Lattice study of rotating gluodynamics

V.V. Braguta

MISIS, JINR

12 November, 2020

In collaboration with

- ► A.Yu. Kotov
- D.D. Kuznedelev
- ▶ A.A. Roenko

V. Braguta, A. Kotov, D. Kuznedelev, and A. Roenko, JETP Lett. 112, 9-16 (2020)

 QGP is created with non-zero angular momentum in non-central collisions

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s} = 200$ GeV, right b = 7 fm,
- ▶ $\Omega \sim (4-28)$ MeV ($\Omega \sim 20$ MeV $\Rightarrow v \sim c$ at distances 7 fm)
- Relativistic rotation of QGP

Angular velocity from STAR (Nature 548, 62 (2017))

• $\Omega = (P_{\Lambda} + P_{\bar{\Lambda}}) \frac{k_B T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))

$$\blacktriangleright \ \Omega \sim (4 - 18) \ \mathrm{MeV}$$

Relativistic rotation of QGP

Angular velocity from STAR (Nature 548, 62 (2017))

• $\Omega = (P_{\Lambda} + P_{\bar{\Lambda}}) \frac{k_B T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))

$$\blacktriangleright \ \Omega \sim (4 - 18) \text{ MeV}$$

Relativistic rotation of QGP

How relativistic rotation influences QCD?

Recent works

- Arata Yamamoto, Yuji Hirono, Phys.Rev.Lett. 111 (2013) 081601
- S. Ebihara, K. Fukushima, K. Mameda, Phys. Lett. B 764 (2017) 94–99
- M.N. Chernodub, Shinya Gongyo, Phys.Rev.D 95 (2017) 9, 096006
- M.N. Chernodub, Shinya Gongyo, JHEP 01 (2017) 136
- Hui Zhang, Defu Hou, Jinfeng Liao, e-Print: 1812.11787 [hep-ph]
- Yin Jiang, Jinfeng Liao, Phys.Rev.Lett. 117 (2016) 19, 192302
- Xun Chen, Lin Zhang, Danning Li, Defu Hou, Mei Huang, e-Print: 2010.14478

. . .

Common features

- Mostly the studies are carried out in NJL (chiral transition)
- Critical temperature of the chiral phase transition drops with angular velocity
- Explanation: polarization of the chiral condensate (Phys.Rev.Lett. 117 (2016) 19, 192302)
- Critical temperature of the confinement/deconfinement transition drops with angular velocity

Study of rotating QGP

- ▶ Rotating QGP at thermodynamic equilibrium
 - At the equilibrium the system rotates with some Ω
 - The study is conducted in the reference frame which rotates with QCD matter
 - ▶ QCD in external gravitational field

Study of rotating QGP

- ▶ Rotating QGP at thermodynamic equilibrium
 - At the equilibrium the system rotates with some Ω
 - The study is conducted in the reference frame which rotates with QCD matter
 - ▶ QCD in external gravitational field
- Boundary conditions are very important!

- Gluodynamics is studied at thermodynamic equilibrium in external gravitational field
- ▶ The metric tensor

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & \Omega y & -\Omega x & 0\\ \Omega y & -1 & 0 & 0\\ -\Omega x & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}$$

▶ Geometry of the system: $N_t \times N_z \times N_x \times N_y = N_t \times N_z \times N_s^2$

▶ Partition function (\hat{H} is conserved)

$$Z = \text{Tr } \exp\left[-\beta \hat{H}\right]$$

▶ Euclidean action

$$S_G = -\frac{1}{2g_{YM}^2} \int d^4x \sqrt{g_E} g_E^{\mu\nu} g_E^{\alpha\beta} F_{\mu\alpha}^{(a)} F_{\nu\beta(a)}$$

$$S_G = \frac{1}{2g_{YM}^2} \int d^4x \operatorname{Tr} \left[(1 - r^2 \Omega^2) F_{xy}^a F_{xy}^a + (1 - y^2 \Omega^2) F_{xz}^a F_{xz}^a + \right]$$

$$+(1-x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a}++F_{x\tau}^{a}F_{x\tau}^{a}+F_{y\tau}^{a}F_{y\tau}^{a}+F_{z\tau}^{a}F_{z\tau}^{a}-$$

$$-2iy\Omega(F^a_{xy}F^a_{y\tau}+F^a_{xz}F^a_{z\tau})+2ix\Omega(F^a_{yx}F^a_{x\tau}+F^a_{yz}F^a_{z\tau})-2xy\Omega^2F_{xz}F_{zy}]$$

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

 $T(r)\sqrt{g_{00}}=const=1/\beta$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

 $T(r)\sqrt{g_{00}} = const = 1/\beta$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

▶ Rotation effectively heats the system from the rotation axis to the boundaries T(r) > T(r = 0)

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

 $T(r)\sqrt{g_{00}} = const = 1/\beta$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

- ▶ Rotation effectively heats the system from the rotation axis to the boundaries T(r) > T(r = 0)
- One could expect that rotation decreases the critical temperature

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

 $T(r)\sqrt{g_{00}} = const = 1/\beta$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

▶ Rotation effectively heats the system from the rotation axis to the boundaries T(r) > T(r = 0)

