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Motivation

The features of the QCD phase diagram at high density. |

Can we eventually draw a diagram like this for the
textbooks?(Hydrogen)
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Robust constraints on the Equation of state from:

o Lattice QCD, for T' > 130 MeV. N,=80100120160

4 stout crosscheck o

Constraints from IQCD:
@ The Interaction measure, thermodynamics at

UB = O I continuum limit

@ Derivatives of the pressure wrt pp.
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Expansion into finite real up. T[MeV]
C | I 5 c o S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and
@ (Calculations at imaginary p. K. K. Szabo, Phys. Lett. B 730, 99 (2014)
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A model that uses lattice QCD data in imaginary g — the CEM model

Using only the Fourier coefficients by from imaginary pp simulations as input:
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Using only the Fourier coefficients by from imaginary pp simulations as input:

@ One can write the density of QCD as a cluster expansion:
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A model that uses lattice QCD data in imaginary g — the CEM model

Using only the Fourier coefficients b, from imaginary pp simulations as input:
@ One can write the density of QCD as a cluster expansion:

a(p/ T4 i ks
B = SRy = TRz b(T) sinh (H2)

o
@ Assuming the proper SB limit and using only the first two coefficients on can exactly predict finite g thermodynamics
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A model that uses lattice QCD data in imaginary g — the CEM model

Using only the Fourier coefficients b, from imaginary pp simulations as input:

@ One can write the density of QCD as a cluster expansion:

4
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Taylor expansion in real up

Instead of expanding in imaginary i, do a Taylor expansion in real ug

@ Write the expansion of the pressure using susceptibilities:

o 4 1 i,j,k UB\® (HQ\T [ps\F
F= Z;Ci!j!k!XB’Q’S (T) (T) (T) ’ (1)
4,3,
A. Bazavov et. al., Phys. Rev. D 95, 054504 (2017)
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Taylor expansion in real up

Instead of expanding in imaginary i, do a Taylor expansion in real ug
@ Write the expansion of the pressure using susceptibilities:

PreT Y Aot (M) () ()" 8

5,k

o Artifacts appear around
,uB/T > 2.5
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Taylor expansion in real up

Instead of expanding in imaginary i, do a Taylor expansion in real ug
@ Write the expansion of the pressure using susceptibilities:

P=R+T'Y —xiih (LB)" (22
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@ Artifacts appear around
,LLB/T > 2.5

@ Radius of convergence
,uB/T <3
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Taylor expansion in real up

Instead of expanding in imaginary i, do a Taylor expansion in real ug
@ Write the expansion of the pressure using susceptibilities:
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Why the breakdown at up/T =~ 37

P (e
1500
s Why do the methods break down?
@ Sudden change of isobaric lines at
1000 this point.
750

e From Boson (mesons/gluons)
500 dominated matter to fermionic

250 matter (nucleons/quarks).

0’ n I " L1 " L1 n n N
103 102 10! 10° 10!

A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stocker,
(Quark Matter 2019), Wuhan, China, November 3-9 2019
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Why the breakdown at up/T =~ 37

P (e
1500
s Why do the methods break down?
@ Sudden change of isobaric lines at
1000 this point.
750

e From Boson (mesons/gluons)
500 dominated matter to fermionic

250 matter (nucleons/quarks).

o First principle calculations seem to
o 102 10! 10° 10! fail for fermionic matter.

A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stocker,
(Quark Matter 2019), Wuhan, China, November 3-9 2019
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses

@ Without Radii no real constraints!

:
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F. Ozel and P. Freire, Ann. Rev. Astron. Astrophys.
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses
@ Without Radii no real constraints!
@ Add constraints from PQCD.
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses
@ Without Radii no real constraints!
@ Add constraints from PQCD.
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Constraints at T'= 0

@ Here we have guidance from measured neutron star masses
@ Without Radii no real constraints!
@ Add constraints from PQCD.

@ Still missing the important region. Extension to finite temperature — New degrees of
freedom.

Temperature T [MeV]

-1
Baryon density [p,]
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The strategy: A phenomenological approach

What can be done to study the EoS at high density?

@ Design effective models that match lattice QCD at low pp and neutron stars at high
density.
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The strategy: A phenomenological approach

What can be done to study the EoS at high density?

@ Design effective models that match lattice QCD at low pp and neutron stars at high
density.

@ Employ these models for heavy ion collisions as well neutron star mergers.
@ Find a consistent description

@ Possibly new analysis methods that combine many observables and statistical / machine
learning methods.
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One example: Effective model for this - the CMF

Effective SU(3)¢ chiral mean field model based on:

@ Chiral symmetry for hadrons via nucleon parity partners: Describes nuclear matter and lattice phenomenology.

@ Effective masses for baryons: m¥, = \/[(g((jli)a' + géil)C)2 + (mo + n5m5)2] =5 g((fi)a 3£ gé?)c .
1 2
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JS, S. Schramm and H. Stdcker, Phys. Rev. C 84, 045208 (2011)
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One example: Effective model for this - the CMF

Effective SU(3) ¢ chiral mean field model based on:

@ Deconfined quarks and gluons via effective Polyakov Loop potential and removal of hadrons via excluded volume.
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One example: Effective model for this - the CMF

Application for cold compact stars

@ Mass radius diagram consistent with astrophysical constraints.

