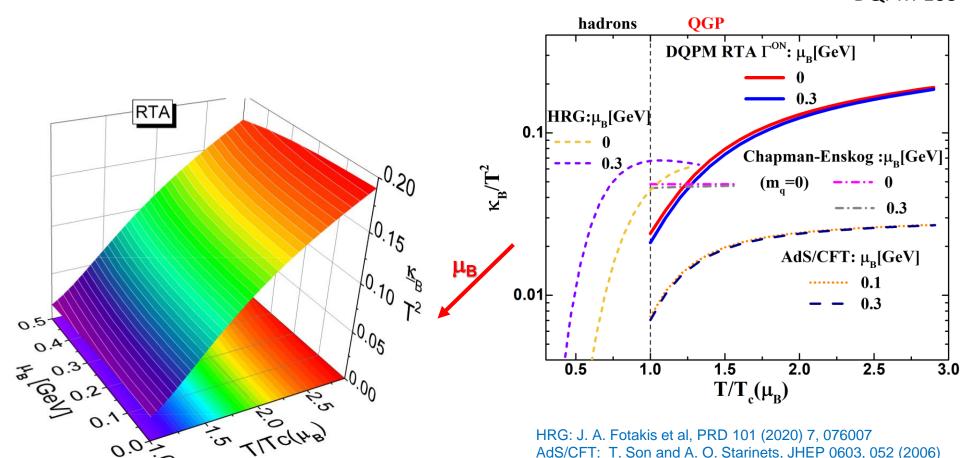
Transport coefficients: electric conductivity

$$\sigma_0^{\rm RTA}(T,\mu_B) = \frac{e^2}{3T} \sum_{i=q,\bar{q}} q_i^2 \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}^2}{E_i^2} \underbrace{\tau_i(\mathbf{p},T,\mu_B)} d_i (1-f_i) f_i \label{eq:sigma}$$
 Relaxation times



Transport coefficients: baryon diffusion coefficient

$$\kappa_B^{\text{RTA}}(T, \mu_B) = \frac{1}{3} \sum_{i=q,\bar{q}} \int \frac{d^3p}{(2\pi)^3} \mathbf{p}^4 \underbrace{\tau_i(\mathbf{p}, T, \mu_B)}_{\text{Relaxation times}} \frac{d_i(1 \pm f_i)f_i}{E_i^2} \left(b_a - \frac{n_B E_i}{\epsilon + p}\right)^2$$



Introduction

Transport coefficients

HIC

Summary

Polyakov Nambu Jona-Lasinio (PNJL)

Effective lagrangian with the same symmetries for the quark dof as QCD

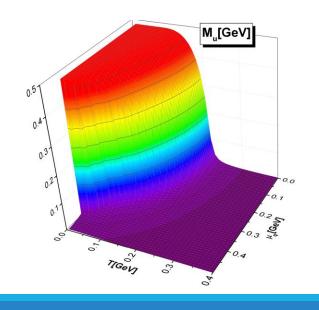
$$\mathcal{L}_{PNJL} = \sum_{i} \bar{\psi}_{i} (iD - m_{0i} + \mu_{i} \gamma_{0}) \psi_{i}$$
 5 parameters fixed by vacuum values K, π masses,
$$+ G \sum_{a} \sum_{ijkl} \left[(\bar{\psi}_{i} \ i \gamma_{5} \tau_{ij}^{a} \psi_{j}) \ (\bar{\psi}_{k} \ i \gamma_{5} \tau_{kl}^{a} \psi_{l}) + (\bar{\psi}_{i} \tau_{ij}^{a} \psi_{j}) \ (\bar{\psi}_{k} \tau_{kl}^{a} \psi_{l}) \right]$$
 η - η 'mass splitting , π decay constant,
$$- K \det_{ij} \left[\bar{\psi}_{i} \ (-\gamma_{5}) \psi_{j} \right] - K \det_{ij} \left[\bar{\psi}_{i} \ (+\gamma_{5}) \psi_{j} \right]$$
 Chiral condensate

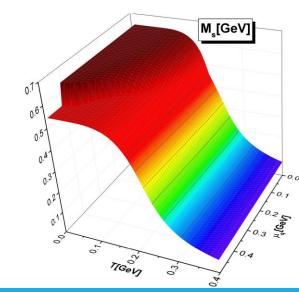
5 parameters fixed by vacuum values K,π masses, constant, Chiral condensate

