

1

Correlated Dirac eigenvalues and axial anomaly in chiral symmetric QCD

Yu Zhang

Central China Normal University

Based on arXiv:2010.14836 [hep-lat]

In collaboration with

H.-T. Ding, S.-T. Li, S. Mukherjee, A. Tomiya and X.-D. Wang

XXXII International (ONLINE) Workshop on High Energy Physics "Hot problems of Strong Interactions" November 9-13, 2020

Outline

- Motivation
- $\partial^n \rho / \partial m_l^n$ and C_{n+1}
- Lattice Setup
- Results
- Summary

Motivation

At $T \ge T_c$, chiral symmetry is restored. How about the fate of U(1)_A symmetry?

Two possible scenarios:

Measures of U(1)_A breaking

The quantity

$$\chi_{\pi} - \chi_{\delta} = \int \mathrm{d}^4 x \langle \pi^i(x) \pi^i(0) - \delta^i(x) \delta^i(0) \rangle$$

is zero as $U(1)_{A}$ is restored

Measures of U(1)_A breaking

For T>Tc, in the chiral limit: $\chi_{\pi} - \chi_{\delta} = \chi_{\text{disc}}$

$$\chi_{\rm disc} = \frac{T}{V} \int \mathrm{d}^4 x \left\langle [\bar{\psi}(x)\psi(x) - \langle \bar{\psi}(x)\psi(x)\rangle]^2 \right\rangle$$

 $\chi_{
m disc}$ can also be used to probe the restoration of the U(1)_A symmetry

Relation with Dirac eigenvalue spectrum

Order parameter of $SU(2)_{L} \times SU(2)_{R}$ symmetry :

$$\langle \bar{\psi}\psi\rangle = \int_0^\infty d\lambda \frac{4m_l\rho}{\lambda^2 + m_l^2} \xrightarrow{m_l \to 0} \pi\rho(0)$$
 T.Banks and A.Casher (1980)

Two $U(1)_A$ measures:

$$\chi_{\pi} - \chi_{\delta} = \int_{0}^{\infty} d\lambda \frac{8m_{l}^{2}\rho}{(\lambda^{2} + m_{l}^{2})^{2}}$$
$$\chi_{\text{disc}} = \int_{0}^{\infty} d\lambda \frac{4m_{l} \partial\rho/\partial m_{l}}{\lambda^{2} + m_{l}^{2}}$$

The restoration of $U(1)_A$ symmetry:

• A gap in the near-zero modes

•
$$\rho(\lambda, m_l \rightarrow 0) \sim \lambda^3$$

Cohen, nucl-th/980106

U(1)_A symmetry and Dirac eigenvalue spectrum

- Weakly interacting instanton gas motivated $\rho \sim m_l^2 \delta(\lambda)$ $\Rightarrow U(1)_A$ breaking as $m_l \rightarrow 0$ [G. 't Hooft (1976)]
- At high T for the physical m_l , the temperature dependence of χ_t follows dilute instanton gas approximation prediction

[See a recent review, M. P. Lombardo & A. Trunin, 2005.06547]

whether it is due to $\rho \sim m_l^2 \delta(\lambda)$ and what happens for $m_l \to 0$ is unanswered

ρ: wo/w infrared enhancement

 $ho(\lambda)/T^3$

1.6

1.4

1.2 $1.2 T_c \quad 32^3 \times 8$ 1 $\lambda = 0$ **OV on HISQ** 0. 0.60.40.21.21.8 0.60.81.60.41 1.4 λ/T Dick et al PRD [1502.06190]

Partially quench effect needs to be investigated

Underlying mechanism is not clear

A. Tomiya et al PRD [1612.01908]

Mass dependence of ρ at T~1.6T_c

The mass dependence can be hardly observed from p directly

Novel relations between $\partial^n \rho / \partial m_l^n$ and correlation among the eigenvalues