Quark
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One example: Effective model for this - the CMF

Application for cold compact stars
@ Mass radius diagram consistent with astrophysical constraints.
@ |Interesting effects in supernova and cooling curve: What is the role of the parity partners and quarks in the cooling?

V. Dexheimer, JS, R. Negreiros and S. Schramm, Phys. Rev. C 87, no.1, 015804 (2013)
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One example: Effective model for this - the CMF

Small caveat

@ In principle the model can have an infinite coupling parameters for he hadrons.

@ Study suggests they can relate to the susceptibilities.

vg =1 fm?, vgs = 1/4 fm?

08r 3.BB

QQ

o2sp 3-BQ
020
3015
0.10
0.05
0.09,

00 150 200
T (MeV)

Jan Steinheimer

1

0

150 200
T (MeV)

1

0

150

200

T (Mev)
A. Motornenko, S. Pal, A. Bhattacharyya, JS and H. Stoecker,[arXiv:2009.10848 [hep-ph]].
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One example: Effective model for this - the CMF

Small caveat
@ In principle the model can have an infinite coupling parameters for he hadrons.
@ Study suggests they can relate to the susceptibilities.

@ However, resulting phase structure appears mainly insensitive.
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Usage in HIC

This EoS enables us to treat heavy ion collisions and NS mergers on the same footing.
Relativistic fluid dynamics.

Can both be consistently described by any model for the EoS?

In which scenarios do we see effects from a phase transition or EoS which violates our
constraints?

Remember: more constraints possible: e.g. model is still mean field, finite size behavior,
etc.

What is the data situation in HIC?
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Usage in HIC

This EoS enables us to treat heavy ion collisions and NS mergers on the same footing.
Relativistic fluid dynamics.

Can both be consistently described by any model for the EoS?

In which scenarios do we see effects from a phase transition or EoS which violates our
constraints?

@ Remember: more constraints possible: e.g. model is still mean field, finite size behavior,
etc.

What is the data situation in HIC?
@ In short: what is really measured are fluctuations and correlations in momentum space.
@ The downsides of hadrons: freeze-out and rescattering wash out signals

@ Implementation of EoS for the fully dynamical description from pre-equilibrum to
freeze-out necessary
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Electromagnetic probes

Electromagnetic probes offer a chance to probe the whole time evolution of the fireball. J

In particular di-lepton pairs
created by the decay of
hadrons or quark annihilation. T

ep—et+e”
e qg+tg—et+e
Process sensitive to the

medium in which it takes
place (T and pp).

F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, JS and J. Stroth, [arXiv:2010.04614 [nucl-th]].

1/11/200 1417



Electromagnetic probes

Electromagnetic probes offer a chance to probe the whole time evolution of the fireball. ]
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1/11/200 1817



Electromagnetic probes

Indeed di-lepton emission shows a significant effect
@ A simulation for Au+Au at the current SIS18 beam energy.

@ A factor 2 enhancement of di-lepton emission due to extended 'cooking'.

B e e B S e
>7fmlc + T>50MeV + £/£;>0.9, =0
— hydro with PT

— hydro no PT

— coarse-grained UrQMD

2.4

— inmed. SF rate

—qq rate

2.2

1.8

dN/dM (GeV/c?)*

1.6

1.4

spectra ratio: with PT / no PT

12

ool L ] R R T R AR AU RPRNN
0O 02 04 06 08 1 12 14 02 04 06 08 1 12 14

M, (GeVic?) M, (GeVic?)

o

1/11/200 1517



The CMF and neutron star mergers

@ What area of the phase diagram are tested by BNSM and what is the overlap with HIC? J
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The CMF and neutron star mergers

@ What area of the phase diagram are tested by BNSM and what is the overlap with HIC?
@ Low beam energy HIC E;,;, = 600A MeV, can be compared to NS merger simulations.

@ Both simulations now use the CMF EoS, so a direct comparison is possible!

E,,,= 0.6 A GeV, AutAu, b=2fm
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First results show that BNSM create systems with entropy per baryon =~ 2 — 3, comparable to

n Steinheimer

Ejqp < 1A GeV HIC.
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Summary

Lattice QCD seem to be only useful up to up/T =~ 3 ,after that fermions become the dominant d.o.f.
Neutron star properties constrain 1" = 0.

Small phase transition with low T CeP seems likely.

Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star
mergers.

We have to take all constraints seriously.

@ Neutron star mergers and low energy (Eiqs < 1 A GeV) probe complementary region in the phase diagram.
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Summary

Lattice QCD seem to be only useful up to up/T =~ 3 ,after that fermions become the dominant d.o.f.
Neutron star properties constrain 1" = 0.

Small phase transition with low T CeP seems likely.

Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star
mergers.

We have to take all constraints seriously.
Neutron star mergers and low energy (Eiqap < 1 A GeV) probe complementary region in the phase diagram.

Treat both on the same footing — Combining QCD thermodynamics, relativistic fluid dynamics and GR.

Use statistical /ML methods to combine the wealth of data for a consistent picture of the QCD phase
diagram.
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