QCD thermodynamics at nonzero isospin asymmetry

Bastian Brandt

Universität Bielefeld

In collaboration with Francesca Cuteri and Gergely Endrődi

Faculty of Physics

12.10.2020

Contents

- 1. Introduction
- 2. Summary: Continuum phase diagram
- 3. Equation of State
- 4. Pion condensation in the early universe
- 5. Conclusions

Lattice QCD: usually set up in grand canonical ensemble

- \Rightarrow density n \rightarrow chemical potential μ
- $N_f = 2 + 1$ quark chemical potentials suitable basis for LQCD:

 $\mu_u = \mu_I + \mu_L \qquad \mu_d = -\mu_I + \mu_L \qquad \mu_s \neq 0$

 $\mu_L \neq 0 \neq \mu_s$: complex action (sign) problem

Lattice QCD: usually set up in grand canonical ensemble

- \Rightarrow density n \rightarrow chemical potential μ
- $N_f = 2 + 1$ quark chemical potentials suitable basis for LQCD:

$$\mu_u = \mu_I \qquad \qquad \mu_d = -\mu_I \qquad \qquad \mu_s = 0$$

pure isospin chemical potential

$$\mu_L = \mu_s = 0 \hat{=}$$
 real action

 \longrightarrow suitable for importance sampling

Lattice QCD: usually set up in grand canonical ensemble

- \Rightarrow density n \rightarrow chemical potential μ
- $N_f = 2 + 1$ quark chemical potentials suitable basis for LQCD:

$$\mu_u = \mu_I \qquad \qquad \mu_d = -\mu_I \qquad \qquad \mu_s = 0$$

pure isospin chemical potential

Expected phase diagram:

- hadronic phase (white)
- quark-gluon plasma

Lattice QCD: usually set up in grand canonical ensemble

- \Rightarrow density $n \rightarrow$ chemical potential μ
- $N_f = 2 + 1$ quark chemical potentials suitable basis for LQCD:

$$\mu_u = \mu_I \qquad \qquad \mu_d = -\mu_I \qquad \qquad \mu_s = 0$$

pure isospin chemical potential

Expected phase diagram:

- hadronic phase (white)
- quark-gluon plasma
- Bose Einstein Condensation:
 - at T=0 and $\mu_I>m_\pi/2$:
 - \Rightarrow condensation of charged pions

Lattice QCD: usually set up in grand canonical ensemble

- \Rightarrow density n \rightarrow chemical potential μ
- ▶ $N_f = 2 + 1$ quark chemical potentials suitable basis for LQCD:

$$\mu_u = \mu_I \qquad \qquad \mu_d = -\mu_I \qquad \qquad \mu_s = 0$$

pure isospin chemical potential

Expected phase diagram:

- hadronic phase (white)
- quark-gluon plasma
- Bose Einstein Condensation:
 - at T=0 and $\mu_I>m_\pi/2$:
 - \Rightarrow condensation of charged pions
- BCS superconducting: pseudoscalar Cooper pairs

Infrared regulator – pionic source $SU_V(2) \xrightarrow{+} U_Q(1)$ explicit $\mu_I \neq 0$

Infrared regulator - pionic source

$SU_V(2) \rightarrow$	$U_Q(1) \xrightarrow{\bullet} \varnothing$
explicit	spontaneous
$\mu_I \neq 0$	$\mu_I \geq m_\pi/2$

- low mode in simulations
- cannot observe spontaneous symmetry breaking in finite V

Infrared regulator – pionic source

 $SU_V(2) \longrightarrow U_Q(1) \longrightarrow \emptyset$ explicit explicit $\mu_I \neq 0$ pionic source λ

- low mode in simulations
- cannot observe spontaneous symmetry breaking in finite V
- need to introduce regulator: λ pionic source [Kogut, Sinclair '02]

to obtain physical results:

extrapolate $\lambda \rightarrow 0$

reliable extrapolations:

main task for analysis

Infrared regulator – pionic source

 $SU_V(2) \longrightarrow U_Q(1) \longrightarrow \emptyset$ explicit explicit $\mu_I \neq 0$ pionic source λ