• One could expect that rotation decreases the critical temperature

• We use the designation
$$T = T(r = 0) = 1/\beta$$

Boundary conditions

▶ Periodic b.c.:

$$\blacktriangleright U_{x,\mu} = U_{x+N_i,\mu}$$

▶ Not appropriate for the field of velocities of rotating body

► Dirichlet b.c.:

$$U_{x,\mu}\big|_{x\in\Gamma} = 1, \quad A_{\mu}\big|_{x\in\Gamma} = 0$$

• Violate Z_3 symmetry

▶ Not appropriate for the field of velocities of rotating body

▶ Neumann b.c.:

• Outside the volume $U_P = 1$, $F_{\mu\nu} = 0$

Boundary conditions

▶ Periodic b.c.:

$$\blacktriangleright U_{x,\mu} = U_{x+N_i,\mu}$$

▶ Not appropriate for the field of velocities of rotating body

► Dirichlet b.c.:

$$U_{x,\mu}\big|_{x\in\Gamma} = 1, \quad A_{\mu}\big|_{x\in\Gamma} = 0$$

• Violate Z_3 symmetry

▶ Not appropriate for the field of velocities of rotating body

▶ Neumann b.c.:

• Outside the volume $U_P = 1$, $F_{\mu\nu} = 0$

One can expect that boundary conditions influence our results, but their influence is restricted due to the screening

Sign problem

$$S_{G} = \frac{1}{2g_{YM}^{2}} \int d^{4}x \operatorname{Tr}\left[(1 - r^{2}\Omega^{2})F_{xy}^{a}F_{xy}^{a} + (1 - y^{2}\Omega^{2})F_{xz}^{a}F_{xz}^{a} + (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + F_{x\tau}^{a}F_{x\tau}^{a} + F_{y\tau}^{a}F_{y\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} - (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} - (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} - (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} - (1 - x^{2}\Omega^{2})F_{z\tau}^{a}F_{z\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} + F_{z$$

$$-2iy\Omega(F^a_{xy}F^a_{y\tau} + F^a_{xz}F^a_{z\tau}) + 2ix\Omega(F^a_{yx}F^a_{x\tau} + F^a_{yz}F^a_{z\tau}) - 2xy\Omega^2F_{xz}F_{zy}]$$

- ▶ The Euclidean action has imaginary part (sign problem)
- $\blacktriangleright\,$ Simulations are carried out at imaginary angular velocities $\Omega \to i \Omega_I$
- ▶ The results are analytically continued to real angular velocities
- This approach works up to sufficiently large Ω ($\Omega < 50$ MeV)

The critical temperature

Polyakov line

$$L = \left\langle \operatorname{Tr} \mathcal{T} \exp \left[ig \int_{[0,\beta]} A_4 \, dx^4 \right] \right\rangle$$

Susceptibility of the Polyakov line

$$\chi = N_s^2 N_z \left(\langle |L|^2 \rangle - \langle |L| \rangle^2 \right)$$

▶ T_c is determined from Gaussian fit of the $\chi(T)$

Rotation at zero temperature

$$\blacktriangleright \langle tr F_{\mu\nu}^2 \rangle \neq 0, \quad \langle T_{\mu\nu} \rangle = \epsilon g_{\mu\nu}, \quad \epsilon \sim \langle tr F_{\mu\nu}^2 \rangle$$

- ▶ In rotating frame $\langle T_{0i} \rangle \neq 0$
- ▶ The ground state of our system is "rotating vacuum"

Results of the calculation (Neumann b.c.)

Results of the calculation (Dirichlet b.c.)

Results of the calculation (Periodic b.c.)

Results of the calculation

Volume dependence of the susceptibility

- **>** Periodic b.c.: $\sim V$
- **Dirichlet b.c.:** $\sim const$
- ▶ Neumann b.c.: $\sim V$

Results of the calculation

Volume dependence of the susceptibility

- ▶ Periodic b.c.: $\sim V$
- **Dirichlet b.c.:** $\sim const$
- **•** Neumann b.c.: $\sim V$

Rotation does not modify the order of the phase transition

Results of the calculation

▶ The results can be well described by the formula $(C_2 > 0)$

$$\frac{T_c(\Omega_I)}{T_c(0)} = 1 - C_2 \Omega_I^2 \Rightarrow \frac{T_c(\Omega)}{T_c(0)} = 1 + C_2 \Omega^2$$

▶ The critical temperature rises with angular velocity

► The results weakly depend on lattice spacing and the volume in z-direction

19

Dependence on the transverse size

▶ The results can be well described by the formula

$$\frac{T_c(\Omega)}{T_c(0)} = 1 - B_2 v_I^2, \quad v_I = \Omega_I (N_s - 1)a/2, \quad C_2 = B_2 (N_s - 1)^2 a^2/4$$

- **Periodic b.c.:** $B_2 \sim 1.3$
- **Dirichlet b.c.:** $B_2 \sim 0.5$
- **Neumann b.c.:** $B_2 \sim 0.7$

Conclusion

- We have carried out lattice study of how relativistic rotation influences confinement/deconfinement transition
- \blacktriangleright Critical temperature of the confinement/deconfinement transition rises with Ω
- \blacktriangleright Critical temperature of the chiral transition drops with Ω
- ▶ One needs to include dynamical quarks to see who wins

Conclusion

- We have carried out lattice study of how relativistic rotation influences confinement/deconfinement transition
- \blacktriangleright Critical temperature of the confinement/deconfinement transition rises with Ω
- \blacktriangleright Critical temperature of the chiral transition drops with Ω
- ▶ One needs to include dynamical quarks to see who wins

THANK YOU!