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Rotation of QGP in heavy ion collisions

I QGP is created with non-zero angular momentum in
non-central collisions
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Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

I Au-Au: left
√
s = 200 GeV, right b = 7 fm,

I Ω ∼ (4− 28) MeV ( Ω ∼ 20 MeV ⇒ v ∼ c at distances 7 fm)
I Relativistic rotation of QGP
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Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

I Ω = (PΛ + PΛ̄)kBT~ (Phys. Rev. C 95, 054902 (2017))
I Ω ∼ (4− 18) MeV
I Relativistic rotation of QGP

How relativistic rotation influences QCD?
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Common features

I Mostly the studies are carried out in NJL (chiral transition)
I Critical temperature of the chiral phase transition drops with angular velocity
I Explanation: polarization of the chiral condensate (Phys.Rev.Lett. 117 (2016) 19,

192302)
I Critical temperature of the confinement/deconfinement transition drops with

angular velocity
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Study of rotating QGP

I Rotating QGP at thermodynamic equilibrium
I At the equilibrium the system rotates with some Ω
I The study is conducted in the reference frame which

rotates with QCD matter
I QCD in external gravitational field

I Boundary conditions are very important!
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Details of the simulations

I Gluodynamics is studied at thermodynamic equilibrium in
external gravitational field

I The metric tensor

gµν =


1− r2Ω2 Ωy −Ωx 0

Ωy −1 0 0
−Ωx 0 −1 0

0 0 0 −1


I Geometry of the system: Nt ×Nz ×Nx ×Ny = Nt ×Nz ×N2

s
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Details of the simulations

I Partition function (Ĥ is conserved)

Z = Tr exp

[
−βĤ

]
I Euclidean action

SG = − 1

2g2
YM

∫
d4x
√
gE g

µν
E gαβE F (a)

µα Fνβ(a)

SG =
1

2g2
YM

∫
d4xTr

[
(1− r2Ω2)F axyF

a
xy + (1− y2Ω2)F axzF

a
xz+

+(1− x2Ω2)F ayzF
a
yz + +F axτF

a
xτ + F ayτF

a
yτ + F azτF

a
zτ−

−2iyΩ(F axyF
a
yτ+F axzF

a
zτ )+2ixΩ(F ayxF

a
xτ+F ayzF

a
zτ )−2xyΩ2FxzFzy

]
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Details of the simulations

I Ehrenfest–Tolman effect: In gravitational field the
temperature is not constant in space at thermal
equilibrium

T (r)
√
g00 = const = 1/β

T (r)
√

1− r2Ω2 = 1/β

I Rotation effectively heats the system from the rotation axis to
the boundaries T (r) > T (r = 0)

I One could expect that rotation decreases the critical
temperature

I We use the designation T = T (r = 0) = 1/β
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Details of the simulations

Boundary conditions

I Periodic b.c.:
I Ux,µ = Ux+Ni,µ

I Not appropriate for the field of velocities of rotating body

I Dirichlet b.c.:
I Ux,µ

∣∣
x∈Γ

= 1, Aµ
∣∣
x∈Γ

= 0
I Violate Z3 symmetry
I Not appropriate for the field of velocities of rotating body

I Neumann b.c.:
I Outside the volume UP = 1, Fµν = 0

One can expect that boundary conditions influence our results, but
their influence is restricted due to the screening
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Details of the simulations

Sign problem

SG =
1

2g2
YM

∫
d4xTr

[
(1− r2Ω2)F axyF

a
xy + (1− y2Ω2)F axzF

a
xz+

+(1− x2Ω2)F ayzF
a
yz + +F axτF

a
xτ + F ayτF

a
yτ + F azτF

a
zτ−

−2iyΩ(F axyF
a
yτ + F axzF

a
zτ ) + 2ixΩ(F ayxF

a
xτ + F ayzF

a
zτ )− 2xyΩ2FxzFzy

]

I The Euclidean action has imaginary part (sign problem)

I Simulations are carried out at imaginary angular velocities
Ω→ iΩI

I The results are analytically continued to real angular velocities

I This approach works up to sufficiently large Ω (Ω < 50 MeV) 12



Details of the simulations

The critical temperature

I Polyakov line

L =

〈
TrT exp

[
ig

∫
[0,β]

A4 dx
4

]〉
I Susceptibility of the Polyakov line

χ = N2
sNz

(
〈|L|2〉 − 〈|L|〉2

)
I Tc is determined from Gaussian fit of the χ(T )

13



Rotation at zero temperature

I 〈trF 2
µν〉 6= 0, 〈Tµν〉 = εgµν , ε ∼ 〈trF 2

µν〉
I In rotating frame 〈T0i〉 6= 0

I The ground state of our system is "rotating vacuum"
14



Results of the calculation (Neumann b.c.)
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Results of the calculation (Dirichlet b.c.)
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Results of the calculation (Periodic b.c.)
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Results of the calculation

Volume dependence of the susceptibility

I Periodic b.c.: ∼ V
I Dirichlet b.c.: ∼ const
I Neumann b.c.: ∼ V

Rotation does not modify the order of the phase
transition
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Results of the calculation

I The results can be well described by the formula (C2 > 0)

Tc(ΩI)

Tc(0)
= 1− C2Ω2

I ⇒
Tc(Ω)

Tc(0)
= 1 + C2Ω2

I The critical temperature rises with angular velocity
I The results weakly depend on lattice spacing and the volume in

z-direction 19



Dependence on the transverse size

I The results can be well described by the formula

Tc(Ω)

Tc(0)
= 1−B2v

2
I , vI = ΩI(Ns−1)a/2, C2 = B2(Ns−1)2a2/4

I Periodic b.c.: B2 ∼ 1.3

I Dirichlet b.c.: B2 ∼ 0.5

I Neumann b.c.: B2 ∼ 0.7
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Conclusion

I We have carried out lattice study of how relativistic
rotation influences confinement/deconfinement transition

I Critical temperature of the confinement/deconfinement
transition rises with Ω

I Critical temperature of the chiral transition drops with Ω

I One needs to include dynamical quarks to see who wins

THANK YOU!
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