- low mode in simulations
- cannot observe spontaneous symmetry breaking in finite V
- \blacktriangleright need to introduce regulator: λ –

to obtain physical results:

extrapolate $\lambda \rightarrow 0$

reliable extrapolations:

main task for analysis

improvement program:

[Brandt, Endrődi, Schmalzbauer '18]

- valence guark improvement (only *u*, *d* quark observables)
- leading order reweighting

pionic source [Kogut, Sinclair '02]

QCD thermodynamics at nonzero isospin asymmetry

Summary: Continuum phase diagram

2. Summary: Continuum phase diagram

Phase diagram from the lattice

General lattice setup:

physical u, d and s quarks

 $(N_f = 2 + 1$, convention: BEC $\mu_I = m_{\pi}/2)$

use improved actions

(2×-stout sm. stag.; Symanzik impr. gauge)

Phase diagram from the lattice

General lattice setup:

physical u, d and s quarks

(N_f = 2 + 1, convention: BEC $\mu_I = m_\pi/2$)

use improved actions

(2×-stout sm. stag.; Symanzik impr. gauge)

Continuum phase diagram:

• BEC phase boundary (2nd order O(2))

order parameter:

renormalised pion condensate

Phase diagram from the lattice

General lattice setup:

physical u, d and s quarks

(N_f = 2 + 1, convention: BEC $\mu_I = m_\pi/2$)

use improved actions

(2×-stout sm. stag.; Symanzik impr. gauge)

Continuum phase diagram:

• BEC phase boundary (2nd order O(2))

order parameter:

renormalised pion condensate

finite size scaling:

consistency with O(2) scaling

Phase diagram from the lattice

General lattice setup:

physical u, d and s quarks

(N_f = 2 + 1, convention: BEC $\mu_I = m_\pi/2$)

use improved actions

(2×-stout sm. stag.; Symanzik impr. gauge)

Continuum phase diagram:

- BEC phase boundary (2nd order O(2))
- chiral crossover

relevant observable:

renormalised chiral condensate

Phase diagram from the lattice

General lattice setup:

physical u, d and s quarks

(N_f = 2 + 1, convention: BEC $\mu_I = m_\pi/2$)

use improved actions

(2×-stout sm. stag.; Symanzik impr. gauge)

Continuum phase diagram:

- BEC phase boundary
- chiral crossover
- *pseudo-triple* point

meeting point of cross. and BEC PB: coexistence of three phases

from this point on:

phase boundaries coincide

Phase diagram from the lattice

General lattice setup:

physical u, d and s quarks

(N_f = 2 + 1, convention: BEC $\mu_I = m_\pi/2$)

use improved actions

(2×-stout sm. stag.; Symanzik impr. gauge)

Continuum phase diagram:

- BEC phase boundary
- chiral crossover
- pseudo-triple point
- BCS phase???

work in progress ...

3. Equation of State

Grand canonical ensemble T = 0:

$$p(T = 0, \mu_I = 0) = 0$$
 $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_{I}) = \int_{0}^{\mu_{I}} d\mu \, n_{I}(0,\mu_{I}) \qquad I = -4p + n_{I}(0,\mu_{I})\mu_{I}$

Grand canonical ensemble T = 0:

$$p(T = 0, \mu_I = 0) = 0$$
 $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_I) = \int_0^{\mu_I} d\mu \, n_I(0,\mu_I) \qquad I = -4p + n_I(0,\mu_I)\mu_I$

- Introduction: [Brandt et al '18] T = 0 never exactly fulfilled
 - \Rightarrow use large N_t so that $T \approx 0$

Grand canonical ensemble T = 0:

$$p(T = 0, \mu_I = 0) = 0$$
 $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_I) = \int_0^{\mu_I} d\mu \, n_I(0,\mu_I) \qquad I = -4p + n_I(0,\mu_I)\mu_I$

- lattice simulation: [Brandt et al '18]
 T = 0 never exactly fulfilled
 - \Rightarrow use large N_t so that $T \approx 0$
- correct for $T \neq 0$ effects with χ PT particularly relevant for $\mu_l \approx m_\pi/2$

