Status of the NICA project

A.Sidorin, VBLHEP, JINR, Dubna

Workshop "Hot problems of Strong Interactions" 13 November 2020 Theoretical ideas and experimental searches of the critical point

General information

NICA is an international project realizing by international intergovernmental organization – the Joint Institute for Nuclear Research and brings the efforts of 18 member states and 6 associated countries.

Project NICA started as a part of the JINR Roadmap for 2009-2016 was described in the JINR 7-years Program. It was approved by Scientific Council of JINR and the Committee of Plenipotentiaries of JINR in 2009. NICA is a flagship project of JINR presently.

In 2016 between RF and JINR was signed a contract presuming start of operation of starting configuration of the NICA complex in 2022.

In 2017 the project was included into ESFRI road map.

Project web-site: http://nica.jinr.ru/

The primary purpose of the NICA construction

The project comprises experimental studies of **fundamental** character in the fields of the following directions:

- Relativistic nuclear physics;
- Spin physics in high and middle energy range of interacting particles;
- Radiobiology.

Applied researches based on particle beams generated at NICA are dedicated to development of novel technologies in material science, environmental problems resolution, energy generation, particle beam therapy and others.

Education program is one of the first priority activities at JINR, as formulated in JINR Roadmap.

The proposed NICA facility offers various possibilities for teaching and qualification procedures including practice at experimental set ups, preparation of diploma works, PhD, and doctoral theses.

Stages of the experimental program realization Stage I

-Fixed target experiment with heavy ions (started 2018)

Stage II

- -Starting configuration of the collider and detector (2022)
- -Basic configuration, heavy ion collisions (2023)
- -Collisions of heavy ions with light ions (protons)

Stage III

-Spin physics program

The NICA complex includes:

- Set of accelerators providing the particle beams for fixed target and collider experiments,

- Experimental facilities,
- Line for assembling and cryogenic testing of SC-magnets,
- Workshops for construction of the detector elements,
- NICA innovation center,
- Required infrastructure.

Experimental facilities

Fixed target experiment

Baryonic Matter at Nuclotron (BM@N)

Collider experiments:

Multi Purpose Detector (MPD)

Spin Physics Detector (SPD)

Experimental status

Baryonic Matter at Nuclotron

Main goals are

 investigations of strange/multi-strange hyperon, hypernuclei production and short range correlations.

Baryonic Matter at Nuclotron

-Three technological runs (2016 – 2017) -**5.02 – 4.04.2018 experiments** with C, Ar, Kr beams (Short range correlations, strange production)

Intensity of extracted Kr beam. Spill duration 2.5 sec. Up to 5.10⁵ ions per cycle

Multi Purpose Detector (MPD)

Magnet fabrication: ASG (Genova) & Vitkovice HM

Magnetic yoke (720 t)

SC Solenoid in Genova

... in Saint-Petersburg

... River Volga

... transported to VBLHEP

Magnetic yoke prepared for the solenoid location

MPD inner tracker

CREMLIN WP2 Working Meeting "Exchange on Policy- and ESFRI-related Issues", April 2016, Dubna₈

Time Projection Chamber (TPC)

Kopuye TPC/ MPD

length	340 см	
external R	140 см	
internal R	27см	
gas	90% Ar+10% мeth.	
Drift velocity	5.45 см / мкс;	
Drift time	< 30 мкс;	
N of chambers	12 + 12	
N channels	95232	
rate	$< 7 kHz (L = 10^{27})$	

Time of Flight system (TOF)

28 units13 440 channels

20% of units assembled and tested

Electromagnetic calorimeter (ECal) system

Protvino

Bejing

NICA accelerators

Main accelerator of the NICA complex is **the Nuclotron** – superconducting ion synchrotron at magnetic rigidity of about 42 T·m equipped with two injection chains: for heavy and for light ions.

Injection chain for heavy ions consists of:

the ion source (KRION-6N), heavy ion linear accelerator (HILac), superconducting booster synchrotron (Booster) and required beam transport lines.

Injection chain for light ions includes:

Laser ion source (LIS), Source of polarized ions (SPI), Duoplasmatron, RFQ accelerator as a foreinjector, Drift tube linac of Alvarec type (LU-20) and required beam transport lines.

The collider experiments will be provided at two storage rings with two interaction points (IP).

Heavy ion injection chain

KRION 6T used in two runs

Heavy ion linear accelerator (HILAc) Commissioned – October 2016

Booster

Official start of the commissioning

Booster

Cryo-magnetic system in assembly 16 November 2020 – start of technological run

NICA collider

Serial production of the collider magnets

Nuclotron-collider Beam transport channel

Magnetic element	Number	Effective length, m	Max. magnetic field (gradient), T (T/m)
Long dipole	21	2	1.5
Short dipole	6	1.2	1.5
Quadrupole Q10	22	0.353	31
Quadrupole Q15	6	0.519	31
Steerer	33	0.466	0.114

Line for assembling and cryogenic testing of SC-magnets

Main production areas:

- Incoming inspection zone
- SC cable production hall
- SC coils production hall
- Area for assembling the magnets
- Area for the magnetic measurements under the room temperature
- Leakage test area
- Area for mounting the SC-magnets inside cryostats
- Cryogenic tests bench

450 magnets for NICA and FAIR projects

Official start up

28 November 2016

Collider building

Official start up of the construction 25 March 2016

Collider building

Collider building

http://nucloweb.jinr.ru/nucloserv/205corp.htm

NICA cryogenic complex

Total power 8 kW at 4.5 K

NICA cryogenic complex

New helium liquefier OG-1000 Put into operation – may 2016

NICA innovation center

NICA innovation center

- cluster of JINR computer center dedicated to collect and process the data from NICA detectors,
- 500 offices for scientists,
- laboratory rooms for preparation of experimental equipment and fast analysis of results,
- conference hall

NICA Network and Computing

LIT

Data storage: - 2017: 1 PB RAW /year - план: 10 PB RAW/year

Fast memory at supercomputer **«Govorun»**

NICA Computing

LHEP off-line cluster put into operation 19 September 2019

Education program

JINR educational portal targets students and schoolchildren of the JINR Member States, young specialists and science teachers.

The portal hosts courses in the MOOC format on priority JINR activities.

The first courses have already been created and published:

- on the topics of the NICA megaproject,
- on heavy ions and the synthesis of new elements,
- fundamental and applied research of nanostructures and condensed matter using neutrons.

New video course: Megascience project NICA

We are pleased to present you **the first video course about megascience project NICA and collider technology**! This course consists of 8 sections and talks about scientific mega-projects, particle accelerators at JINR, structure and tasks of the NICA complex, factory of superconducting magnets and cryogenic complex.

The staff of the Veksler and Baldin Laboratory of High Energy Physics (Anatoly Sidorin, Sergey Kostromin, Anton Konstantinov, Sidorov Nikita, Marina Osmachko) and the Development and creation of educational programs department (Anna Komarova, Caren Rossouw, Oleg Smirnov) prepared this online course.

The course is available in both English and Russian.

https://edu.jinr.ru/

NICA milestones

2009 Start of the project 2013 Nuclotron modernization 2015 Technical project completion 2016 Start of the collider building construction 2018 BM@N I

Plans:

2020

Completion of the Booster commissioning 2021 BM@N II 2022 Creation of the collider in starting configuration permitting to provide experiments

with colliding ion beams up to Bi^{+83} at mean luminosity of L = 5.10²⁵ cm⁻² c⁻¹ in the energy range $\sqrt{s_{NN}} = 8 - 11$ GeV/u

Thank your for attention

