Inhomogeneous phases of the Gross-Neveu model with a finite number of flavors

Andreas Wipf

Theoretisch-Physikalisches Institut, Friedrich-Schiller-University Jena

XXXII International Workshop on HEP "Hot problems of Strong Interactions" November 11, 2020

with: Julian Lenz, Laurin Panullo, Marc Wagner and Björn Wellegehausen

PRD 101, 094512 (2020) and arXiv:2007.08382 (accepted in PRD)

• N_f flavors of relativistic fermions

$$\mathcal{L}_{\psi} = ar{\Psi} \partial \!\!\!/ \Psi + rac{g^2}{2 \mathrm{N_f}} (ar{\Psi} M_1 \Psi) (ar{\Psi} M_2 \Psi), \quad \Psi = egin{pmatrix} \psi_1 \ dots \ \psi_{\mathrm{N_f}} \end{pmatrix}$$

- low energy description of tight binding model
- relativistic dispersion relation, e.g. on honeycomb lattice (graphen)
- long-range order \Rightarrow AF, CDW, QAHS
- increase coupling \Rightarrow PT semi-metal \rightarrow (Mott) insulator

- QCD: crystalline high density CSC phase
- problem with complex fermion determinant
 - ightarrow Taylor-expansion in μ , complex Langevin, thimble method, dual variables, \dots wednesday session 16:00 20:40
- effective models for CPT (mean field, lattice, functional methods, ...)
- gauge theories without sign-problem (SU(2), G₂) Kogut, Hands, ..., Smekal,..., Jena-collaboration

massless GN model:

$$\mathcal{L}_{\mathrm{GN}} = ar{\Psi}(\partial \!\!\!/ + \mu \gamma^0) \Psi - rac{g^2}{2\mathrm{N_f}} (ar{\Psi}\Psi)^2, \quad ar{\Psi}\Psi = \sum_{a=1}^{\mathrm{N_f}} ar{\psi}_a \psi_a$$

- 1 + 1 spacetime dimensions
 - conducting polymers (Trans- and Cis-polyacetylen)
 - quasi 1-dimensional inhomogeneous superconductors
 - dimensional reduction $d = 4 \rightarrow d = 2$ in strong *B*-field
 - $\langle \bar{\Psi} \Psi \rangle$ order parameter for \mathbb{Z}_2 chiral symmetry
 - number of flavors and CSB:
 - $N_{\rm f} = 1 \Rightarrow$ no SSB (CFT)
 - $N_f = \infty \Rightarrow SSB$ at low T, μ ; inhomogeneous phase
 - 1 $< N_{\rm f} < \infty \Rightarrow$ asymptotically free, integrable

Su, Schrieffer, Heeger

Mertsching, Fischbeck

Sachs, AW

Wolf; Thies et al.

Gross-Neveu, Coleman, ...

1 - 2 spacetime dimensions

- quasi 2-dimensional Dirac materials, superconductivity, cold atoms
- interacting UV fixed points
 - \rightarrow simple realization of asymptotically safety
- $\langle\bar{\Psi}\Psi\rangle$ order parameter for \mathbb{Z}_2 parity
 - all $N_{\rm f} \Rightarrow {\rm SSB}$ at low ${\it T}, \mu$
 - in contrast: SSB in Thirring only for $1 \le N_f \le N_{crit}$
 - 30 years efforts on N_{crit}
 - \rightarrow staggered lattice fermions problematic

H. Gies et al.

Lenz, Schmidt, Wellegenausen, AW; Hands

- SD equations
- 1/N_f-expansion
- FRG
- Iattice, staggered
- Iattice, domain wall
- lattice, SLAC

Bosonization

• back to Gross-Neveu: \mathcal{L}_{GN} equivalent to

$$\mathcal{L}_{\sigma} = ar{\Psi} \mathcal{D} \Psi + rac{\mathrm{N}_{\mathrm{f}}}{2g^2} \sigma^2, \quad \mathcal{D} = \partial \!\!\!/ + \sigma + \mu \gamma^0$$

• grand canonical ensemble (anti-periodic ψ_a)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} \bar{\Psi} \mathcal{D} \Psi \mathcal{D} \sigma \, \mathrm{e}^{-S_{\sigma}} \mathcal{O}, \quad Z = \int \mathcal{D} \bar{\Psi} \mathcal{D} \Psi \mathcal{D} \sigma \mathrm{e}^{-S_{\sigma}}$$

order parameter

$$\langle ar{\Psi}(x)\Psi(x)
angle = -rac{\mathrm{N_f}}{g^2}\langle \sigma(x)
angle$$

