The QCD equation of state at finite density, from lattice to neutron stars

Jan Steinheimer

11/11/2020



Thanks to: V. Vovchenko, A. Motornenko, E. Most and H. Stöcker

Jan Steinheimer

### Motivation

The features of the QCD phase diagram at high density.

Can we eventually draw a diagram like this for the textbooks?(Hydrogen)



Kitamura H., Ichimaru S., J. Phys. Soc. Japan 67, 950 (1998).

### Motivation

The features of the QCD phase diagram at high density.

Can we eventually draw a diagram like this for the textbooks?(Hydrogen)







JS , V. Dexheimer, H. Petersen, M. Bleicher, S. Schramm and H. Stoecker,

Phys. Rev. C 81, 044913 (2010)

#### 11/11/2020 2/17

Jan Steinheimer

### Robust constraints on the Equation of state from:

• Lattice QCD, for  $T\geq 130$  MeV.

### Constraints from IQCD:

- The Interaction measure, thermodynamics at  $\mu_B=0$
- Derivatives of the pressure wrt  $\mu_B$ . Expansion into finite real  $\mu_B$ .
- Calculations at imaginary  $\mu$ .



S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and K. K. Szabo, Phys. Lett. B **730**, 99 (2014)

# A model that uses lattice QCD data in imaginary $\mu_B \rightarrow$ the CEM model

Using only the Fourier coefficients  $b_k$  from imaginary  $\mu_B$  simulations as input:

## A model that uses lattice QCD data in imaginary $\mu_B ightarrow$ the CEM model

#### Using only the Fourier coefficients $b_k$ from imaginary $\mu_B$ simulations as input:

- One can write the density of QCD as a cluster expansion:
- $\frac{\rho_B}{T^3} = \frac{\partial(p/T^4)}{\partial(\mu_B/T)} = \sum_{k=1}^{\infty} b_k(T) \sinh\left(\frac{k\,\mu_B}{T}\right)$



## A model that uses lattice QCD data in imaginary $\mu_B ightarrow$ the CEM model

#### Using only the Fourier coefficients $b_k$ from imaginary $\mu_B$ simulations as input:

One can write the density of QCD as a cluster expansion:

• 
$$\frac{\rho_B}{T^3} = \frac{\partial(p/T^4)}{\partial(\mu_B/T)} = \sum_{k=1}^{\infty} b_k(T) \sinh\left(\frac{k\,\mu_B}{T}\right)$$

• Assuming the proper SB limit and using only the first two coefficients on can exactly predict finite  $\mu_B$  thermodynamics

• 
$$b_k(T) = \alpha_k \frac{[b_2(T)]^{k-1}}{[b_1(T)]^{k-2}}$$
. Use these to calculate  $\chi^n$ 



## A model that uses lattice QCD data in imaginary $\mu_B \rightarrow$ the CEM model

#### Using only the Fourier coefficients $b_k$ from imaginary $\mu_B$ simulations as input:

- One can write the density of QCD as a cluster expansion:
- $\frac{\rho_B}{T^3} = \frac{\partial (p/T^4)}{\partial (\mu_B/T)} = \sum_{k=1}^{\infty} b_k(T) \sinh\left(\frac{k \, \mu_B}{T}\right)$
- Assuming the proper SB limit and using only the first two coefficients on can exactly predict finite  $\mu_B$  thermodynamics

• 
$$b_k(T) = \alpha_k \frac{[b_2(T)]^{k-1}}{[b_1(T)]^{k-2}}$$
. Use these to calculate  $\chi^n$ .



