ANOMALY-INDUCED INHOMOGENEOUS PHASE IN QCD-LIKE THEORIES

Tomáš Brauner

Collaborators: Naoki Yamamoto Helena Kolešová Georgios Filios

LOW-ENERGY EFFECTIVE THEORY OF QCD

* Symmetry-breaking pattern:

$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$

* Parameterization of the coset space:

$$[SU(2)_L \times SU(2)_R]/SU(2)_V \implies \Sigma \in SU(2)$$

Leading-order effective Lagrangian:

$$\mathscr{L} = \frac{f_\pi^2}{4} \left[\operatorname{tr}(D_\mu \Sigma^\dagger D^\mu \Sigma) + m_\pi^2 \operatorname{tr}(\Sigma + \Sigma^\dagger) \right]$$
 Explicit symmetry breaking

Gasser, Leutwyler, Ann. Phys. 158 (1984)

WESS-ZUMINO-WITTEN TERM

Anomalous coupling of pions has nontrivial consequences:

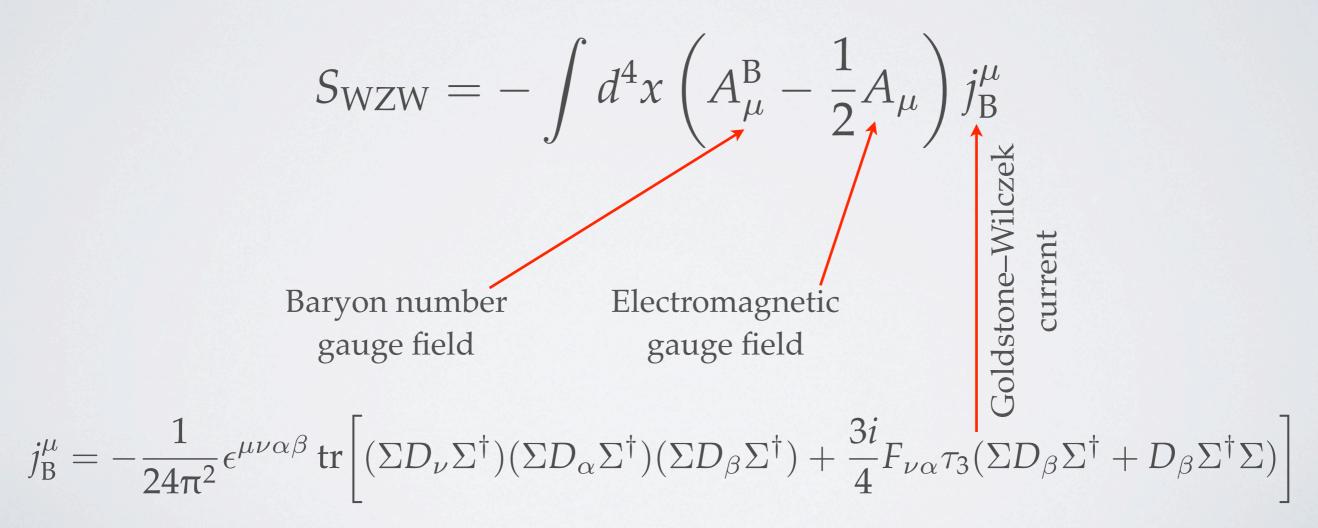
- Neutral pions can couple to electromagnetic fields!
- Pion fields can carry baryon number!

$$S_{\text{WZW}} = -\int d^4x \left(A_{\mu}^{\text{B}} - \frac{1}{2} A_{\mu} \right) j_{\text{B}}^{\mu}$$

WESS-ZUMINO-WITTEN TERM

Anomalous coupling of pions has nontrivial consequences:

- Neutral pions can couple to electromagnetic fields!
- Pion fields can carry baryon number!