 $-\mathcal{U}(T;\Phi,\bar{\Phi})$ Polyakov potential fitted to the YM

D.Fuseau, T.Steinernert, J.Aichelin PRC 101 (2020) 6 065203

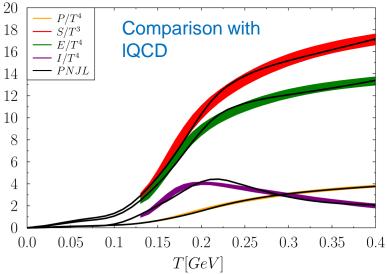
- Gap equation + minimization of the grand potential \longrightarrow Chiral masses (M_L, M_S)
- \triangleright 1st order PT at high μ_B (sudden change of q and meson masses)





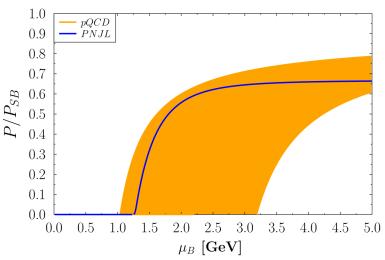
Polyakov Nambu Jona-Lasinio (PNJL):EOS

- PNJL allow for predictions for finite T and μ_B : D. Fuseau, T. Steinernert, J.Aichelin PRC 101 (2020) 6 065203
- \triangleright Parameters fixed, EoS at $\mu_B = 0$:

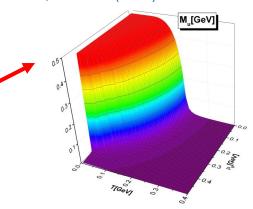


HotQCD Phys.Rev. D90 (2014) 094503

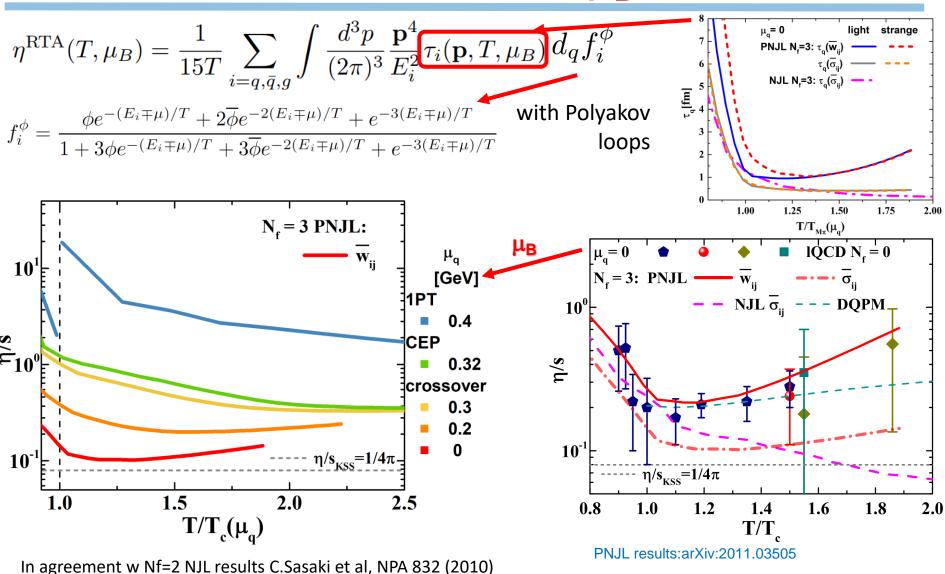
- ightharpoonup CEP: (T , μ_B) = (110,960) MeV , μ_B /T = 8.73
- ightharpoonup 1st order PT at high μ_B (sudden change of q and
- meson masses)