Grand canonical ensemble T = 0:

$$p(T = 0, \mu_I = 0) = 0$$
 $n_I = \frac{\partial p}{\partial \mu_I}$ $\epsilon = -p + n_I \mu_I$

 $\Rightarrow \quad p(0,\mu_I) = \int_0^{\mu_I} d\mu \, n_I(0,\mu_I) \qquad I = -4p + n_I(0,\mu_I)\mu_I$

- lattice simulation: [Brandt et al '18]
 T = 0 never exactly fulfilled
 - \Rightarrow use large N_t so that $T \approx 0$
- correct for $T \neq 0$ effects with χ PT particularly relevant for $\mu_I \approx m_{\pi}/2$
 - \Rightarrow fit at LO gives $f_{\pi} = 133(4)$

Resulting equation of state:

- in good agreement with NLO χPT [Adhikari, Andersen '19]
- currently: only a single lattice spacing continuum limit: ... work in progress

QCD thermodynamics at nonzero isospin asymmetry Lequation of State

Extracting the EoS at non-zero T

p(T, 0) and I(T, 0) are known [Borsanyi et al '13, Bazavov et al '14]

 \Rightarrow need to determine:

 $\Delta p(T,\mu_I) \equiv p(T,\mu_I) - p(T,0) \quad \text{and} \quad \Delta I(T,\mu_I) \equiv I(T,\mu_I) - I(T,0)$

QCD thermodynamics at nonzero isospin asymmetry Lequation of State

Extracting the EoS at non-zero T

p(T, 0) and I(T, 0) are known [Borsanyi et al '13, Bazavov et al '14]

 \Rightarrow need to determine:

 $\Delta p(T,\mu_I) \equiv p(T,\mu_I) - p(T,0)$ and $\Delta I(T,\mu_I) \equiv I(T,\mu_I) - I(T,0)$

• computation of Δp :

As before:
$$\Delta p(T, \mu_l) = \int_0^{\mu_l} d\mu \, n_l(T, \mu)$$

Extracting the EoS at non-zero T

p(T, 0) and I(T, 0) are known [Borsanyi et al '13, Bazavov et al '14]

 \Rightarrow need to determine:

 $\Delta p(T,\mu_I) \equiv p(T,\mu_I) - p(T,0) \quad \text{and} \quad \Delta I(T,\mu_I) \equiv I(T,\mu_I) - I(T,0)$

• computation of Δp :

As before: $\Delta p(T, \mu_l) = \int_0^{\mu_l} d\mu \, n_l(T, \mu)$

For ΔI there are two different methods:

(i) generalisation of the integral method [Engels et al '90] Extracting the EoS at non-zero T

p(T, 0) and I(T, 0) are known [Borsanyi et al '13, Bazavov et al '14]

 \Rightarrow need to determine:

 $\Delta p(T,\mu_I) \equiv p(T,\mu_I) - p(T,0)$ and $\Delta I(T,\mu_I) \equiv I(T,\mu_I) - I(T,0)$

• computation of Δp :

As before: $\Delta p(T,\mu_l) = \int_0^{\mu_l} d\mu \, n_l(T,\mu)$

For ΔI there are two different methods:
 (i) generalisation of the integral method
 [Engels et al '90]
 however: leads to large uncertainties

problem: $\mu_I = 0$ subtractions

Extracting the EoS at non-zero T

p(T, 0) and I(T, 0) are known [Borsanyi et al '13, Bazavov et al '14]

 \Rightarrow need to determine:

 $\Delta p(T,\mu_I) \equiv p(T,\mu_I) - p(T,0)$ and $\Delta I(T,\mu_I) \equiv I(T,\mu_I) - I(T,0)$

• computation of Δp :