For (2+1)-flavor QCD

$$\rho(\lambda, m_l) = \frac{T}{VZ[U]} \int \mathcal{D}[U] e^{-S_G[U]} \det[\mathcal{D}[U] + m_s]$$

$$\times (\det[\mathcal{D}[U] + m_l])^2 \rho_U(\lambda), \qquad \rho_U(\lambda) = \sum_j \delta(\lambda - \lambda_j)$$

$$\frac{V}{T}\frac{\partial\rho}{\partial m_l} = \int_0^\infty d\lambda_2 \frac{4m_l C_2}{\lambda_2^2 + m_l^2}, \qquad (1)$$

$$\frac{V}{T}\frac{\partial^2\rho}{m_l^2} = \int_0^\infty d\lambda_2 \frac{4(\lambda_2^2 - m_l^2) C_2}{(\lambda_2^2 + m_l^2)^2} + \int_0^\infty d\lambda_2 d\lambda_3 \frac{(4m_l)^2 C_3}{(\lambda_2^2 + m_l^2)(\lambda_3^2 + m_l^2)}, with$$

$$C_n(\lambda_1, \cdots, \lambda_n; m_l) = \left\langle \prod_{i=1}^n [\rho_U(\lambda_i) - \langle \rho_U(\lambda_i) \rangle] \right\rangle. \qquad (3)$$

10

In this talk, we want to show you two things:

- How axial anomaly manifest itself at $T \sim 1.6T_c$?
- What is the underlying mechanism of it ?

Lattice Setup

Actions:

Tree level improved gauge action Highly improved staggered quark action

Lattice size:

$$N_{\tau} = 8$$
, $N_{\sigma} = 32$, 40, 56, 72
 $N_{\tau} = 12$, $N_{\sigma} = 48$, 60, 72
 $N_{\tau} = 16$, $N_{\sigma} = 64$, 80

Quark mass:

m_s: set to its physical value m_l/m_s = 1/20, 1/27, 1/40, 1/80, 1/160 (m_{π} = 160, 140, 110, 80, 55MeV)

Temperature:

T~1.6T_c (205MeV)

Continuum and chiral extrapolated results for $\chi_{\pi} - \chi_{\delta}$ and $\chi_{\rm disc}$

- $\chi_{\pi} \chi_{\delta} \simeq \chi_{\text{disc}} \neq 0$ after continuum and chiral extrapolation
- Axial anomaly remains manifested even in the chiral limit at $T\!\sim\!1.6T_{\!c}$

Quantities related to ρ and $\partial^2 \rho / \partial m_l^2$

- $\langle \bar{\psi}\psi \rangle$ and χ_2 can be reproduced well from ho and $\partial^2
 ho / \partial m_l^2$
- $\langle ar{\psi}\psi
 angle$ is linear in quark mass
- In the chiral limit, chiral symmetry is restored at $T \sim 1.6T_c$ ¹⁴

U(1)_A measures from ρ and $\partial \rho / \partial m_l$

- ρ and $\partial \rho / \partial m_l$ reproduced directly measured $\chi_{\pi} \chi_{\delta}$ and χ_{disc}
- Only infrared part of ρ and $\partial \rho / \partial m_l$ are needed for the reproduction

15

• Both two U(1)_A measures are linear in m_l^2 at $m_\pi \lesssim 140$ MeV

The consistent results of those quantities from two measurements make us confident to extract information on ρ , $\partial \rho / \partial m_l$, $\partial^2 \rho / \partial m_l^2$

What is the underlying mechanism of axial anomaly ?

Quark mass dependence of $m_l^{-1}(\partial \rho / \partial m_l)$ and $\partial^2 \rho / \partial m_l^2$

 $m_l^{-1}(\partial \rho / \partial m_l) \approx \partial^2 \rho / \partial m_l^2$

Almost independent of quark mass

A peak structure developed at $\lambda \rightarrow 0$ and drop rapidly towards zero as λ increases

Lattice spacing and volume dependence of $\partial^2 \rho / \partial m_l^2$ and $\partial^3 \rho / \partial m_l^3$

- The peaked structure in $\partial^2 \rho / \partial m_l^2$ within small λ range becomes sharper as $a \to 0$
- $\partial^3 \rho / \partial m_l^3 \approx 0$
- Volume dependence is quite small

Quark mass derivatives of p

 $m_l^{-1}(\partial \rho/\partial m_l) \approx \partial^2 \rho/\partial m_l^2$ and $\partial^3 \rho/\partial m_l^3 \approx 0 \implies \rho(\lambda \to 0, m_l \to 0) \propto m_l^2$

