Rotating Relativistic Matter and Angular Momenta

AND ALLER DALLER DALLER DALLER DE DE DALLER DE DALLER DALLER DALLER DALLER DALLER DALLER DALLER DALLER DALLER D

Kenji Fukushima The University of Tokyo

— XXXII International Workshop on High Energy Physics "Hot problems of Strong Interactions" —

1

Physics Motivation

Topics to be Covered

Rotation + Matter = Current : how to understand

- □ Puzzle and Answer
- Delarization surrounding a Blackhole

Technical Difficulties

□ Necessity to impose a boundary condition (Mameda)

Electron Vortices

Mode decomposed analysis — Chiral Magnetic Effect
 Unphysical divergences

Angular Momenta of Magnetic Vortices

Theoretically and experimentally ideal objects to treat the Orbital Angular Momenta

ROTATION + MATTER

Rotation-induced Current

$$J_5 = (\text{matter with } T^2, \mu^2, ...) \boldsymbol{\omega}$$

Rotation can be introduced by the coordinate transformation:

$$\begin{array}{l} x \ \rightarrow \ x \cos \omega t - y \sin \omega t \\ y \ \rightarrow \ y \cos \omega t + x \sin \omega t \end{array}$$

If J_5 was zero at $\omega=0$, how is the current induced by rotation?

Vector (tensor) transformations do not change zero to nonzero.

Rotation-induced Current

Flachi-Fukushima (2018)

$$j_{\rm CS}^{\mu} = \frac{1}{96\pi^2} \epsilon^{\mu\nu\rho\lambda} \Gamma^{\alpha}{}_{\nu\beta} \left(\partial_{\rho} \Gamma^{\beta}{}_{\alpha\lambda} + \frac{2}{3} \Gamma^{\beta}{}_{\rho\sigma} \Gamma^{\sigma}{}_{\alpha\lambda} \right)$$

This is not a tensor

Rotation induces an extra term:

$$\delta \Gamma^x{}_{0y} = -\delta \Gamma^y{}_{0x} = \omega$$

$$j_{\rm CS}^{\mu} = \frac{\omega}{48\pi^2} \left(R^0{}_{x0x} + R^0{}_{y0y} - R^x{}_{yxy} - R^y{}_{xyx} \right)$$

Can be interpreted as a physical current for a given ω

Rotation-induced Current

Axial-current (polarization) surrounding the Kerr metric

Flachi-Fukushima (2018)

Local polarization? (Implication to QGP physics?)

Nov.12, 2020 @ Moscow Online

TECHNICAL DIFFICULTIES

ARDAR, ARDA

$$\left[i\gamma^{\mu}(D_{\mu}+\Gamma_{\mu})-m\right]\psi=0$$

Chen-Fukushima-Huang--Mameda (2016)

$$\begin{split} \Gamma_{\mu} &= -\frac{i}{4} \omega_{\mu i j} \sigma^{i j} \\ \omega_{\mu i j} &= g_{\alpha \beta} e_{i}^{\alpha} (\partial_{\mu} e_{j}^{\beta} + \Gamma_{\nu \mu}^{\beta} e_{j}^{\mu}) \\ \sigma^{i j} &= \frac{i}{4} [\gamma^{i}, \gamma^{j}] \end{split}$$

$$e_0^r = e_1^x = e_2^y = e_3^z = 1$$
 $e_0^x = y\omega$ $e_0^y = -x\omega$
 $H_{rot} = H - \omega J_z$ Rotation ~ Density

ಡೆದ್ದಾರೆ. ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ ಮತ್ತಿದ್ದಾರೆ, ಮತ್ತಿದ್ದಾರೆ, ಪ

Vilenkin (1980)

⁵Note that $n_{\omega m}$ has a

Here,

$$n_{\omega m} = (e^{\beta(\omega - m\Omega)} - 1)^{-1}$$
(23)

larity, however, i is the Bose-Einstein distribution for a rotating cannot have size g system, $\tau = \tau_1 - \tau_2$, the upper and lower lines in city at the boundary would exceed the velocity of light), and in a finite system the energy is quantized in such a way that ω is always greater than $m\Omega$. (There are some exceptions in which the field has exponentially growing modes. See Ref. 6.) As an example, consider an infinite cylinder of radius R rotating around its axis. Requiring that Ψ vanishes at the boundary, we find the energy levels $\omega_{nmp} = (p^2 + \mu^2 + \xi_{mn}^2 R^{-2})^{1/2}$, where ξ_{mn} is the *n*th root of $J_m(x)$. It can be shown (Ref. 7) that $\xi_{mn} > m$. Thus, $\omega_{nmp} > \xi_{mn} R^{-1} > m\Omega$. In the present paper we shall assume that the lowest energy modes are unimportant and thus the infinite-space solutions (17) can be used.