Instead of expanding in imaginary  $\mu$ , do a Taylor expansion in real  $\mu_B$ 

• Write the expansion of the pressure using susceptibilities:

$$P = P_0 + T^4 \sum_{i,j,k} \frac{1}{i!j!k!} \chi^{i,j,k}_{B,Q,S} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k \,,$$

A. Bazavov et. al., Phys. Rev. D 95, 054504 (2017)

(1)

Instead of expanding in imaginary  $\mu$ , do a Taylor expansion in real  $\mu_B$ 

• Write the expansion of the pressure using susceptibilities:

$$P = P_0 + T^4 \sum_{i,j,k} \frac{1}{i!j!k!} \chi^{i,j,k}_{B,Q,S} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k , \qquad (1)$$



• Artifacts appear around  $\mu_B/T>2.5$ 

A. Bazavov et. al., Phys. Rev. D 95, 054504 (2017)

Jan Steinheimer

Instead of expanding in imaginary  $\mu$ , do a Taylor expansion in real  $\mu_B$ 

• Write the expansion of the pressure using susceptibilities:

$$P = P_0 + T^4 \sum_{i,j,k} \frac{1}{i!j!k!} \chi_{B,Q,S}^{i,j,k} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k , \qquad (1)$$



- Artifacts appear around  $\mu_B/T>2.5$
- Radius of convergence  $\mu_B/T < 3$

A. Bazavov et. al., Phys. Rev. D 95, 054504 (2017)

Jan Steinheimer

Instead of expanding in imaginary  $\mu$ , do a Taylor expansion in real  $\mu_B$ 

• Write the expansion of the pressure using susceptibilities:

$$P = P_0 + T^4 \sum_{i,j,k} \frac{1}{i!j!k!} \chi_{B,Q,S}^{i,j,k} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k \,, \tag{1}$$



A. Bazavov et. al., Phys. Rev. D 95, 054504 (2017)

- Artifacts appear around  $\mu_B/T>2.5$
- Radius of convergence  $\mu_B/T < 3$
- High *T* rule out quark-repulsion.
- **JS** and S. Schramm, Phys. Lett. B **736**, 241-245 (2014)

# Why the breakdown at $\mu_B/T \approx 3$ ?



#### Why do the methods break down?

- Sudden change of isobaric lines at this point.
- From Boson (mesons/gluons) dominated matter to fermionic matter (nucleons/quarks).

A. Motornenko, **JS**, V. Vovchenko, S. Schramm and H. Stöcker, (Quark Matter 2019), Wuhan, China, November 3-9 2019

# Why the breakdown at $\mu_B/T \approx 3$ ?



A. Motornenko, **JS**, V. Vovchenko, S. Schramm and H. Stöcker, (Quark Matter 2019), Wuhan, China, November 3-9 2019

#### Why do the methods break down?

- Sudden change of isobaric lines at this point.
- From Boson (mesons/gluons) dominated matter to fermionic matter (nucleons/quarks).
- First principle calculations seem to fail for fermionic matter.

• Here we have guidance from measured neutron star masses

### Constraints at T = 0

- Here we have guidance from measured neutron star masses
- Without Radii no real constraints!



F. Özel and P. Freire, Ann. Rev. Astron. Astrophys.

| Jan Steinheimer | 11/11/2020 | 7/17 |
|-----------------|------------|------|

### Constraints at T = 0

- Here we have guidance from measured neutron star masses
- Without Radii no real constraints!
- Add constraints from PQCD.



Jan Steinheimer

## Constraints at T=0

- Here we have guidance from measured neutron star masses
- Without Radii no real constraints!
- Add constraints from PQCD.



Jan Steinheimer

### Constraints at T = 0

- Here we have guidance from measured neutron star masses
- Without Radii no real constraints!
- Add constraints from PQCD.
- $\bullet\,$  Still missing the important region. Extension to finite temperature  $\to\,$  New degrees of freedom.



# The strategy: A phenomenological approach

#### What can be done to study the EoS at high density?

• Design effective models that match lattice QCD at low  $\mu_B$  and neutron stars at high density.

#### What can be done to study the EoS at high density?

- Design effective models that match lattice QCD at low  $\mu_B$  and neutron stars at high density.
- Employ these models for heavy ion collisions as well neutron star mergers.

