QCD crossover line at finite chemical potential from the Lattice

 $J. \ N. \ Guenther$

November 11th 2020

 WB collaboration

 $\operatorname{BMW}_{\operatorname{\mathsf{collaboration}}}$

T

μ_B

Our observables: T_c , Equation of state, Fluctuations

The crossover temperature

- S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P. Parotto, A. Pasztor, C. Ratti and K. K. Szabo: *The QCD crossover at finite chemical potential from lattice simulations*, Phys. Rev. Lett. 125 (2020) no.5, 052001 doi:10.1103/PhysRevLett.125.052001 [arXiv:2002.02821 [hep-lat]]
- R. Bellwied, S. Borsanyi, Z. Fodor, J. N. Guenther, S. Katz, C. Ratti and K. Szabo: The QCD phase diagram from analytic continuation, Phys. Lett. B 751 (2015), 559-564 doi:10.1016/j.physletb.2015.11.011 [arXiv:1507.07510 [hep-lat]]

The QCD partition function:

$$egin{aligned} Z(V, \mathcal{T}, \mu) &= \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} ar{\psi} \; e^{-S_F(U, \psi, ar{\psi}) - eta S_G(U)} \ &= \int \mathcal{D} U \; \mathrm{det} \; M(U) e^{-eta S_G(U)} \end{aligned}$$

- For Monte Carlo simulations det $M(U)e^{-\beta S_G(U)}$ is interpreted as Boltzmann weight
- If there is particle-antiparticle-symmetry det M(U) is real
- If $\mu^2 > 0 \det M(U)$ is complex

$$\int_{-\infty}^{\infty} (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} \approx \int_{-100}^{100} (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} = \sum_{i=1}^{N} (100 - x_i^2) \frac{e^{-\frac{1}{2}x_i^2}}{\sqrt{2\pi}} \cdot \frac{200}{N}$$

The x_i are drawn from a uniform distribution in the interval [-100, 100]

Importance sampling

$$\int_{-\infty}^{\infty} (100 - x^2) rac{e^{-rac{1}{2}x^2}}{\sqrt{2\pi}} = \sum_{i=1}^{N} (100 - x_i^2) \cdot rac{1}{N}$$

The x_i are drawn from a normal distribution

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- \bullet Complex Langevin \longrightarrow Talk by Casey Berger on June 18
- Lefshetz Thimble
- Density of state methods
- Dual variables
- ...
- Taylor expansion \longrightarrow [Bazavov et al., Bazavov:2017dus], [Bonati et al., Bonati:2018nut]
- \bullet Imaginary μ

Analytic continuation

Common technique:

- [deForcrand:2002hgr]
- [Bonati:2015bha]
- [Cea:2015cya]
- [DElia:2016jqh]
- [Bonati:2018nut]

• . . .

The crossover temperature

- S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P. Parotto, A. Pasztor, C. Ratti and K. K. Szabo: *The QCD crossover at finite chemical potential from lattice simulations*, Phys. Rev. Lett. 125 (2020) no.5, 052001 doi:10.1103/PhysRevLett.125.052001 [arXiv:2002.02821 [hep-lat]]
- R. Bellwied, S. Borsanyi, Z. Fodor, J. N. Guenther, S. Katz, C. Ratti and K. Szabo: The QCD phase diagram from analytic continuation, Phys. Lett. B 751 (2015), 559-564 doi:10.1016/j.physletb.2015.11.011 [arXiv:1507.07510 [hep-lat]]

 $\begin{array}{l} \text{Curvature function:} \\ \frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \mathcal{O}(\mu_B^4) \end{array}$

Curvature function:

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c}\right)^4 + \mathcal{O}(\mu_B^6)$$

[Steinbrecher:2018phh]

Curvature function:

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c}\right)^4 + \mathcal{O}(\mu_B^6)$$

$$egin{aligned} \mathcal{C}_1(\hat{\mu}) &= 1 + a \hat{\mu}^2 + b \hat{\mu}^4, \ \mathcal{C}_2(\hat{\mu}) &= rac{1 + a \hat{\mu}^2}{1 + b \hat{\mu}^4}, \ \mathcal{C}_3(\hat{\mu}) &= rac{1}{1 + a \hat{\mu}^2 + b \hat{\mu}^4}, \ \hat{\mu} &= rac{\mu_B}{T} \end{aligned}$$

[Steinbrecher:2018phh]

11/22 11/22

Curvature function:

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c}\right)^4 + \mathcal{O}(\mu_B^6)$$

$egin{aligned} \mathcal{C}_1(\hat{\mu}) &= 1 + a \hat{\mu}^2 + b \hat{\mu}^4, \ \mathcal{C}_2(\hat{\mu}) &= rac{1 + a \hat{\mu}^2}{1 + b \hat{\mu}^4} \ \mathcal{C}_3(\hat{\mu}) &= rac{1}{1 + a \hat{\mu}^2 + b \hat{\mu}^4}, \ \hat{\mu} &= rac{\mu_B}{T} \end{aligned}$

[Bazavov:2018mes]

Mock-Analysis

$$rac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(rac{\mu_B}{T_c}
ight)^2 - \kappa_4 \left(rac{\mu_B}{T_c}
ight)^4$$

When reducing the error on T_c we need higher order fit functions for reliable results.