• fermion integration \Rightarrow induced action

$$Z = \int \mathcal{D}\sigma \ \mathbf{e}^{-N_{f}S_{\text{eff}}[\sigma]}, \quad S_{\text{eff}}[\sigma] = \frac{1}{2g^{2}} \int \sigma^{2} - \log \det \mathcal{D}$$

saddle point approximation

$$Z \longrightarrow \mathrm{e}^{-N_{\mathrm{f}} \min_{\sigma} S_{\mathrm{eff}}[\sigma]}, \quad \text{exact for } N_{\mathrm{f}} \rightarrow \infty$$

• homogeneous phases $\Rightarrow \sigma$ constant, renormalized $S_{\text{eff}} = \beta V_s U_{\text{eff}}$

$$U_{\rm eff} = U_{\rm eff}^{(0)} - \frac{\mathcal{C}_d}{\beta} \int_0^\infty \mathrm{d}p \ p^{d-2} \left(\log \left(1 + \mathrm{e}^{\beta(\varepsilon_p + \mu)} \right) + (\mu \to -\mu) \right)$$

• renormalization condition: SSB at $\mu = T = 0$:

 $\langle \sigma \rangle_{T=\mu=0} = \sigma_0 \Rightarrow$ energy scale σ_0

• effective potential for T = 0 and $\mu = 0$:

$$U_{\text{eff}}^{(0)} = \begin{cases} \frac{\sigma^2}{4\pi} \left(\log \frac{\sigma^2}{\sigma_0^2} - 1\right) & d = 2\\ \frac{\sigma^2}{6\pi} \left(\sigma - \frac{3}{2}\sigma_0\right) & d = 3 \end{cases}$$

symmetric phase at large T, μ broken phase at small T, μ

- 2 dimensions second and first order line Lifschitz-point at $(T, \mu_0) \approx (0.318, 0.608)$ inhomogeneous phase
- 3 dimensions second order line

$$\cosh\frac{\mu}{2T} = \frac{1}{2} \mathrm{e}^{\sigma_0/kT}$$

only jump at $(\mu, T) = (1, 0)$

- $\bullet\,$ analytic solution of gap equation for $N_{\rm f} \rightarrow \infty$ and $L \rightarrow \infty$
- GN & NJL: elliptic functions, inverse scattering methods, ...
- inhomogeneous $\langle \bar{\psi}\psi \rangle \rightarrow SSB$ of translation invariance
 - \rightarrow massless Goldstone-excitations
- is phase diagram = artifact of $\mathrm{N_f} \rightarrow \infty$ and/or d = 2?
- inhomogeneous condensates for $N_f < \infty$, $d \ge 2$?

Thies et al.

• induced action

$$S_{\text{eff}} = rac{1}{2g^2} \sum_{\chi} \sigma_{\chi}^2 - \log \det \mathcal{D}, \qquad \mathcal{D} = \gamma^{\mu} \partial_{\mu} + \mu \gamma^{\mu} + \sigma$$

 $\bullet\,$ charge conjugation and hermitean conjugation $\Rightarrow\,$

even dimensions: det \mathcal{D} real, even in μ , even in

- true for anti-hermitean and real ∂_{μ} naive fermions, chiral SLAC fermions
- SLAC fermions: $N_{\rm f}=2,4,\ldots$, naive fermions $N_{\rm f}=8,16,\ldots$
- Jena-Frankfurt collaboration: first simulations with chiral fermions for
 - $\bullet \ \, \mbox{3d Thirring model} \to \mbox{critical flavour number}$
 - 2d GN model at finite μ , T
 - 3d GN model at finite μ , T (preliminary)

Wellegehausen, Schmidt, Lenz, AW

Lenz, Panullo, Wagner, Wellegehausen, AW

- chiral SLAC fermions
 - no additional sign-problem due to discretization
 - same internal symmetries as continuum theory
 - no doublers
- simulations: line of constant physics: g^2 such that