pQCD: A.Kurkela, A.Vuorinen, PRL 117 (2016)4 042501



Specific shear viscosity at high μ_B



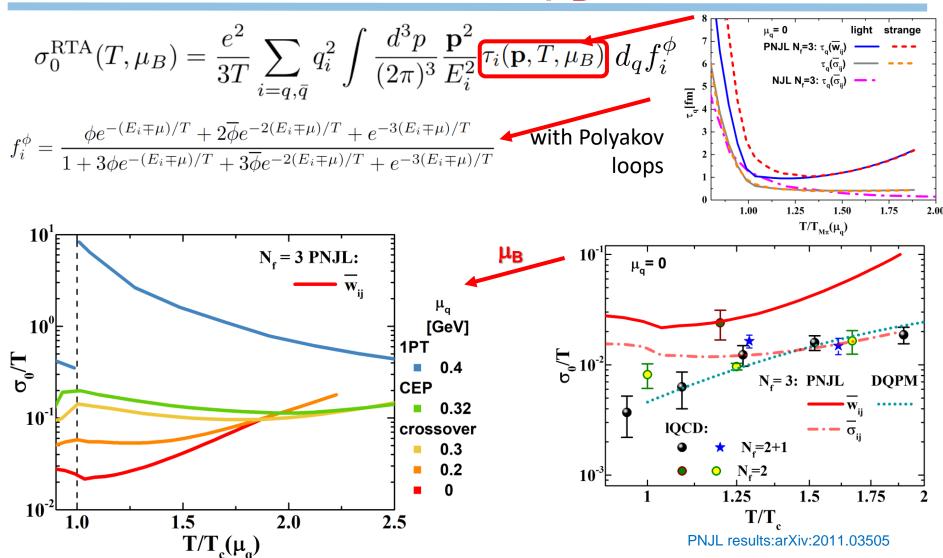
Introduction

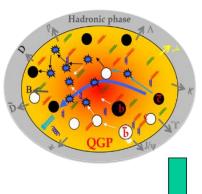
Transport coefficients

HIC

Summary

Electric conductivity at high μ_B

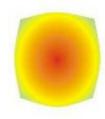


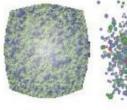


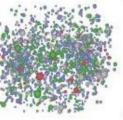
QGP out-of equilibrium ←→ HIC

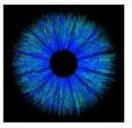
thermal model
thermal+expansion
hydro
transport

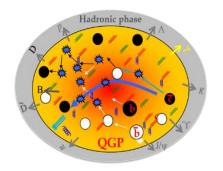
transport











QGP out-of equilibrium ←→ HIC

Parton-Hadron-String-Dynamics (PHSD)

Transport theory: off-shell transport equations in phase-space representation based on Kadanoff-Baym equations for the partonic and hadronic phase

Stages of a collision in the PHSD

Initial A+A collision

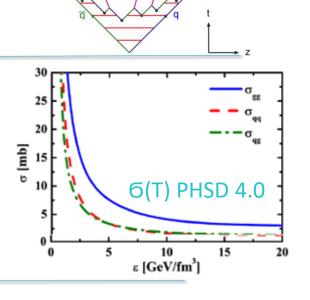
Partonic phase

- **String formation in primary NN collisions**
- → decays to pre-hadrons (baryons and mesons)

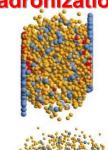
→ massive quarks/gluons and mean-field energy (quasi-)elastic collisions : inelastic collisions:

$$q+q \to q+q \quad g+q \to g+q q+\overline{q} \to q+\overline{q} \quad g+\overline{q} \to g+\overline{q} \qquad q+\overline{q} \to g g \to q+\overline{q}$$

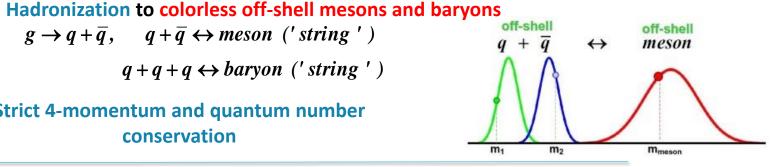
 $\overline{q} + \overline{q} \rightarrow \overline{q} + \overline{q} \quad g + g \rightarrow g + g$



LUND string model



 $g \rightarrow q + \overline{q}$, $q + \overline{q} \leftrightarrow meson ('string')$



Hadron-string interactions – off-shell HSD

 $q + q + q \leftrightarrow baryon ('string')$

Extraction of (T, μ_B) in PHSD

For each space-time cell of the PHSD: $T^{\mu\nu} = \sum_{i} \frac{p_i^{\mu} p_i^{\nu}}{E_i} \longrightarrow \text{Diagonalize in LRF} \longrightarrow \epsilon^{\text{PHSD}}$