As before: $\Delta p(T,\mu_I) = \int_0^{\mu_I} d\mu \, n_I(T,\mu)$

- For ΔI there are two different methods:
 - (i) generalisation of the integral method [Engels et al '90]

however: leads to large uncertainties problem: $\mu_I = 0$ subtractions

(ii) via a 2d interpolation of $n_I(T, \mu_I)$

more accurate method

2d interpolation of $n_I(T, \mu_I)$

Starting point:
$$\frac{\Delta I(T,\mu_I)}{T^4} = T \frac{\partial}{\partial T} \left(\frac{\Delta p(T,\mu_I)}{T^4} \right) + \frac{\mu_I n_I(T,\mu_I)}{T^4}$$

$$\Rightarrow \quad \Delta I(T,\mu_{I}) = -4 \int_{0}^{\mu_{I}} d\mu_{I}' n_{I}(T,\mu_{I}') + \int_{0}^{\mu_{I}} d\mu_{I}' T \frac{\partial}{\partial T} n_{I}(T,\mu_{I}') + \mu_{I} n_{I}(T,\mu_{I})$$

2d interpolation of $n_I(T, \mu_I)$

Starting point:
$$\frac{\Delta I(T,\mu_I)}{T^4} = T \frac{\partial}{\partial T} \left(\frac{\Delta p(T,\mu_I)}{T^4} \right) + \frac{\mu_I n_I(T,\mu_I)}{T^4}$$

 $\Rightarrow \quad \Delta I(T,\mu_I) = -4 \int_0^{\mu_I} d\mu'_I n_I(T,\mu'_I) + \int_0^{\mu_I} d\mu'_I T \frac{\partial}{\partial T} n_I(T,\mu'_I) + \mu_I n_I(T,\mu_I)$

terms can be computed from model independent 2d interpolation of *n*_l model independent: all possible "good" spline fits via Monte-Carlo [S. Borsanyi, private comm.; Brandt, Endrödi '16] 2d interpolation of $n_I(T, \mu_I)$

Starting point:
$$\frac{\Delta I(T,\mu_I)}{T^4} = T \frac{\partial}{\partial T} \left(\frac{\Delta p(T,\mu_I)}{T^4} \right) + \frac{\mu_I n_I(T,\mu_I)}{T^4}$$

$$\Rightarrow \Delta I(T,\mu_I) = -4 \int_0^{\mu_I} d\mu'_I n_I(T,\mu'_I) + \int_0^{\mu_I} d\mu'_I T \frac{\partial}{\partial T} n_I(T,\mu'_I) + \mu_I n_I(T,\mu_I)$$

terms can be computed from model independent 2d interpolation of n_l model independent: all possible "good" spline fits via Monte-Carlo

QCD thermodynamics at nonzero isospin asymmetry Lequation of State

using the 2d spline interpolation:

determine the phase diagram in terms of n_I

using the 2d spline interpolation:

determine the phase diagram in terms of n_l

• consider multiple N_t for continuum limit

... work in progress

using the 2d spline interpolation:

determine the phase diagram in terms of n_l

• consider multiple N_t for continuum limit

... work in progress

using the 2d spline interpolation:

determine the phase diagram in terms of n_l

• consider multiple N_t for continuum limit

... work in progress

QCD thermodynamics at nonzero isospin asymmetry

Pion condensation in the early universe

4. Pion condensation in the early universe in collaboration with: Volodymyr Vovchenko, Fazlollah Hajkarim and Jürgen Schaffner-Bielich

arXiv:2009.02309

Evolution of the early universe

- ▶ isentropic expansion with parameters $T, \mu_B, \mu_Q, \mu_{L_\ell}$ with $\ell \in (e, \mu, \tau)$
- conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

[Credit: BICEP2 collaboration/CERN/NASA*]

* taken from the Keck website: https://www.keckobservatory.org

Evolution of the early universe

isentropic expansion with parameters

 $T, \ \mu_B, \ \mu_Q, \ \mu_{L_\ell} \ \ {
m with} \ \ \ell \ \in \ (e, \ \mu, \ au)$

conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

- empirical constraints (CMB):
 - $b=8.6(0.06)\cdot10^{-11}$ [Planck collaboration '15]
 - $|I_e+I_\mu+I_ au| < 0.012$ [Oldengott, Schwarz '17]