Son, Stephanov, PRD 77 (2008)

NEUTRAL PION BACKGROUND

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \left[\operatorname{tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) + m_{\pi}^2 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) \right] + \mathcal{L}_{\text{WZW}}$$

$$\Sigma = e^{i\tau_3\phi}$$

$$\mathcal{H} = \frac{f_{\pi}^2}{2} (\nabla \phi)^2 + m_{\pi}^2 f_{\pi}^2 (1 - \cos \phi) - \frac{\mu}{4\pi^2} \mathbf{B} \cdot \nabla \phi$$

- Sine-Gordon Hamiltonian with a topological term!
- ◆ Favors one-dimensional modulation in direction of B.
- * Equation of motion: simple pendulum!

$$\partial_z^2 \phi = m_\pi^2 \sin \phi$$

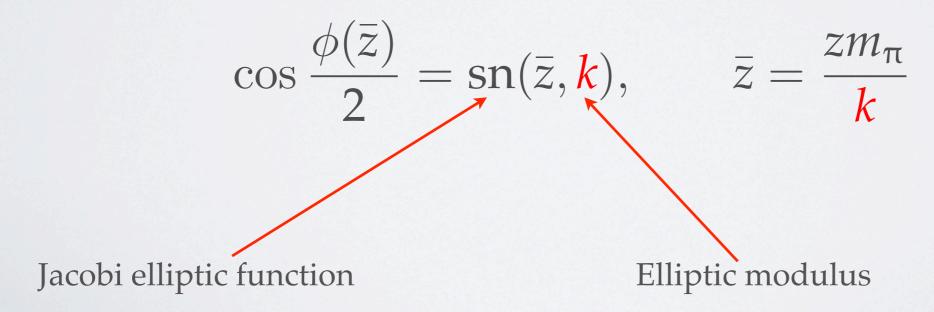
NEUTRAL PION BACKGROUND

$$\mathcal{H} = \frac{f_{\pi}^2}{2} (\nabla \phi)^2 + m_{\pi}^2 f_{\pi}^2 (1 - \cos \phi) - \frac{\mu}{4\pi^2} \mathbf{B} \cdot \nabla \phi$$

+ Chiral limit ($m_{\pi}=0$): Hamiltonian minimized by

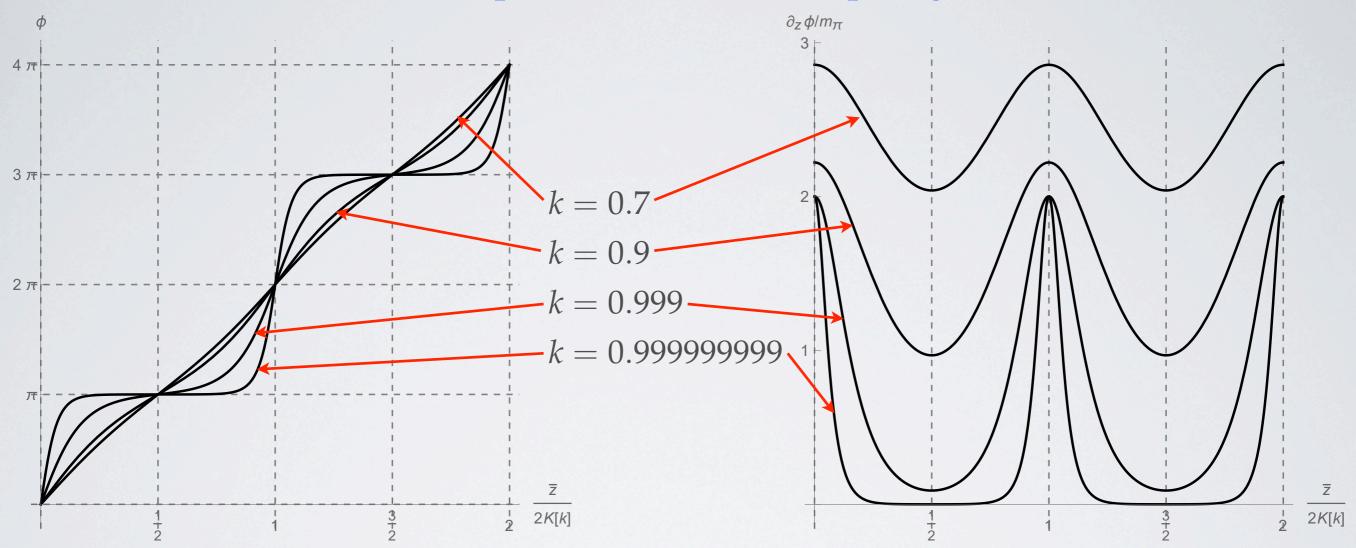
$$\phi(z) = \frac{\mu B z}{4\pi^2 f_{\pi}^2}$$

Solution in the general case:



CHIRAL SOLITON LATTICE

The solution is a periodic lattice of topological solitons!