Here, Vilenkin (1980) (23)⁵Note that $n_{\omega m}$ has a singularity at $\omega = m\Omega$. This singularity, however, is unphysical. A rotating system rotating cannot have size greater than Ω^{-1} (otherwise the velor lines in city at the boundary would exceed the velocity of light), and in a finite system the energy is quantized in such a way that ω is always greater than $m\Omega$. (There are some exceptions in which the field has exponentially growing modes. See Ref. 6.) As an example, consider an infinite cylinder of radius R rotating around its axis. Requiring that Ψ vanishes at the boundary, we find the energy levels $\omega_{nmp} = (p^2 + \mu^2 + \xi_{mn}^2 R^{-2})^{1/2}$, where ξ_{mn} is the *n*th root of $J_m(x)$. It can be shown (Ref. 7) that $\xi_{mn} > m$. Thus, $\omega_{nmp} > \xi_{mn} R^{-1} > m\Omega$. In the present paper we shall assume that the lowest energy modes are unimportant and thus the infinite-space solutions (17) can be used.

Is it really possible to change the QCD vacuum just by rotation ???

The answer is negative (nontrivial for fermions) Ebihara-Fukushima-Mameda (2017)

CausalitySystem size should be finite ~ R $\omega R < 1$ Energy dispersion should be gapped ~ J/RInduced chemical potential ~ ωJ Gap is always bigger than the energy shift

Where is difficulty?

There are lots of calculations on the phase diagram under magnetic fields.

There are already some calculations on the phase diagram under rotations.

Why no calculations involving both???

Naive calculations contaminated by unphysical divergences...

ELECTRON VORTICES

Fukushima-Shimazaki-Wang (2020)

$$= \frac{e^{-i\varepsilon_{n,l,k}^{(\uparrow)}t+ikz}}{\sqrt{\varepsilon_{n,l,k}^{(\uparrow)}+m}} \begin{pmatrix} (\varepsilon_{n,l,k}^{(\uparrow)}+m)\Phi_{n,l}(\chi^2,\varphi) \\ 0 \\ k\Phi_{n,l}(\chi^2,\varphi) \\ i\sqrt{|e|B(2n+|l|+l+2)}\Phi_{n,l+1}(\chi^2,\varphi) \end{pmatrix}$$

$$\Phi_{n,l}(\chi^2,\varphi) = \sqrt{\frac{n!}{(n+|l|)!}} e^{-\frac{1}{2}\chi^2} \chi^{|l|} L_n^{|l|}(\chi^2) e^{il\varphi}$$

Polarized wave-function with angular momentum *l*

ANDAR ANDAR ANDAR ANDAR AND AR AND AND AND AND AR AND A

Nov.12, 2020 @ Moscow Online

$$\rho = \oint_{n,l,k} \left(\rho_{n,l,k}^{(\uparrow)} + \rho_{n,l,k}^{(\downarrow)} + \bar{\rho}_{n,l,k}^{(\uparrow)} + \bar{\rho}_{n,l,k}^{(\downarrow)} \right)$$

$$\rho_5 = \oint_{n,l,k} \left(\rho_{5\,n,l,k}^{(\uparrow)} + \rho_{5\,n,l,k}^{(\downarrow)} + \bar{\rho}_{5\,n,l,k}^{(\uparrow)} + \bar{\rho}_{5\,n,l,k}^{(\downarrow)} + \bar{\rho}_{5\,n,l,k}^{(\downarrow)} \right)$$

In the same way, the vector and the axial-vector currents are also mode decomposed... then...