Evolution of the early universe

isentropic expansion with parameters

 $T, \ \mu_B, \ \mu_Q, \ \mu_{L_\ell} \ \ {
m with} \ \ \ell \ \in \ (e, \ \mu, \ au)$

conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

- empirical constraints (CMB):
 - $b=8.6(0.06)\cdot10^{-11}$ [Planck collaboration '15]
 - $|I_e+I_\mu+I_ au| < 0.012$ [Oldengott, Schwarz '17]
 - \Rightarrow standard scenario: $\mu_B \approx \mu_Q \approx 0$


```
equation of state:

p \approx p_{\rm QCD} + p_{\rm lept.} + p_{\gamma}

\uparrow \uparrow \uparrow

Lattice QCD ideal gas

(+ Taylor)

ideal gas

\ell and \nu_{\ell}
```

Evolution of the early universe

- ▶ isentropic expansion with parameters $T, \mu_B, \mu_Q, \mu_{L_\ell}$ with $\ell \in (e, \mu, \tau)$
- conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

- empirical constraints (CMB):
 - $b = 8.6(0.06) \cdot 10^{-11}$ [Planck collaboration '15]
 - $|I_e+I_\mu+I_ au| < 0.012$ [Oldengott, Schwarz '17]
 - \Rightarrow standard scenario: $\mu_B \approx \mu_Q \approx 0$

however: [Wygas *et al* '18] for $|l_e + l_\mu + l_\tau| \gtrsim 0.15 \rightarrow \mu_Q > m_\pi$

 \iff pion condensation

Evolution of the early universe

- ▶ isentropic expansion with parameters $T, \mu_B, \mu_Q, \mu_{L_\ell}$ with $\ell \in (e, \mu, \tau)$
- conservation equations:

 $\frac{n_B}{s} = b \qquad \frac{n_Q}{s} = 0 \qquad \frac{n_{L_\ell}}{s} = l_\ell$

- empirical constraints (CMB):
 - $b=8.6(0.06)\cdot10^{-11}$ [Planck collaboration '15]
 - $|I_e+I_\mu+I_ au| < 0.012$ [Oldengott, Schwarz '17]
 - \Rightarrow standard scenario: $\mu_B \approx \mu_Q \approx 0$

however: [Wygas *et al* '18] for $|l_e + l_\mu + l_\tau| \gtrsim 0.15 \rightarrow \mu_Q > m_\pi$

 \iff pion condensation

sum of *I*_ℓ constrained – individual *I*_ℓ not
 neutrino oscillations only for *T* ≤ 10 MeV

equation of state: $p \approx p_{\text{QCD}} + p_{\text{lept.}} + p_{\gamma}$ \downarrow Lattice QCD ideal gas ??? ideal gas ℓ and ν_{ℓ}

Relevant parameters and effective mass model [arXiv:2009.02309]

Physical basis for QCD:

 $\mu_u = \frac{2}{3}\mu_Q + \frac{1}{3}\mu_B \qquad \mu_d = -\frac{1}{3}\mu_Q + \frac{1}{3}\mu_B \qquad \mu_s = -\frac{1}{3}\mu_Q + \frac{1}{3}\mu_B + \mu_S$

Pure charge chemical potential: $\mu_Q \neq 0$ and $\mu_B = \mu_S = 0$

 \Rightarrow Simulations suffer from the sign problem!

Relevant parameters and effective mass model [arXiv:2009.02309]

Physical basis for QCD:

 $\mu_u = \frac{2}{3}\mu_Q + \frac{1}{3}\mu_B \qquad \mu_d = -\frac{1}{3}\mu_Q + \frac{1}{3}\mu_B \qquad \mu_s = -\frac{1}{3}\mu_Q + \frac{1}{3}\mu_B + \mu_S$

Pure charge chemical potential: $\mu_Q \neq 0$ and $\mu_B = \mu_S = 0$

- \Rightarrow Simulations suffer from the sign problem!
- Use a Taylor expansion? work in progress ...

Relevant parameters and effective mass model [arXiv:2009.02309]

Physical basis for QCD:

 $\mu_{u} = \frac{2}{3}\mu_{Q} + \frac{1}{3}\mu_{B} \qquad \mu_{d} = -\frac{1}{3}\mu_{Q} + \frac{1}{3}\mu_{B} \qquad \mu_{s} = -\frac{1}{3}\mu_{Q} + \frac{1}{3}\mu_{B} + \mu_{S}$

Pure charge chemical potential: $\mu_Q \neq 0$ and $\mu_B = \mu_S = 0$

- \Rightarrow Simulations suffer from the sign problem!
- Use a Taylor expansion? work in progress ...