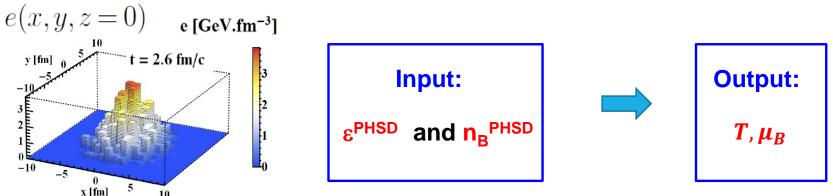
- Calculate the local energy density εPHSD and baryon density n_BPHSD
- use IQCD relations (up to 6th order):

$$\frac{n_B}{T^3} \approx \chi_2^B(T) \left(\frac{\mu_B}{T}\right) + \dots$$

$$\Delta \epsilon / T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T)\right) \left(\frac{\mu_B}{T}\right)^2 + \dots$$

Use baryon number susceptibilities χ_n from IQCD

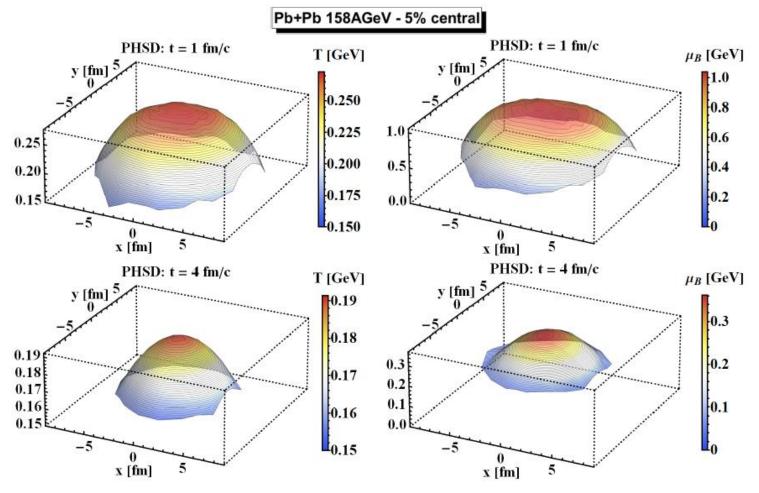
 \rightarrow obtain (T, μ_B) by solving the system of coupled equations using ϵ^{PHSD} and n_B^{PHSD}



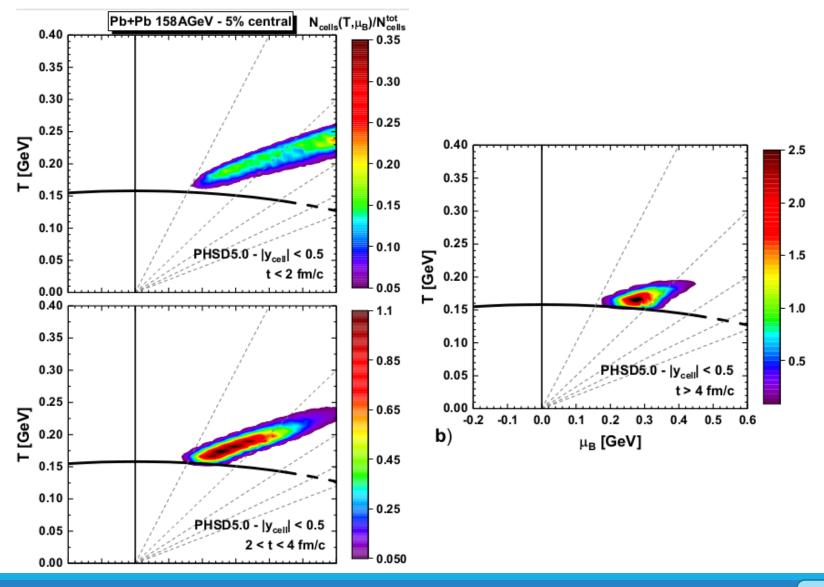
for details see P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya arXiv:1903.10157, PRC 100 (2019) no. 1, 014911

Illustration for HIC ($\sqrt{s_{NN}} = 17$ GeV)

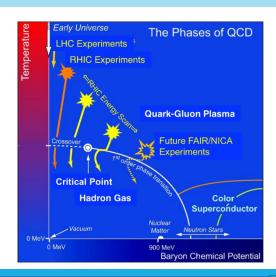
The temperature profile in (x; y) Baryon chemical potential profile in (x; y) at midrapidity $(|y_{cell}| < 1)$ at 1 and 4 fm/c