. ಸೇರಿದ್ದಾರೆ, ಸೇರಿದ್ದಾರೆ, ಸೇರಿದ ಸೇರಿದ್ದಾರೆ, ಸೇರಿದ್ದಾರೆ, ಸೇರಿದ್ದಾರೆ, ಸೇರಿದ್ದಾರೆ, ಸೇರಿದ್ದಾರೆ, ಸೇರಿ

Fukushima-Shimazaki-Wang (2020)

$$j_{n,l,k}^{z(\uparrow)} = \rho_{5n,l,k}^{(\uparrow)}, \qquad j_{n,l,k}^{z(\downarrow)} = -\rho_{5n,l,k}^{(\downarrow)},$$
$$\bar{j}_{n,l,k}^{z(\uparrow)} = -\bar{\rho}_{5n,l,k}^{(\uparrow)}, \qquad \bar{j}_{n,l,k}^{z(\downarrow)} = \bar{\rho}_{5n,l,k}^{(\downarrow)},$$

These relations hold mode-by-mode. No such relations for the axial-vector current!

This is the mode-decomposed origin of CME. Cannot be seen without mode decomposition.

Applications

Fukushima-Shimazaki-Wang (2020) spin spin $J_z < 0$ electron positron

Hattori-Yin (2016)

Mechanism ~ Thouless pumping (Floquet theory)

Applications

ನಿ ಮಾಡಿದ್ದಾರೆ. ಮಾಡಿದ ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ

Fukushima-Shimazaki-Wang (2020)

$$\rho = -\left(\frac{1}{S_{\perp}}\frac{2\pi}{|eB|}\right)\frac{|eB|}{2\pi}\sum_{J_z>0}^{S_{\perp}|eB|/(2\pi)}\int\frac{dk}{2\pi}\theta(\omega J_z - |k|)$$
$$= -\frac{\omega}{\pi S_{\perp}}\sum_{J_z}^{S_{\perp}|eB|/(2\pi)}\left(l + \frac{1}{2}\right)$$
$$= -\frac{\omega|eB|}{4\pi^2} + \text{(orbital part)}.$$
Thermodynamically unstable!?

Finite-size effects must be considered! (Talk by Mameda)

Applications

Fukushima-Shimazaki-Wang (2020) Axial-vector current in the LLL approximation:

$$j_{5,\text{LLL}}^{z} = \frac{1}{S_{\perp}} \left[-\sum_{J_{z}<0}^{-S_{\perp}|eB|/(2\pi)} \int \frac{dk}{2\pi} \theta(\omega J_{z} + \mu - |k|) + \sum_{J_{z}>0}^{S_{\perp}|eB|/(2\pi)} \int \frac{dk}{2\pi} \theta(\omega J_{z} - \mu - |k|) \right]$$
$$= \left(\omega - 2\mu\right) \frac{|eB|}{4\pi^{2}} + \text{(orbital part)} \quad \text{Unphysical}$$

Finite-size effects must be considered! (Talk by Mameda)

MAGNETIC VORTICES

ANDER AND ANDER AND AND AND AND AND AND AND AND AND

Fukushima-Hidaka-Yee: 2011.xxxxx

Angular momentum of superfluid vortex is topological, but that of magnetic vortex is *not*.

dimensionless static potential (~ E) $(1-a)\Psi + \frac{1}{m_H^2} (\nabla - ien_e A)^2 \Psi - |\Psi|^2 \Psi = 0$ $\nabla \times (\nabla \times A) + m_V^2 \left[A |\Psi|^2 - \frac{i}{2en_e} (\Psi \nabla \Psi^{\dagger} - \Psi^{\dagger} \nabla \Psi) \right] = 0$ $\nabla^2 a + 2m^2 \frac{m_V^2}{m_H^2} (|\Psi|^2 + \tilde{q}) = 0$ electric charge density

Fukushima-Hidaka-Yee: 2011.xxxxx

 $\Psi = f(r) e^{i\nu\varphi} \,,$

$$(1-a)\Psi + \frac{1}{m_H^2} (\nabla - ien_e \mathbf{A})^2 \Psi - |\Psi|^2 \Psi = 0$$

$$\nabla \times (\nabla \times \mathbf{A}) + m_V^2 \left[\mathbf{A} |\Psi|^2 - \frac{i}{2en_e} \left(\Psi \nabla \Psi^{\dagger} - \Psi^{\dagger} \nabla \Psi \right) \right] = 0$$

$$\nabla^2 a + 2m^2 \frac{m_V^2}{m_H^2} (|\Psi|^2 + \tilde{q}) = 0$$
Global Neutrality
$$\int_{\mathbf{x}} \tilde{q} = -\int_{\mathbf{x}} f^2$$
Vortex Solution

$$a = a(r) \qquad A^{i} = -\frac{\nu}{en_{e}} \varepsilon^{ij} \frac{x^{j}}{r^{2}} \left[1 - h(r)\right]$$