For a first look: construct a simple model which captures pion condensation

- here: use HRG combined with an effective mass model for pions (quasiparticle picture with rearrangement term)
- match the model to lattice QCD at T = 0

EoS at pure μ_I : model vs. lattice [arXiv:2009.02309] Range of applicability: compare model results to lattice data ($N_t = 10, 12$) $(\Delta I - \Delta I^{\rm EM}) / \sigma(\Delta I)$ 0.6 $T=130~{\rm MeV}$ 0 160 0.4 $\Delta I/m_{\pi}^4$ T[MeV]-50.2140-100.51.5 μ_I/m_{π} [MeV] 1201.50.50 μ_I/m_{π} T = 168 MeV4 $\Delta I/m_{\pi}^4$ expect the model to work reliably for: 2 $T \lesssim 160 \text{ MeV}$ $\mu_l \lesssim 1.5 m_{\pi}$ 0.51.51 2

 μ_I/m_{π} [MeV]

Trajectories with lepton flavour asymmetries [arXiv:2009.02309]

lepton flavour asymmetry: $l_e + l_\mu + l_\tau = 0$ but individual l_ℓ not (fix b)

- \Rightarrow scan in $l_e + l_\mu$ and $l_e l_\mu$
- calculate trajectories using the Thermal-FIST package [Vovchenko, Stöcker '19]

Trajectories with lepton flavour asymmetries [arXiv:2009.02309]

lepton flavour asymmetry: $l_e + l_\mu + l_\tau = 0$ but individual l_ℓ not (fix b)

 \Rightarrow scan in $l_e + l_\mu$ and $l_e - l_\mu$

• calculate trajectories using the Thermal-FIST package [Vovchenko, Stöcker '19]

Trajectories with lepton flavour asymmetries[arXiv:2009.02309]lepton flavour asymmetry: $l_e + l_\mu + l_\tau = 0$ but individual l_ℓ not (fix b)

 \Rightarrow scan in $I_e + I_\mu$ and $I_e - I_\mu$

▶ results do not depend much on $l_e - l_\mu \Rightarrow$ typically set $l_e = l_\mu$

outside of BEC phase:

reproduce results from [Middeldorf-Wygas, Oldengott, Bödeker, Schwarz '20] (different model – pion condensation physics not included)

Effects of pion condensation

[arXiv:2009.02309]

- pion condensation strongly affects EoS
- enhances relic density of primordial gravitational waves
- modifies fraction of primordial black holes heavier than solar masses

- well known:
 - phase diagram in μ_I -T plane for small μ_I (soon also n_I -T plane)

- well known:
 - phase diagram in μ_I -T plane for small μ_I (soon also n_I -T plane)
- soon to come:
 - equation of state at $\mu_I \neq 0$

- well known:
 - phase diagram in μ_l -T plane for small μ_l (soon also n_l -T plane)
- soon to come:
 - equation of state at $\mu_I \neq 0$
- open questions $\mu_I \neq 0$:
 - existence and location of BCS phase
 - chiral symmetry restor. pattern $T \neq 0$
 - transport and quasiparticle prop.
 - . . .

- well known:
 - phase diagram in μ_I -T plane for small μ_I (soon also n_I -T plane)
- soon to come:
 - equation of state at $\mu_I \neq 0$
- open questions $\mu_I \neq 0$:
 - existence and location of BCS phase
 - chiral symmetry restor. pattern $T \neq 0$
 - transport and quasiparticle prop.
 - . . .
- \Rightarrow Lots of room for new studies!

Interesting applications are waiting!

Conclusions Thank you for your attention!

- well known:
 - phase diagram in μ_l -T plane for small μ_l (soon also n_l -T plane)
- soon to come:
 - equation of state at $\mu_I \neq 0$
- open questions $\mu_I \neq 0$:
 - existence and location of BCS phase
 - chiral symmetry restor. pattern $T \neq 0$
 - transport and quasiparticle prop.
 - . . .
- \Rightarrow Lots of room for new studies!

Interesting applications are waiting!