QGP evolution for HIC ($\sqrt{s_{NN}} = 17$ GeV)



Traces of the QGP at finite μ_B in observables in high energy heavy-ion collisions



Results for HIC

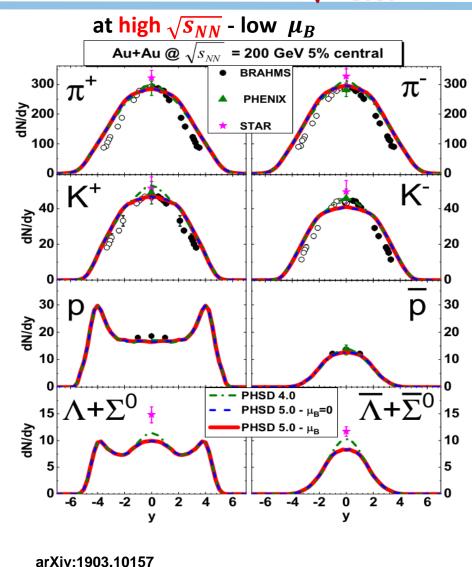
Comparison between three different results:

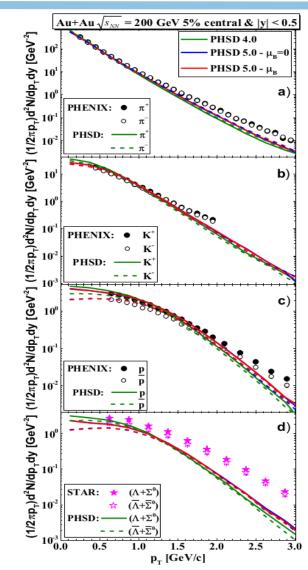
PHSD 4.0 : only isotropic $\sigma(T)$ and $\rho(T)$ parton spectral function partonic cross sections (masses and widths)

new PHSD 5 : angular dependence of $d\sigma/d \cos\theta$

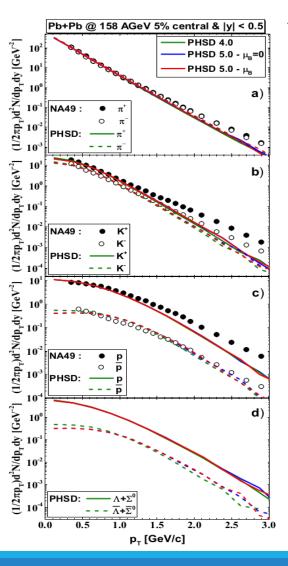
- ightharpoonup PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B = 0)$ and $\rho(T, \mu_B = 0)$
- ightharpoonup PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B)$ and $\rho(T, \mu_B)$

Results for HIC ($\sqrt{s_{NN}} = 200 \text{ GeV}$)



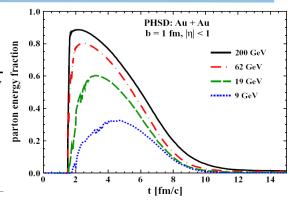


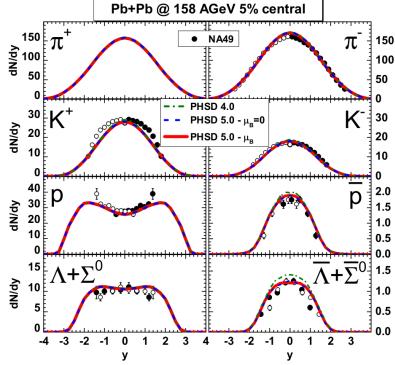
Results for HIC ($\sqrt{s_{NN}} = 17$ GeV)