#### What can be done to study the EoS at high density?

- Design effective models that match lattice QCD at low  $\mu_B$  and neutron stars at high density.
- Employ these models for heavy ion collisions as well neutron star mergers.
- Find a consistent description

#### What can be done to study the EoS at high density?

- Design effective models that match lattice QCD at low  $\mu_B$  and neutron stars at high density.
- Employ these models for heavy ion collisions as well neutron star mergers.
- Find a consistent description
- Possibly new analysis methods that combine many observables and statistical / machine learning methods.

#### Effective $SU(3)_f$ chiral mean field model based on:

- Chiral symmetry for hadrons via nucleon parity partners: Describes nuclear matter and lattice phenomenology.
- Effective masses for baryons:  $m_{i\pm}^* = \sqrt{\left[(g_{\sigma i}^{(1)}\sigma + g_{\zeta i}^{(1)}\zeta)^2 + (m_0 + n_{\rm s}m_{\rm s})^2\right] \pm g_{\sigma i}^{(2)}\sigma \pm g_{\zeta i}^{(2)}\zeta}$ .

$$U_{\rm sc} = \frac{1}{2}m_{\sigma}^2\sigma^2 + \frac{1}{2}m_{\zeta}^2\zeta^2 + \frac{1}{2}k_0I_2 - k_1I_2^2 - k_2I_4 + k_6I_6 + m_{\pi}^2f_{\pi}\sigma + \left(\sqrt{2}m_{\rm K}^2f_{\rm K} - \frac{1}{\sqrt{2}}m_{\pi}^2f_{\pi}\right)\zeta - k_4\log(\frac{\sigma^2\zeta}{\sigma_0^2\zeta_0})$$
(2)



JS, S. Schramm and H. Stöcker, Phys. Rev. C 84, 045208 (2011)

#### Effective $SU(3)_f$ chiral mean field model based on:

• Deconfined quarks and gluons via effective Polyakov Loop potential and removal of hadrons via excluded volume.

$$\Omega_q = -VT \sum_{i \in Q} \frac{d_i}{(2\pi)^3} \int d^3k \frac{1}{N_c} \ln\left(1 + 3\Phi e^{-\left(E_i^* - \mu_i^*\right)/T} + 3\bar{\Phi}e^{-2\left(E_i^* - \mu_i^*\right)/T} + e^{-3\left(E_i^* - \mu_i^*\right)/T}\right)$$

$$U_{\rm Pol}(\Phi,\bar{\Phi},T) = -\frac{1}{2}a(T)\Phi\bar{\Phi} + b(T)\log[1 - 6\Phi\bar{\Phi} + 4(\Phi^3 + \bar{\Phi}^3) - 3(\Phi\bar{\Phi})^2], a(T) = a_0T^4 + a_1T_0T^3 + a_2T_0^2T^2, b(T) = b_3T_0^4$$



A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stoecker, Phys. Rev. C 101, no.3, 034904 (2020)

#### Application for cold compact stars

• Mass radius diagram consistent with astrophysical constraints.



#### Application for cold compact stars

- Mass radius diagram consistent with astrophysical constraints.
- Interesting effects in supernova and cooling curve: What is the role of the parity partners and quarks in the cooling?

V. Dexheimer, JS, R. Negreiros and S. Schramm, Phys. Rev. C 87, no.1, 015804 (2013)



#### Small caveat

- In principle the model can have an infinite coupling parameters for he hadrons.
- Study suggests they can relate to the susceptibilities.



A. Motornenko, S. Pal, A. Bhattacharyya, JS and H. Stoecker, [arXiv:2009.10848 [hep-ph]].

Jan Steinheimer

#### Small caveat

- In principle the model can have an infinite coupling parameters for he hadrons.
- Study suggests they can relate to the susceptibilities.
- However, resulting phase structure appears mainly insensitive.