Phase of the solution

Kishine, Ovchinnikov, Solid State Phys. 66 (2015) Topological charge density

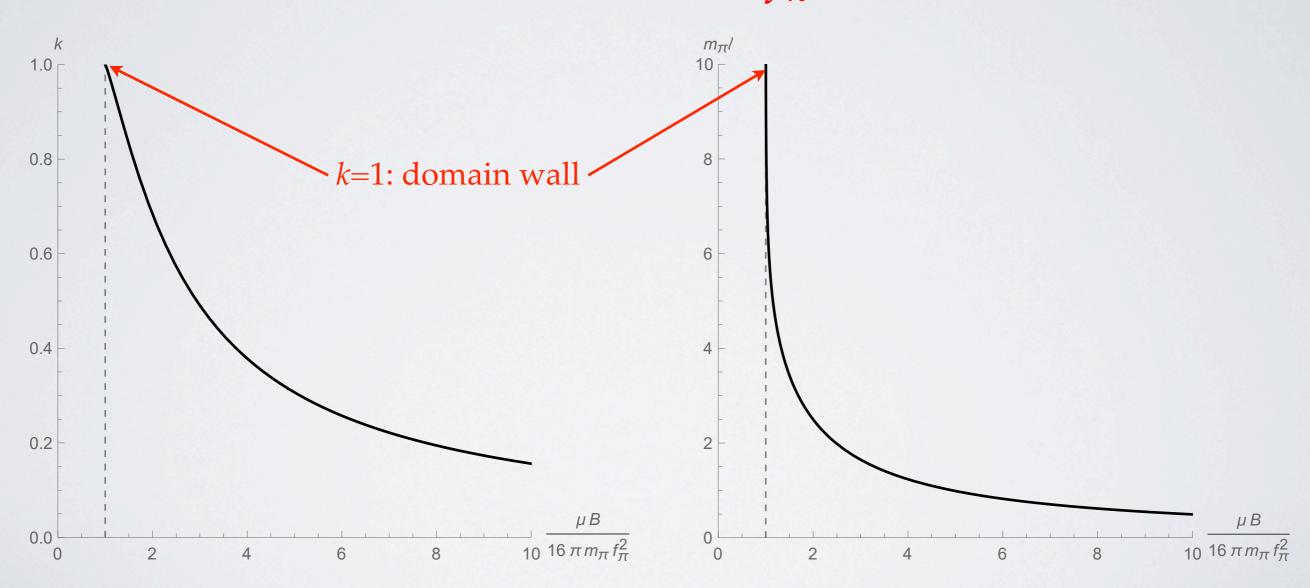
$$n_{\mathrm{B}}(z) = rac{B}{4\pi^2} \partial_z \phi(z)$$
 $m(z) = rac{\mu}{4\pi^2} \partial_z \phi(z)$

$$m(z) = rac{\mu}{4\pi^2} \partial_z \phi(z)$$

THE OPTIMUM CSL SOLUTION

The ground state is found by minimization of the Hamiltonian.

$$\frac{E(k)}{k} = \frac{\mu B}{16\pi m_{\pi} f_{\pi}^2}$$



Optimum value of elliptic modulus

Period of the lattice

CRITICAL MAGNETIC FIELD

CSL is energetically favored above certain critical value of magnetic field.

$$\frac{E(k)}{k} = \frac{\mu B}{16\pi m_{\pi} f_{\pi}^2} \implies B_{\text{CSL}} = \frac{16\pi m_{\pi} f_{\pi}^2}{\mu}$$

CRITICAL MAGNETIC FIELD

CSL is energetically favored above certain critical value of magnetic field.