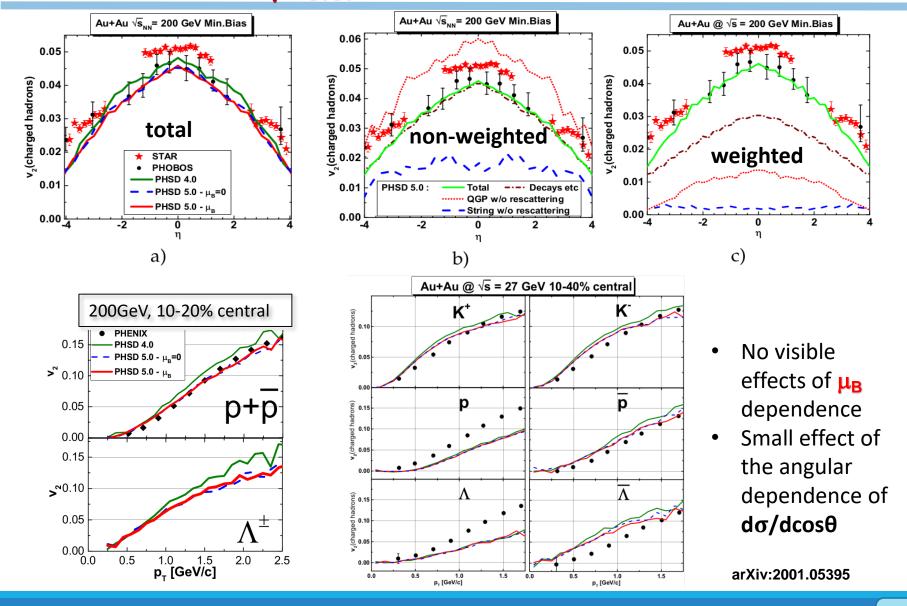
High- μ_B regions are probed at low

 $\sqrt{s_{NN}}$ or high rapidity regions But, QGP fraction is small at low $\sqrt{s_{NN}}$

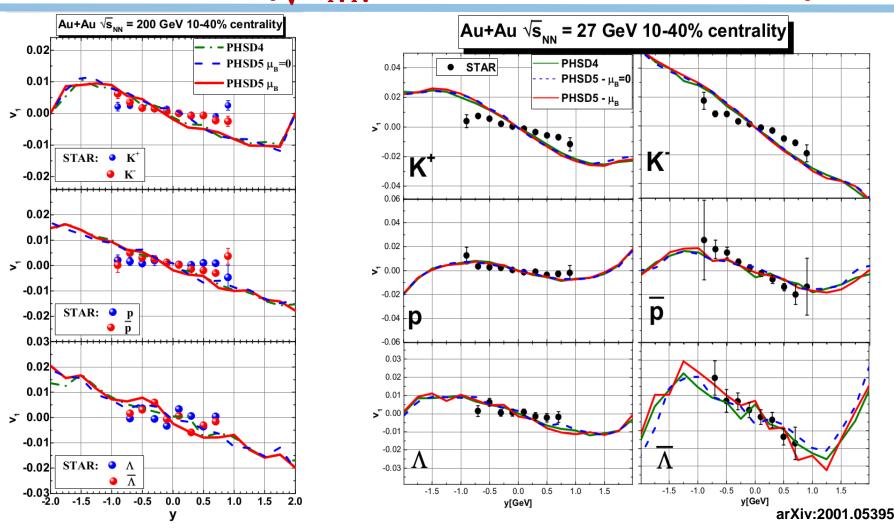




Elliptic flow ($\sqrt{s_{NN}} = 200 \ GeV \ vs \ 27 GeV$)



Directed flow ($\sqrt{s_{NN}} = 200 \ GeV \ vs \ 27 \ GeV$)



No visible effects of μ_B dependence or angular dependence

Summary / Outlook

- Transport coefficient at finite T and μ_B have been found using the (T, μ_B) dependent cross sections(for cross-sections see DQPM[2] and PNJL[4])
- At μ_B = 0 good agreement with the Bayesian analisis estimations and gluodynamic lattice calculations of transport coefficients
- Bulk observables have been studied within the PHSD transport approach[2,3]
- \rightarrow High- μ_B regions are probed at low $\sqrt{s_{NN}}$ or high rapidity regions
- ightharpoonup But, QGP fraction is small at low $\sqrt{s_{NN}}$: no effects seen in bulk observables[2,3]
- Directed and elliptic flows are also don't show μ_B dependence, while v_2 is sensitive to the explicit \sqrt{s} dependence and angular dependence of $d\sigma/d\cos\theta$
- Outlook:
 - \triangleright More precise EoS large μ_B
 - Possible 1st order phase transition at large μ_B , comparison w PNJL model

Summary / Outlook

Thank you for your attention!

- [1] OS, P. Moreau, E. Bratkovskaya, arXiv:1911.08547 [nucl-th].
- [2] P. Moreau, OS, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, arXiv:1903.10157
- [3] OS, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, arXiv:2001.05395
- [4] OS, D.Fuseau, J.Aichelin, E.Bratkovskaya, arXiv:2011.03505