Electric fields from local charge density

Fukushima-Hidaka-Yee: 2011.xxxxx

$$L_z^{\rm can} = \int_{\boldsymbol{x}} \psi^{\dagger} \left(\frac{\hbar}{i} \,\partial_{\varphi}\right) \psi = \nu (2\pi\hbar) \frac{\mu}{g} \int_0^R dr \, r \, f^2(r) = \nu\hbar \, N$$

Canonical angular momentum looks a quantized AM of superfluid vortex...?

$$L_z^{\rm kin} = \int_{\boldsymbol{x}} \psi^{\dagger} \left(\frac{\hbar}{i} D_{\varphi}\right) \psi = \nu (2\pi\hbar) \frac{\mu}{g} \int_0^R dr \, r \, h(r) \, f^2(r)$$

Belinfante gives a smaller value...?

Fukushima-Hidaka-Yee: 2011.xxxxx

$$L_{z}^{\rm kin} = \int_{\boldsymbol{x}} \psi^{\dagger} \left(\frac{\hbar}{i} D_{\varphi}\right) \psi = \nu (2\pi\hbar) \frac{\mu}{g} \int_{0}^{R} dr \, r \, h(r) \, f^{2}(r)$$

$$L_{z}^{\rm EM} = \int_{\boldsymbol{x}} \left[\boldsymbol{x} \times (\boldsymbol{E} \times \boldsymbol{B})\right]_{z}$$
Cancel out
$$= -\nu (2\pi\hbar) \frac{\mu}{g} \int_{0}^{R} dr \, r \, h(r) \left[f^{2}(r) + \tilde{q}(r)\right]$$

Finite AM remains from the background charge needed for neutrality

HERE STREES HERE STREES

Fukushima-Hidaka-Yee: 2011.xxxxx

Relativistic Nielsen-Olesen vortices

Vortices exist in the vacuum (zero chemical potential)

Neutral Nielsen-Olesen Vortex

Relativistic vortices do not carry any angular momentum.

Topological Insulator

<u> Menge Menge Men Menge Men</u>

Fukushima-Hidaka-Yee: 2011.xxxxx

 $j^{\mu} = -\frac{e^2}{8\pi\hbar} \,\epsilon^{\mu\nu\alpha} F_{\nu\alpha}$ Q $\frac{e^2}{16\pi^2\hbar}\Phi_0^2 - \frac{e^2}{8\pi^2\hbar}\Phi_0^2$ Vacuum **B** $L_z = \int_{\boldsymbol{\pi}} \left[\boldsymbol{x} \times (\boldsymbol{E} \times \boldsymbol{B}) \right]_z = \int_{\boldsymbol{\pi}} (\boldsymbol{\nabla} \cdot \boldsymbol{E}) A_{\varphi} - \int A_{\varphi} (\boldsymbol{E} \cdot d\boldsymbol{S})$ $= -\frac{e^2}{16\pi^2\hbar}\Phi_0^2$ Nogueira-Nussinov--van den Brink (2018)

Classification

Fukushima-Hidaka-Yee: 2011.xxxxx

Magnetic vortices carry a finite angular momentum Class Ia (spinful vortices) Class Ib (topological vortices) Magnetic vortices carry zero angular momentum Class II (spinless vortices) **Vortices are twisted with "intrinsic" angular momentum** Class III (exotic vortices) [Abraham's vortex]

Summary

allagi, allagi, allagi, alla allagi, allagi, allagi, allagi, allagi **Rotation + B makes rich phase structures!** □ Phenomenologically important **Finite size systems with boundary are crucial!** □ Unphysical divergences cured by finite size \Box Calculations cumbersome with many special funcs. Mode decomposed analysis very useful! □ More differential information on CME, CSE, CVE,... **Magnetic vortex is a well-defined object!** □ Boundary is imposed physically □ Electromagnetic contributions to the angular momenta