Choice:
$$C_1(\hat{\mu}) = 1 + a\hat{\mu}^2 + b\hat{\mu}^4 + c\hat{\mu}^6$$

and $C_2(\hat{\mu}) = \frac{1}{1 + a\hat{\mu}^2 + b\hat{\mu}^4 + c\hat{\mu}^6}, \ \hat{\mu} = \frac{\mu_B}{T}$

Mock-Analysis

$$rac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(rac{\mu_B}{T_c}
ight)^2 - \kappa_4 \left(rac{\mu_B}{T_c}
ight)^4$$

When reducing the error on T_c we need higher order fit functions for reliable results.

Choice:
$$C_1(\hat{\mu}) = 1 + a\hat{\mu}^2 + b\hat{\mu}^4 + c\hat{\mu}^6$$

and $C_2(\hat{\mu}) = \frac{1}{1 + a\hat{\mu}^2 + b\hat{\mu}^4 + c\hat{\mu}^6}, \ \hat{\mu} = \frac{\mu_B}{T}$

Mock-Analysis

$$rac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(rac{\mu_B}{T_c}
ight)^2 - \kappa_4 \left(rac{\mu_B}{T_c}
ight)^4$$

When reducing the error on T_c we need higher order fit functions for reliable results.

Choice: $C_1(\hat{\mu}) = 1 + a\hat{\mu}^2 + b\hat{\mu}^4 + c\hat{\mu}^6$ and $C_2(\hat{\mu}) = \frac{1}{1+a\hat{\mu}^2+b\hat{\mu}^4+c\hat{\mu}^6}, \ \hat{\mu} = \frac{\mu_B}{T}$

Actual-Analysis

- Action: tree-level Symanzik improved gauge action, with four times stout smeared staggered fermions
- 2+1+1 flavour, on LCP with pion and kaon mass
- $\bullet\,$ Simulation at $\langle n_S \rangle = 0$ and $\langle n_Q \rangle = 0.4 \langle n_B \rangle$
- Continuum extrapolation from lattice sizes: $40^3\times 10,\,48^3\times 12$ and $64^3\times 16$
- $\frac{\mu_B}{T} = \mathrm{i} \frac{j\pi}{8}$ with j = 0, 3, 4, 5, 6, 6.5 and 7
- Two methods of scale setting: f_{π} and w_0 , $Lm_{\pi}>4$

Observables

14 / 22

$$\chi_{\bar{\psi}\psi}(\langle\bar{\psi}\psi
angle)$$

$$\chi_{\bar{\psi}\psi}(\langle \bar{\psi}\psi \rangle) = \sum_{i=0}^{n} \alpha_i \left(1 + \beta_i \left(\frac{\mu_B}{T}\right)^2\right) \langle \bar{\psi}\psi \rangle^i,$$
$$n \in \{2, 3, 4\}$$

Fitting $\chi_{\bar{\psi}\psi}(\langle\bar{\psi}\psi\rangle)$ removes most of the μ_B dependence and allows for a precise determination of the transition value of $\langle\bar{\psi}\psi\rangle$. In a next step this has to be translated into temperature.

To determine the temperature from the the $\langle \bar{\psi}\psi \rangle$ value we use a spline.

Extrapolation

We perform a combined extrapolation in $\frac{\mu_B^2}{T^2}$ and to the continuum, which uses a fully correlated fit.

Systematic Errors

- \bullet 2 renormalization fits for $\langle\bar\psi\psi\rangle$
- 2 renormalization fits for $\chi_{ar{\psi}\psi}$
- \bullet 4 cuts/fits in $\chi_{\bar\psi\psi}$
- 2 two choices of nodepoints for the spline
- 2 functions for the extrapolation
- \bullet including or discarding the highest μ_B^{\prime}
- scale setting either with w_0 or f_π

In total we perform 256 analysis. We weight every result with a Q > 0.1 uniformly

Result

19 / 22

Extrapolation

20/22 20/22

21/22 21/22

Summary

