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u LQCD + universality argument { new input on QCD phase diagram
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Summary

Consider a system close to transition. There is a universal function of scaling variable
which describe properties of this transitions. There is a non-universal map between
parameters of the theory (T, µ,m) and the scaling variable. The analytic structure
(location/type of singularities and cuts) of this universal function defines thermodynamics
of the system. This function has poles: Yang-Lee Edge singularities. This singularities
define the radius of convergence. The location of Yang-Lee Edge singularities zc was not
known until recently.

QCD crossover for small pion mass is described by the universal function. Thus there are
singularities at complex µ. Their location can be found from lattice input on mapping
(T, µ,m)→ the scaling variable and the value of zc.

Universal function: computed for (simpler) theory in the same universality class as QCD.
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Radius of convergence

Conventionally:

u LQCD has access to zero chemical potential (and imaginary)

u Taylor series: radius of convergence of power series is radius of largest disk in which
the series converges

u Radius of convergence of power series is defined by closest singularity

u Example:
1

1 + x2 =
∞∑
n=0

(−1)nx2n

4



Radius of convergence

u Singularities of thermodynamic functions { signal critical point, phase transitions

u Example 1: in chiral limit for O(4) line α < 0

p ∝ #(T − Tc + κµ2)2−α + preg

Branch point singularity (when the argument T − Tc + κµ2 = 0) on the real µ axis
u Example 2: thermal singularity

fFD = [e ωT −
µ
T + 1]−1

Singularity on lines Im µ/T = ±π. Singularity at complex value of µ.
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Radius of convergence

u Example 3: non-zero quark mass. At given temperature (above CP)
T

μm

T1

μ1

O(4) line

tricritical point

first order

Re μ

Im μ

μc

Re μ

Im μ

T=T1

μc

m=0

T=T1

m≠0
m1/(βδ)

Re μ

Im μ

T=TCEP

p ∝ #(µ− µYL)1+σ + preg
µYL is complex number; σ ≈ 0.1 is Yang-Lee edge singularity 6



Radius of convergence

Mean-field quark-meson/NJL model:
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Radius of convergence

u Analysis based on first few coefficients of Taylor series at µ = 0:

"disfavored region for location of 
a critical point"

No LQCD data

√s=

Replotted using data from BNL-Bi-CCNU Collaboration, arXiv:1701.04325

u Reversing the argument: Taylor expansion is reliable inside shaded region
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Radius of convergence

u Precise mathematical statement about radius of convergence
{ asymptotically high order coefficients
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Even 30 Taylor coefficients are not sufficient to describe actual convergence radius
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Radius of convergence

u Is there an alternative way?!
• Based on first-principal QCD
• Not relying on Taylor series expansion

u This talk: assuming that
• QCD belongs to O(4) universality class in chiral limit A. Lahiri’s talk

• QCD is in scaling regime at physical pion mass
it is possible to predict the radius of convergence based on universality argument and
non-universal input from LQCD
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Universality

u Scale invariance for free energy:

f = b−df(tbλt , hbλh)

where t = T − Tc
u Inhomogeneity of this function leads to

f = h
2−α
βδ ff (z = th−

1
βδ )

also often used “magnetic equation of state”

g = M/h1/δ
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Universality

u In vicinity of QCD transition:

p(T, µB)/T 4 = −#h(2−α)/βδff (z) − fregular(T, µB)

z = z0th
−1/βδ = z0

[
T − Tc

Tc
+ κB

(µB
T

)2
](

mu,d

ms

)−1/βδ

t =
T − T0

c

T0
c

+ κB

(µB
T

)2
; h =

mu,d

ms
.

O(4) critical exponents: α = −0.21, β = 0.38, δ = 4.82

T

μm

T1

μ1

O(4) line

tricritical point

first order

u LQCD
Tc = 132+3

−6 MeV; κB = 0.012(2); z0 = 1 − 2 H. T. Ding et al. (2019), 1903.04801
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Universality

u In vicinity of QCD transition:

p(T, µB)/T 4 = −#h(2−α)/βδff (z) − fregular(T, µB)
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O(4) critical exponents: α = −0.21, β = 0.38, δ = 4.82
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u Recent progress from LQCD established:
Tc = 132+3

−6 MeV; κB = 0.012(2); z0 = 1 − 2 H. T. Ding et al. (2019), 1903.04801
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O(4) scaling function: magnetic equation of state

M/h1/δ = g(z) ≡ z

βδ
f ′f (z)−

(
1 + 1

δ

)
ff (z), z = z0t/h

1/βδ
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Lattice: J. Engels and F. Karsch, arXiv:1105.0584