 $\lim_{L\to\infty} \langle |\bar{\sigma}| \rangle \big|_{\mu=T=0} = \sigma_0$

- \rightarrow dimensionful quantities in units of fixed $\sigma_{\rm 0}$
- ensembles on (μ, T) -grid
- 31 \leq N_s \leq 128 \rightarrow , lattice spacings *a* \approx 0.41, 0.25, 0.20, 0.13
- rational HMC with $N_{\rm PF}=2N_{\rm f}$
- $\bullet~$ compare SLAC fermions \leftrightarrow naive femions $(N_{\rm f}=8)$
- TD and UV limit under control
- $\bullet\,$ longe-range correlators $N_{\rm f}=2$

typical configuration

• cp. kink-antikink (staggered, smeared σ , N_f = 12)

Karsch, Kogut, Wyld

differentiate homogeneously broken ↔ symmetric & inhomogeneous

$$\Sigma^2 = \frac{\langle \sigma^2 \rangle}{\sigma_0^2}$$

differentiate all phases:

$$\mathcal{C}(x) = \langle \sigma(t_0, x) \sigma(t_0, 0) \rangle = \frac{1}{N_t N_s} \sum_{t, y} \left\langle \sigma(t, y + x) \sigma(t, y) \right\rangle$$

Fourier transform

$$\tilde{C}(k) = \mathcal{F}_{X}(C)(k)$$

symmetric phase: homogeneously broken phase: peak at k = 0

inhomogeneous phase:

small amplitude

peaks at $\pm q$ (dominant wavelength)

• left: $\Sigma^2 \rightarrow$ symmetric or broken insensitive to inhom. phase

below:

wavelength increases with μ amplitude decreases with μ similar to large $N_{\rm f}$ limit

blue dots: SLAC, $(a, N_s) = (0.25, 63)$, orange: naive (0.252, 64), green: naive (0.126, 128)

full phase diagram, chiral fermions, $N_{\rm f}=8$

- longe range correlations, $N_s = 725$
- SSB $C(x) \sim (\alpha + \beta e^{-mx}) \cdot C_{\text{periodic}}(x)$
- BKT (Berezinskii, Kosterlitz, Thouless) $C(x) \sim |x|^{-\beta} \cdot C_{\text{periodic}}(x)$
- analysis not conclusive yet!

baryon number at low temperature & finite density

low temperature T = 0.076
Baryon number:

$${\cal B} = rac{\mathrm{i}}{\mathrm{N_f}} \Big\langle \int \mathrm{d}x\, ar{\Psi}(x) \gamma^0 \Psi(x) \Big
angle$$

- transition at μ ≈ 0.51 symmetric → inhomogeneous
- green: analytic large-N_f result

Schnetz, Thies, Urlichs; talk of M. Wagner

• analytic $N_f \rightarrow \infty$ result for $(\mu, T) = (0.7, 0)$

 $\bullet\,$ baryonic crystal: N_f fermions for each cycle of oscillation

- $\bullet\,$ fermions located at nodes of condensate field σ
 - \rightarrow correlation $n_B(x)$ and $\sigma^2(x)$

● correlation condensate ↔ baryon density

$$C_{n_B\sigma^2}(x) = \frac{1}{N_f} \left\langle n_B(0,x) \, \sigma^2(0,0) \right\rangle$$

 $\bullet\,$ left: analytical results for $N_f \to \infty$

Schnetz, Thies

21/32

• right: simulation results (SLAC, $N_f = 8$)

22 / 32

• k_{\max} maximizes $|\tilde{c}|$, with $\tilde{c} = \mathcal{F}(c)$,

$$c(x) = \frac{1}{N_t N_s} \sum_{t,y} \sigma(t, y + x) \sigma(t, y), \quad C(x) = \langle c(x) \rangle$$

- odminant frequency
 - $u_{\max} = rac{L\langle |k_{\max}|
 angle}{2\pi}$ $= \langle \text{number of oscillations}
 angle$ $\approx \text{ baryon numbers}$

conclusions

- first simulations with chiral fermions finite μ , T, N_f
- $\bullet\,$ comparable results for $N_{\rm f}=8$ and $N_{\rm f}=$ 16, naive and SLAC fermions
- phase diagram very similar to $N_f \to \infty$ broken phases shrink with increasing N_f baryon density \leftrightarrow condensate
- $\bullet\,$ long-range correlations for $\rm N_f=2$ (L \lessapprox 1024)

outlook

- $\bullet\,$ what happens to Goldstone-modes for $N_{\rm f} < \infty$
- dispersion relations of lightest states in 1 + 1 dimensions
- 1 + 2 dimensions, first numerical results for GN cutoff-dependence in large \mathbf{N}_f limit \rightarrow Marc Wagner
- external magnetic fields (\rightarrow first order transitions)

Witten

23/32