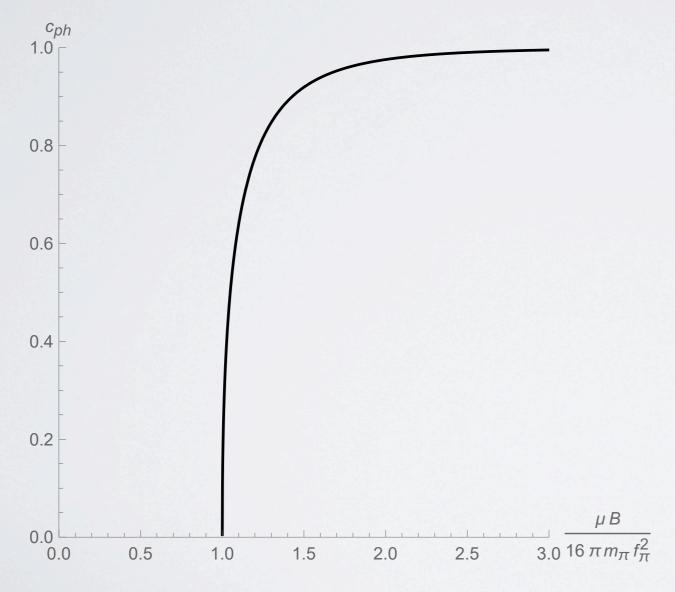
$$\frac{E(k)}{k} = \frac{\mu B}{16\pi m_{\pi} f_{\pi}^2} \implies B_{\text{CSL}} = \frac{16\pi m_{\pi} f_{\pi}^2}{\mu}$$

$$m_{\pi} \approx 140 \text{ MeV}$$
 $f_{\pi} \approx 92 \text{ MeV}$
 $\mu = 900 \text{ MeV}$
 $\Rightarrow B_{\text{CSL}} \approx 0.066 \text{ GeV}^2$

Conversion factor: $1 \text{ GeV}^2 \approx 1.7 \times 10^{20} \text{ G}$

PHONONS OF THE SOLITON LATTICE

- * Linearize the sine-Gordon equation around the CSL solution.
- * Results in the Lamé equation (n=1) with known spectrum.
- * Two-band, gapless spectrum in accord with the Goldstone theorem.



$$c_{\rm ph} = \sqrt{1 - k^2} \frac{K(k)}{E(k)}$$

Phonon phase velocity

HARGED PION FLUCTUATIONS

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \left[\operatorname{tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) + m_{\pi}^2 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) \right]$$

$$\Sigma = e^{i au_3\phi}e^{rac{i}{f_\pi}ec{ au}\cdotec{\pi}}$$
 Expand to second order in the field fluctuations

$$\mathcal{L}_{bilin} = \frac{1}{2} (\partial_{\mu} \vec{\pi})^{2} + (A^{\mu} - \frac{\partial^{\mu} \phi}{\partial \mu})(\pi_{1} \partial_{\mu} \pi_{2} - \pi_{2} \partial_{\mu} \pi_{1}) + \frac{1}{2} A^{\mu} A_{\mu} (\pi_{1}^{2} + \pi_{2}^{2}) - \frac{1}{2} m_{\pi}^{2} \vec{\pi}^{2} \cos \phi$$

CHARGED PION FLUCTUATIONS

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \left[\operatorname{tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) + m_{\pi}^2 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) \right]$$