The differences

$$\Delta_n^{\rm Po} = m_l^{n-2} [\partial^n \rho / \partial m_l^n - (\partial^n \rho / \partial m_l^n)^{\rm Po}]$$

The repulsive non-Poisson correlation within the small λ gives rise to the $\rho(\lambda \to 0)$ peak

Summary

- Axial anomaly remains manifested in $\chi_{\pi} \chi_{\delta}$ and χ_{disc} even in the chiral limit at T~1.6T_c
- The underlying presence of $\rho(\lambda \to 0, m_l)$ leads to manifestations of U(1)_A anomaly in $\chi_{\pi} - \chi_{\delta}$ and χ_{disc}
- $\rho(\lambda \rightarrow 0, m_l)$ develops a peaked structure due to non-Poisson correlations within small λ , the peak becomes sharper as $a \rightarrow 0$, and its amplitude is proportional to m_l^2

Summary

- These suggest that for T≥1.6T_c the microscopic origin of axial anomaly is driven by the weakly interacting instanton gas motivated $\rho(\lambda \to 0, m_l \to 0) \propto m_l^2$
- The chiral phase transition in (2+1)-flavor QCD is 3-dimensional O(4) universality class

Calculation of eigenvalue spectrum

> Commonlyusedmethod:Lanczosalgorithm tocalculatethe individualow-lyingeigenvalues

> HereweutilizedtheChebyshevfilteringtechniquecombined withastochasticestimateofthemodenumber

T_j:Chebyshevpolynomial j:coefficient p:polynomialorder

YuZhang,Latice19',arXiv:201.05217 Giusti,Luscher, arXiv: 0812.3638 A.Patela,arXiv:1204.432 DiNapolietal.,arXiv: 1308.4275 Itouetal,arXiv:141.15 24 Fodoretal.,arXiv:1605.08091 Cosuetal.,arXiv:1601.074

Mode number and eigenvalue spectrum

Infrared contribution to $\chi_{\pi} - \chi_{\delta}$ and χ_{disc}

Only the infrared parts of ρ and $\partial \rho / \partial m_l$ areneeded for the reproductions of $\chi_{\pi} - \chi_{\delta}$ and χ_{disc}

Poisson distribution

$$C_{2}(\lambda,\lambda') = \langle \rho_{u}(\lambda)\rho_{u}(\lambda')\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle$$

$$= \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k}) \sum_{l=1}^{N} \delta(\lambda' - \lambda_{l}) \right\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle$$

$$= \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k})\delta(\lambda' - \lambda_{k}) \right\rangle + \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k}) \sum_{l \neq k} \delta(\lambda' - \lambda_{l}) \right\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle^{(1)}$$

$$= \frac{1}{V} \langle \rho_{u}(\lambda)\rangle\delta(\lambda - \lambda') + \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k}) \right\rangle \left\langle \sum_{l \neq k} \delta(\lambda' - \lambda_{l}) \right\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle^{(1)}$$

$$\frac{1}{V} \left\langle \sum_{l \neq k} \delta(\lambda' - \lambda_l) \right\rangle = \frac{N-1}{N} \langle \rho_u(\lambda') \rangle \qquad (N = V/2)$$

$$C_2(\lambda,\lambda') = \frac{1}{V} \langle \rho_u(\lambda) \rangle \delta(\lambda - \lambda') - \frac{1}{N} \langle \rho_u(\lambda) \rangle \langle \rho_u(\lambda') \rangle$$

Three point correlations of $\rho(\lambda)$

$$C_{3}(\lambda,\lambda',\lambda'') = \langle \rho_{u}(\lambda)\rho_{u}(\lambda')\rho_{u}(\lambda'')\rangle - \langle \rho_{u}(\lambda)\rangle\langle\rho_{u}(\lambda')\rho_{u}(\lambda'')\rangle - \langle \rho_{u}(\lambda')\rangle\langle\rho_{u}(\lambda)\rho_{u}(\lambda'')\rangle - \langle \rho_{u}(\lambda'')\rangle\langle\rho_{u}(\lambda)\rho_{u}(\lambda')\rangle(1) + 2\langle \rho_{u}(\lambda)\rangle\langle\rho_{u}(\lambda')\rangle\langle\rho_{u}(\lambda'')\rangle$$

Time history of the topological charge