# Usage in HIC

- This EoS enables us to treat heavy ion collisions and NS mergers on the same footing.
- Relativistic fluid dynamics.
- Can both be consistently described by any model for the EoS?
- In which scenarios do we see effects from a phase transition or EoS which violates our constraints?
- Remember: more constraints possible: e.g. model is still mean field, finite size behavior, etc.

What is the data situation in HIC?

# Usage in HIC

- This EoS enables us to treat heavy ion collisions and NS mergers on the same footing.
- Relativistic fluid dynamics.
- Can both be consistently described by any model for the EoS?
- In which scenarios do we see effects from a phase transition or EoS which violates our constraints?
- Remember: more constraints possible: e.g. model is still mean field, finite size behavior, etc.

#### What is the data situation in HIC?

- In short: what is really measured are fluctuations and correlations in momentum space.
- The downsides of hadrons: freeze-out and rescattering wash out signals
- Implementation of EoS for the fully dynamical description from pre-equilibrum to freeze-out necessary

# Electromagnetic probes

Electromagnetic probes offer a chance to probe the whole time evolution of the fireball.

In particular di-lepton pairs created by the decay of hadrons or quark annihilation.

•  $\rho \rightarrow e^+ + e^-$ 

•  $q + \overline{q} \rightarrow e^+ + e^-$ 

Process sensitive to the medium in which it takes place (T and  $\rho_B$ ).



F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, JS and J. Stroth, [arXiv:2010.04614 [nucl-th]].

# Electromagnetic probes

Electromagnetic probes offer a chance to probe the whole time evolution of the fireball.

In particular di-lepton pairs created by the decay of hadrons or quark annihilation.

• 
$$\rho \rightarrow e^+ + e^-$$

• 
$$q + \overline{q} \rightarrow e^+ + e^-$$

Process sensitive to the medium in which it takes place (T and  $\rho_B$ ).



Distinct differences CMF with or without a phase transition

F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, JS and J. Stroth, [arXiv:2010.04614 [nucl-th]].

Jan Steinheimer

## Electromagnetic probes

Indeed di-lepton emission shows a significant effect

- A simulation for Au+Au at the current SIS18 beam energy.
- A factor 2 enhancement of di-lepton emission due to extended 'cooking'.



### The CMF and neutron star mergers

• What area of the phase diagram are tested by BNSM and what is the overlap with HIC?

# The CMF and neutron star mergers

- What area of the phase diagram are tested by BNSM and what is the overlap with HIC?
- Low beam energy HIC  $E_{lab} = 600A$  MeV, can be compared to NS merger simulations.
- Both simulations now use the CMF EoS, so a direct comparison is possible!



First results show that BNSM create systems with entropy per baryon  $\approx 2-3$ , comparable to  $E_{lab} < 1A~{\rm GeV}~{\rm HIC}.$ 

# Summary

- Lattice QCD seem to be only useful up to  $\mu_B/T pprox 3$  ,after that fermions become the dominant d.o.f.
- Neutron star properties constrain T = 0.
- Small phase transition with low T CeP seems likely.
- Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star mergers.
- We have to take all constraints seriously.
- Neutron star mergers and low energy ( $E_{lab} < 1 \text{ A GeV}$ ) probe complementary region in the phase diagram.

# Summary

- Lattice QCD seem to be only useful up to  $\mu_B/Tpprox 3$  ,after that fermions become the dominant d.o.f.
- Neutron star properties constrain T = 0.
- Small phase transition with low T CeP seems likely.
- Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star mergers.
- We have to take all constraints seriously.
- Neutron star mergers and low energy ( $E_{lab} < 1 \text{ A GeV}$ ) probe complementary region in the phase diagram.
- Treat both on the same footing  $\rightarrow$  Combining QCD thermodynamics, relativistic fluid dynamics and GR.
- Use statistical/ML methods to combine the wealth of data for a consistent picture of the QCD phase diagram.