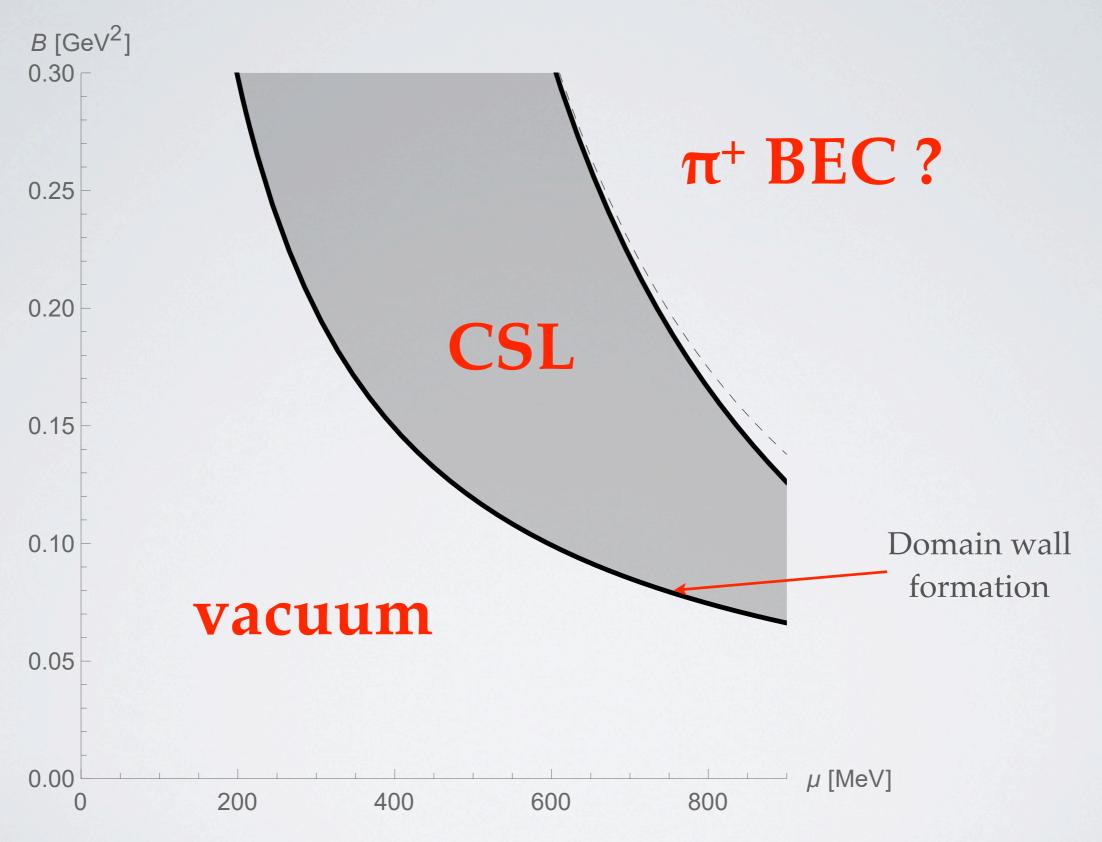
$$\Sigma = e^{i au_3\phi}e^{rac{i}{f_\pi}ec{ au}\cdotec{\pi}}$$
 Expand to second order in the field fluctuations

$$\mathcal{L}_{bilin} = \frac{1}{2} (\partial_{\mu} \vec{\pi})^{2} + (A^{\mu} - \frac{\partial^{\mu} \phi}{\partial \mu})(\pi_{1} \partial_{\mu} \pi_{2} - \pi_{2} \partial_{\mu} \pi_{1}) + \frac{1}{2} A^{\mu} A_{\mu} (\pi_{1}^{2} + \pi_{2}^{2}) - \frac{1}{2} m_{\pi}^{2} \vec{\pi}^{2} \cos \phi$$

- CSL background acts as a chemical potential on charged pions!
- Chiral limit: easily solvable.
- ◆ General case: Lamé equation (n=2), solvable with some effort.

Li, Kusnezov, Iachello, JPA 33 (2000) Finkel, González-López, Rodríguez, JPA 33 (2000)

PHASE DIAGRAM

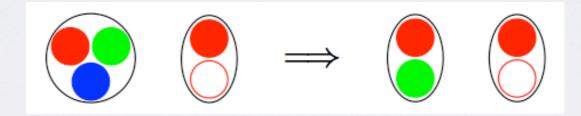


Conversion factor: $1 \text{ GeV}^2 \approx 1.7 \times 10^{20} \text{ G}$

TB, Yamamoto, JHEP 04 (2017)