FRG: A. Connelly, G. Johnson, & V.S.
• The entire domain of this function is universal 14



Analytically computable models: mean-field and large N approximations

Analytical results for magnetic equation of state

g(z) ≡ z

βδ
f ′f (z)−

(
1 + 1

δ

)
ff (z)

u Mean-field approximation starting from Landau functional F (φ) = tφ2/2 + φ4/4− hφ
and equation of motion F ′(φ) = tφ+φ3− h =0. Introducing φ = h1/3g and z = t/h2/3

g(z)
[
z + g2(z)

]
= 1, zc = 3

22/3 e±i
π
3 |zc| ≈ 1.89

u Large N limit

g(z)
[
z + g2(z)

]2 = 1, zc = 5
28/5 e±i

π
5 |zc| ≈ 1.649
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Mean-field approximation: complex plane
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Yang-Lee edge singularity I

Location of the singularity in complex z plane is universal
Know as Yang-Lee edge singularity (M. E. Fisher, 1978)

zc

(zc)
*

Rez

Imz

π/(2βδ)

0

u What do we know about zc?
u zc = |zc| e±i

π
2βδ

for QCD, critical exponents are those of O(4) universality class
In terms of h: Re h = 0. Consequence of Z(h) = Z(−h) and Im Z(hc) = 0.

u YL edge singularity has its own critical exponent ff ∼ (z− zc)σ+1 with σ ≈ 0.1

u σ is independent of underlying symmetry class (of N for O(N))
with only exception σN→∞ = 1/2 (same in mean-field approximation)
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Yang-Lee edge singularity II

u Field-theoretically, near zc: φ3 theory with imaginary coupling
u Upper critical dimension is 6; c.f. to 4 near O(N) critical point
u ε-expansion around 4 dimensions fails near YL edge singularity { no input on |zc|

Due to presence of non-perturbative terms.
u Lattice simulations at imaginary h or complex T : sign problem { no input on |zc|

See also X. An, D. Mesterhazy, and M. Stephanov, arXiv:1605.06039
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Functional Renormalization Group approach

Jan Pawlowski’s talk
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Functional Renormalization Group approach to YL edge singularity I

Skipping technical details

u Consider a theory in the same universality class (O(N) field theory in our case)

u Extract critical exponent to x-check if they coincide with known results for O(N)

u Find non-universal parameters (Tc, z0, . . . )

u Extract the universal magnetic equation of state g(z) for real z

u By introducing imaginary part to temperature or to symmetry breaking field (our
choice), extend g(z) to full complex plane z

Main difficulty: this doubles the number of FRG equations to be solved

A. Connelly, G. Johnson, F. Rennecke, and V.S.: Phys.Rev.Lett. 125 (2020) 19, 191602
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Functional renormalization group approach to YL edge singularity II

u Find zc

u Check zc = |zc| e±i
π

2βδ : Arg has to be consistent with critical exponents 3

u Check that zc as a function of N approaches large N limit (next slide)

u Check that zc as a function of d approaches mean-field value when d→ 4 (next slide)

u Universal location |zc| ≈ 1.665 for O(4) scaling function
|zc| ≈ 2.032± 0.021 for O(2) and |zc| ≈ 2.452± 0.025 for Z(2)
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Functional renormalization group approach to YL edge singularity III
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A. Connelly, G. Johnson, F. Rennecke, and V.S.: Phys.Rev.Lett. 125 (2020) 19, 191602
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Radius of convergence I

u Having found zc and using non-universal parameters from LQCD,
one can find the radius of convergence

u Recall
p(T, µB)/T 4 = −h(2−α)/βδff (z)− fregular(T, µ)

z = z0

[
T − Tc

Tc
+ κB

(µB
T

)2
](

mu,d

ms

)−1/βδ

u Both singular and regular parts contribute to Taylor series expansion

u Solve z = zc to find µcB as a function of T and/or mu,d/ms
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Radius of convergence II
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Radius of convergence and BES-II
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u Consistent with Taylor series analysis
u Consistent with functional group preliminary results, see Jan Pawlowski’s talk
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Conclusions

u Location of Yang-Lee singularity is universal, but was unknown for O(N).
In this talk, |zc| for O(N) universality class from Functional Renormalization Group

u Input on universal properties and non-universal parameters from lattice QCD {
radius of convergence in O(4) scaling region

u Implication on location of CP

Outlook: improving parametrization of critical EoS near CEP
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Complex chemical potential plane
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Chiral limit (mu,d = 0):

M. Stephanov, hep-lat/0603014; C. Itzykson, et al Nucl.Phys. B220 (1983) 415

T tric < T < Tc

mu,d , 0: crossover: above but close to CEP: at CEP:
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