QCD-LIKE THEORIES AT B=0

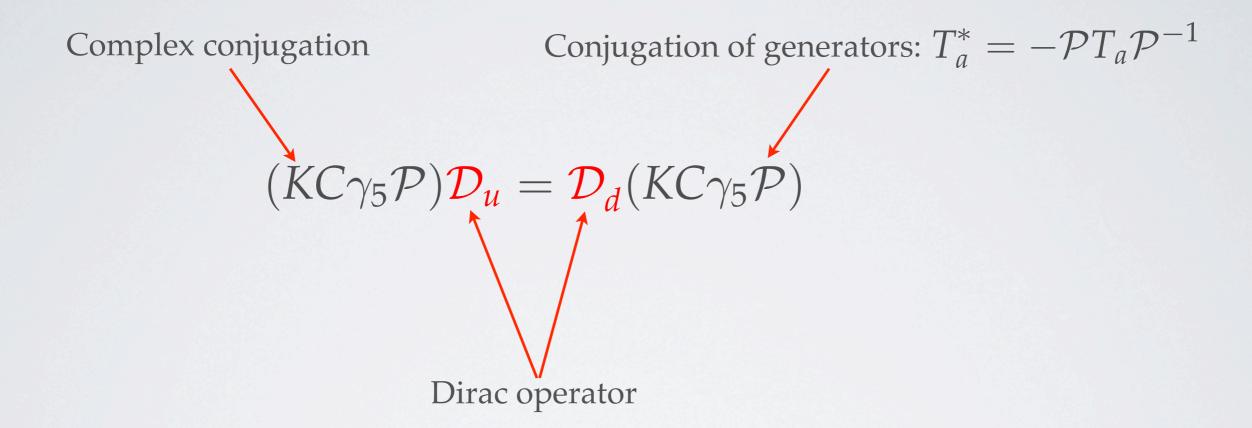
- * Quarks in a (pseudo)real representation of gauge group: theory invariant under the exchange $q_L \iff \overline{q}_R$.
 - * Real: adjoint QCD, G₂-QCD, ...
 - * Pseudoreal: 2cQCD, ...
- * Bosonic baryons in the spectrum:



- * Global flavor SU(2N) symmetry for N quark flavors.
- + Pseudo-NG bosons in the vacuum:
 - + N^2 –1 pions.
 - + $N^2 \pm N$ diquarks.

ABSENCE OF SIGN PROBLEM

• For two flavors with $q_u = -q_d$, Dirac determinant is positive:



* Conjectured that absence of sign problem implies absence of inhomogeneous order in the phase diagram.

Splittorff, Son, Stephanov, PRD 64 (2001)

LOW-ENERGY EFT IN STRONG B-FIELDS

* Symmetry-breaking pattern (both real and pseudoreal theories):

$$SU(2) \times SU(2) \times U(1)_Q \rightarrow SU(2)_{diag} \times U(1)_Q$$

Not the chiral group!

- * Particle content: neutral pion and diquark-antidiquark pair.
- * Leading-order effective Lagrangian:

$$\mathscr{L} = \frac{f_\pi^2}{4} \left[\underbrace{(g_\parallel^{\mu\nu} + v^2 g_\perp^{\mu\nu})}_{\text{T}} \operatorname{tr}(D_\mu \Sigma^\dagger D_\nu \Sigma) + m_\pi^2 \operatorname{tr}(\Sigma + \Sigma^\dagger) \right] + \mathscr{L}_{\text{WZW}}$$
 Anisotropy due to *B*-field

* All the couplings f_{π} , m_{π} , v depend on the B-field!

LOW-ENERGY EFT IN STRONG B-FIELDS

* Wess-Zumino-Witten term:

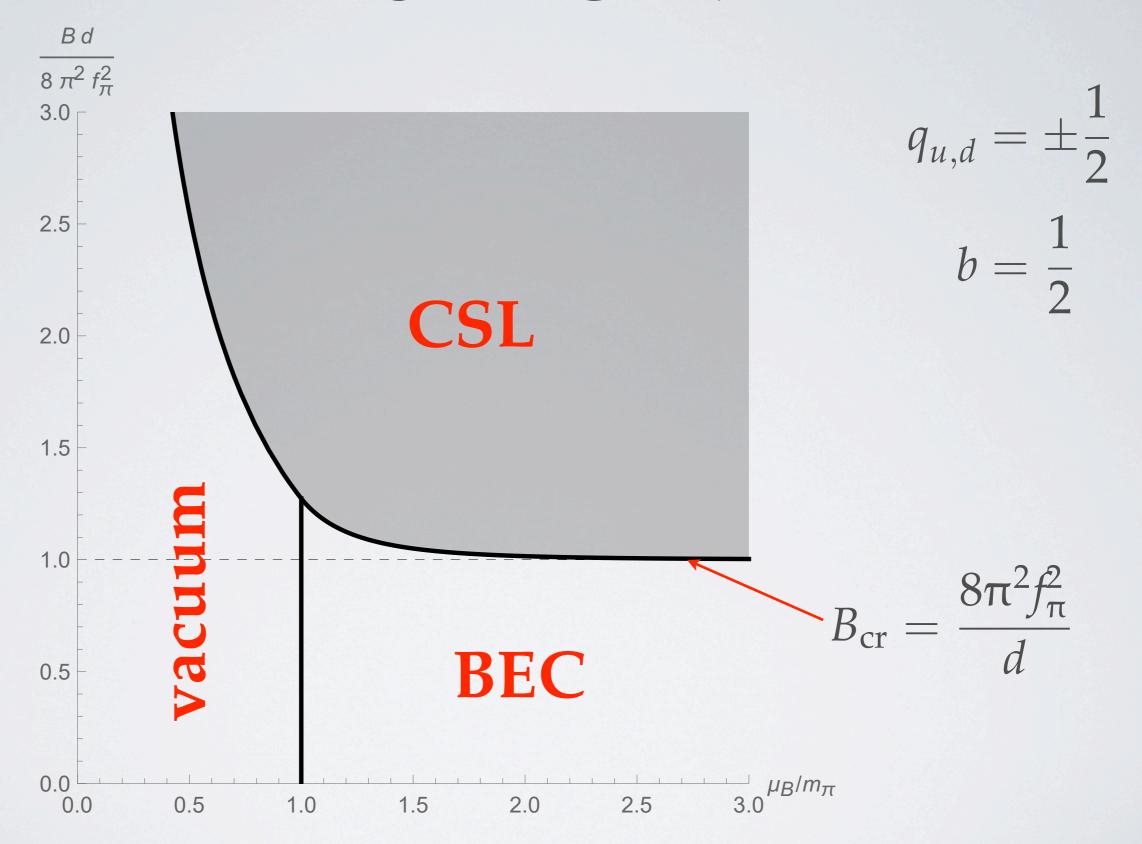
Baryon number of a single quark

$$\mathcal{L}_{WZW} = +\frac{ibC}{4} \epsilon^{\mu\nu\alpha\beta} F^{Q}_{\mu\nu} A^{B}_{\alpha} \operatorname{tr}[\tau_{3}(\partial_{\beta}\Sigma\Sigma^{\dagger} - \partial_{\beta}\Sigma^{\dagger}\Sigma)]$$
$$-\frac{C}{6} \epsilon^{\mu\nu\alpha\beta} A^{Q}_{\mu} \operatorname{tr}(\partial_{\nu}\Sigma\partial_{\alpha}\Sigma^{\dagger}\partial_{\beta}\Sigma\Sigma^{\dagger})$$

number of quark color d.o.f.

$$C = \frac{d}{8\pi^2} (q_u - q_d)$$

PHASE DIAGRAM



TB, Filios, Kolešová, PRL 123 (2019)

CAN THE CSL PHASE BE REACHED?

* Remember that f_{π} depends on the magnetic field!

$$B > B_{\rm cr} \iff \frac{B}{[4\pi f_{\pi}(B)]^2} > \frac{1}{2d}$$

* One-loop result for pseudoreal QCD-like theories:

$$[4\pi f_{\pi}(B)]^{2} = [4\pi f_{\pi}(0)]^{2} + 2B\log 2 + \mathcal{O}(B^{2})$$

Shushpanov, Smilga, PLB 402 (1997)

- ◆ In theories with large enough *d*, the critical field is in reach of the EFT!
- For theories such as 2cQCD, more information on $f_{\pi}(B)$ is needed.

CONCLUSIONS

- * In sufficiently strong magnetic fields, QCD vacuum is unstable under formation of a soliton lattice of neutral pions.
- * This can generate baryon densities relevant for neutron stars, although the required magnetic field seems too strong.
- ◆ The same inhomogeneous phase appears in other theories:
 - + QCD with isospin chemical potential.
 - QCD-like theories with (pseudo)real quarks.
- There are many avenues for further investigation:
 - * Effects of nonzero temperature?
 - * Modification in finite volume?
 - * Modification due to inhomogeneous magnetic fields?
 - Competition with nuclear matter?